
van Eijk et al. BMC Genomics 2012, 13:636
http://www.biomedcentral.com/1471-2164/13/636
RESEARCH ARTICLE Open Access
Genetic analysis of DNA methylation and gene
expression levels in whole blood of healthy
human subjects
Kristel R van Eijk1,2†, Simone de Jong5†, Marco PM Boks2, Terry Langeveld1, Fabrice Colas3, Jan H Veldink4,
Carolien GF de Kovel1, Esther Janson1, Eric Strengman1,5, Peter Langfelder6, René S Kahn2,
Leonard H van den Berg4, Steve Horvath6,7 and Roel A Ophoff2,5,6*
Abstract

Background: The predominant model for regulation of gene expression through DNA methylation is an inverse
association in which increased methylation results in decreased gene expression levels. However, recent studies
suggest that the relationship between genetic variation, DNA methylation and expression is more complex.

Results: Systems genetic approaches for examining relationships between gene expression and methylation array
data were used to find both negative and positive associations between these levels. A weighted correlation
network analysis revealed that i) both transcriptome and methylome are organized in modules, ii) co-expression
modules are generally not preserved in the methylation data and vice-versa, and iii) highly significant correlations
exist between co-expression and co-methylation modules, suggesting the existence of factors that affect expression
and methylation of different modules (i.e., trans effects at the level of modules). We observed that methylation
probes associated with expression in cis were more likely to be located outside CpG islands, whereas specificity for
CpG island shores was present when methylation, associated with expression, was under local genetic control. A
structural equation model based analysis found strong support in particular for a traditional causal model in which
gene expression is regulated by genetic variation via DNA methylation instead of gene expression affecting DNA
methylation levels.

Conclusions: Our results provide new insights into the complex mechanisms between genetic markers, epigenetic
mechanisms and gene expression. We find strong support for the classical model of genetic variants regulating
methylation, which in turn regulates gene expression. Moreover we show that, although the methylation and
expression modules differ, they are highly correlated.
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Background
Epigenetics has been described as the structural adapta-
tion of chromosomal regions so as to register, signal or
perpetuate altered activity states [1]. DNA methylation is
one of several forms of epigenetic modifications and
involves the covalent binding of a methyl group to a
Cytosine-5 at a C-phosphate-G (CpG) site. These sites
are relatively rare in the genome but more common at
promoter regions of genes, also called CpG islands
(CGIs). CpGs in these islands are less likely to be methy-
lated than CpGs outside these islands. Recent studies
have shown that specifically the CpGs in the shore of
CGIs are most frequently involved in differential methy-
lation between tissues or experimental groups [2,3].
Increased methylation of CpG islands at 5’ end of a gene
is associated with gene repression. Possible mechanisms
for repression include interference with transcription
factor binding or through the recruitment of repressors
such as histone deacetylases [4].
Although one would expect DNA methylation at CGIs

and expression of the nearby gene to be inversely cor-
related, this is not necessarily the case. Recent reports
also identified positive associations between expression
and methylation levels [5-7]. However, negative associa-
tions between methylation and expression were found to
be enriched particularly in CGIs [6] and promoter
regions [5].
Around 30% of gene expression levels in cell lines [8]

and 23% of DNA methylation levels in blood are herit-
able [9] and genetic variation associated with expression
and methylation levels has been identified in several
organisms [6,10-12], tissues [13] and populations [14].
Local (cis) and distal (trans) associations of genetic vari-
ation with gene expression levels have been observed.
With the arrival of high-throughput DNA methylation
assays, methylation quantitative trait loci (mQTLs) can
now be studied genome-wide in any tissue or cell type of
interest. Similar to expression (eQTLs), more cis than
trans regulation has been identified [5-7] but peak en-
richment for mQTLs is located in much closer proximity
to transcription start sites than that of eQTLs [6].
Attempts to identify three-way associations between

genetic variants, expression and methylation on a
genome-wide scale in four different brain regions did
not identify co-regulation of methylation and expression
by the same genetic variants [6], while a study of cere-
bellar samples did identify three-way associations for a
number of genes [7]. In lymphoblastoid cell lines of 77
individuals of the Yoruba Hapmap population, co-
regulation of expression and methylation levels by the
same genetic variants was also found, suggesting a
shared mechanism, whereby a genetic variant influences
methylation, which in turn influences expression levels
[5]. Strong evidence exists that both patterns of CpG
methylation [15,16] and gene expression [13,17,18] differ
between tissues.
The aims of the current study are i) to relate expres-

sion levels to methylation levels, ii) to relate co-
expression modules (clusters of expression probes) to
co-methylation modules, iii) and to study the relation-
ship between genetic markers, methylation and expres-
sion in whole blood of a relatively large (n=148) set of
healthy human subjects. For the genetic analysis, we
examined the associations of methylation and expression
levels and identified genetic markers associated with
these levels. To infer directionality in the relationships
between genetic variants, methylation and expression,
we calculated local edge orienting (LEO) scores based
on structural equation models [19]. This method has
been applied successfully before and will aid in elucidat-
ing the nature of relationship between genetic variation,
methylation and expression [20-23].
Results
Associations between methylation and expression levels
A multivariate linear model analysis for regressing a
gene expression level on a methylation level and age and
gender resulted in the identification of 522 negative
and 276 positive cis associations between methylation
and expression levels (False Discovery Rate (FDR) 5%
corrected). A negative association between methylation
and transcript level means that increased methylation
levels correlate with decreased expression levels, whereas
a positive correlation includes levels that both increase
or decrease. These associations involved 517 different
cis-acting CpG loci (from 461 unique genes) and 495
corresponding expression probes (representing 452
unique genes). For trans effects, we found evidence for
844 negative and 1,806 positive associations between
methylation and expression levels involving 705 different
methylation probes (from 630 distinct genes), and 170
different expression probes (representing 157 unique
genes). Full results are given in Table 1 and Additional
file 1: Table S1. Because of the stringent Bonferroni cor-
rections for multiple testing with the number of methy-
lation probes multiplied by the number of expression
probes, the effect sizes of surviving trans effects were
significantly larger than for cis effects with adjusted
explained variance (R2) ranging from 23 to 60 percent
for trans effects and 0.8 to 50 percent for cis regulation
(Additional file 2: Figure S1a). Another trend that we
observed was that cis effects are enriched for negative
correlations (65.4% overall) while positive correlations
between DNA methylation and gene expression are
more frequently observed with trans associations (68.2%;
Fisher’s Exact test for count data p<2.2e-16), (Additional
file 2: Figure S1b).



Table 1 Number of probes constituting significant methylation and expression combinations and their association
with SNPs

unique + - overlap SNP cis

Cis associations

Methylation 517 224 354 61 69 probes (13.3%), 86 independent loci

Expression 495 214 336 55 62 probes (12.5%), 73 independent loci

Trans associations

Methylation 705 585 230 110 1 probe (<1%)

Expression 170 101 117 48 0 probes

This table shows the significant methylation and expression combinations, subdivided into cis and trans associations. The first column shows the counts of unique
probes (for methylation and expression). The second and third columns indicate the number of probes positively (+) or negatively (−) associated. The fourth
column indicates the overlapping probes: methylation or expression probes that are associated with expression or methylation levels in both directions. The last
column indicates the number (and %) of unique probes associated with SNPs and the number of independent (pruned r2 of 0.2) loci in cis.
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DNA methylation and gene expression are regulated by
genetic variants
Expression levels and methylation levels that were sig-
nificantly associated with each other were separately
tested for regulation by genetic variants. The methyla-
tion and expression levels were taken as phenotypes and
a linear model of allele dosage, with age and gender as
covariates, was tested using PLINK [24]. We focused on
local (cis) effects only and observed that approximately
13.7% of methylation signals and 12.5% of gene expres-
sion levels are associated with single nucleotide poly-
morphisms (SNPs). Results are given in Table 1, where
the number of independent loci, associated with probes,
is reported. These were retrieved by pruning the SNPs
with an R2 of >0.2 to prevent reporting many SNP asso-
ciations of the same signal due to linkage disequilibrium
(LD). Full results are in Additional file 3: Table S2.
Cis-acting methylation sites under genetic control are
over-represented in CpG island shores
We examined the regional distribution of methylation
sites (n=517) that are associated with nearby gene ex-
pression levels and observed a significant overrepresen-
tation of these loci outside CpG islands and shores
compared to all probes present on the Illumina array
(50.9% vs 26%; Fisher’s Exact p<2.2e-16). This coincided
with a significant underrepresentation of DNA methyla-
tion signal at CpG islands (13.5% vs. 42%, Fisher’s Exact
p<2.2e-16) and a modest increase at the shores flanking
CpG islands (35.6% vs. 32%, Fisher’s Exact p=0.056). The
regional distribution of DNA methylation associated
with gene expression is somewhat different when DNA
methylation is under genetic control. In case of cis gen-
etic regulation we observed a further enrichment of
DNA methylation at shores of CpG islands (53.4%, Fish-
er’s Exact p=1.3e-4), whereas trans genetic regulation
shows the opposite effect and is less frequently observed
for DNA methylation at shores (24.4%, Fisher’s Exact
p=3.9e-5). The overall results are presented in Table 2.
Causal relationships between cis-acting methylation and
expression probes
To study the causal relationship between methylation
and expression levels that were significantly associated
we focused the analysis on pairs of methylation and ex-
pression levels with a common cis-acting SNP. We
selected the top 20 methylation probes, associated with
19 expression probes that were significantly associated
with 147 single common SNPs. Since alleles can be
considered fixed features of a genome, we selected
SNPs as causal anchors and used a model with residuals
of the 20 methylation and 19 expression probes cor-
rected for age and gender. For the causal scenario
SNP → Methylation → Expression, we found 44 combi-
nations (29.9%) with a LEO score above 0.8, involving
seven unique genes (Table 3). Of these, 20 combinations
have a strikingly high LEO score of 3 or higher; for most
of these 20 combinations, the model fitting p-value of
the causal model SNP → Methylation → Expression is
above 0.01, indicating a good fit and lending further cre-
dence to these results (Additional file 4: Table S3). For the
model SNP → Expression → Methylation, we found 10
combinations (6.8%) with a LEO score above 0.8, involv-
ing again seven unique genes (Table 3). The model fitting
p-values of these combinations are generally worse (below
0.01), indicating that the linear structural equations mod-
els do not fit the data as well and suggesting caution in
interpreting the results. A full list of combinations is given
in Additional file 4: Table S3. Some SNPs were found to
be in high linkage disequilibrium (LD), especially in the
Major Histocompatibility Complex (MHC) region on
chromosome 6. Therefore only the top SNPs are listed in
Table 3. We chosen to investigate these two models since
we were interested in the causal direction between DNA
methylation and gene expression, after regulation by gen-
etic variation, excluding models 4 and 5. Model 3, was not
informative since we already selected SNPs for association
with both methylation and expression.
A locus in the BTN3A2 gene passed the LEO threshold

of 0.8 for both models SNP → Methylation →



Table 2 Distribution of results over CpG islands and shores

Location Illumina Human
Methylation 27

Methylation &
expression cis

Methylation &
expression trans

Methylation &
expression & SNP cis

Island 11,582 42% 70 13.5%, p<2.2e-16↓ 269 38.2%, p=0.04 11 15.1%, p=1.1e-06↓

Island shore (2kb) 8,718 32% 184 35.6%, p=0.056 172 24.4%, p=3.9e-05↓ 39 53.4%, p=1.3e-04↑

Outside island/shore 7,278 26% 263 50.9%, p<2.2e-16↑ 264 37.4%, p=2.5e-10↑ 23 31.5%, ns

Total 27,578 517 705 73

Methylation probes were classified into three categories according to UCSC browser (http://genome.ucsc.edu/); CpG islands, CGI shores (up to 2kb around an
island) and outside islands or shores. Differences compared to Illumina Human Methylation 27K array were tested using Fisher’s Exact for count data (Bonferroni
threshold p:0.05/9=0.006). A downward arrow indicates significantly lower percentage of probes while an upward arrow indicates significantly higher percentage
of observations compared to the overall probe distribution on the Illumina array.

van Eijk et al. BMC Genomics 2012, 13:636 Page 4 of 13
http://www.biomedcentral.com/1471-2164/13/636
Expression (LEO score 6.2 based on causal anchor
rs9467632) and SNP → Expression → Methylation
(LEO score 1.14 based on causal anchor rs12199613).
The two SNPs that were used as causal anchors are in
moderate LD (R2=0.092, D’=0.68 based on 1000 Gen-
omes Pilot 1 CEU population [25]. The significant
results in both directions could indicate a bi-directional
causal interaction between expression and methylation.
However, while the model SNP → Methylation →
Expression fits the data well (model fitting p-value p =
0.10), the model SNP → Expression → Methylation does
fits the data poorly (model fitting p-value p=6.4e-5).
Thus, while the evidence for the SNP → Methylation →
Table 3 Top results LEO analysis, Results for top SNPs

Gene
symbol

M&E CGI LEO model LEO
score

P-value Top

BTN3A2 - Outside S → M → E 6.90 0.15 rs209

HP - Outside S → M → E 4.24 0.82 rs804

CTSW - Outside S → M → E 2.73 0.13 rs112

NAPRT1 - Shore S → M → E 2.69 0.11 rs487

PHACS - Shore S → M → E 1.50 2.9e-03 rs475

PNMA3 + Shore S → M → E 1.36 0.16 rs662

CDC16 - Island S → M → E 1.09 0.01 rs111

HRASLS3 - Shore S → E → M 2.42 7.2e-04 rs203

TACSTD2 - Island S → E → M 2.08 9.5e-03 rs112

SRXN1 - Shore S → E → M 1.87 5.4e-03 rs607

C21orf56 - Outside S → E → M 1.30 2.8e-03 rs813

BTN3A2 - Outside S → E → M 1.14 6.4e-05 rs121

WBSCR27 - Shore S → E → M 0.95 8.6e-04 rs117

GSTM3 - Island S → E → M 0.88 1.4e-03 rs11

This table contains top probes resulting from causality analysis (LEO scores > 0.8). T
(S→M→E), while the bottom seven genes fit the reverse model in which DNA meth
(S→E→M). The Gene Symbol is given in the first column. The second column indic
(−) or positively (+). The third column indicates whether the methylation probe is lo
model”, “LEO score” and “P-value” indicate which causal model fits best with the co
using the model chi-square statistic statistic. The chi-square statistic tests the null h
The next column indicates the SNP most significantly associated. The last three colu
the SNP and full name of the gene.
Expression model for BTN3A2 is strong, the evidence for
the SNP → Expression → Methylation model is weak.
Weighted correlation network analysis of expression and
methylation data
We separately constructed co-expression and co-
methylation networks from the expression and methyla-
tion data, respectively (Additional file 5: Supplementary
Methods), using the Weighted Correlation Network
Analysis framework WGCNA [26,27]. In expression data
(13,843 genes) we identified 23 co-expression modules
(labeled 1–23) with sizes ranging from 32 to 1,520 genes.
SNP Chr Bp Full name

3169 6 26,603,078 butyrophilin, subfamily 3, member A2

4555 16 70,710,256 haptoglobin

27306 11 65,335,248 cathepsin W

4159 8 144,742,093 nicotinate phosphoribosyltransferase
domain containing 1

5227 11 44,078,659 1-aminocyclopropane-1-carboxylate
synthase homolog

7737 X 151,971,610 nicotinate phosphoribosyltransferase
domain containing 1

47317 13 113,957,498 cell division cycle 16 homolog
(S. cerevisiae)

0731 11 63,130,224 phospholipase A2, group XVI

07272 1 58,846,018 tumor-associated calcium signal
transducer 2

6864 20 569,825 sulfiredoxin 1 homolog (S. cerevisiae)

3866 21 46,423,604 chromosome 21 open reading frame 56

99613 6 26,475,197 butyrophilin, subfamily 3, member A2

63011 7 72,922,084 Williams Beuren syndrome chromosome
region 27

807 1 110,062,265 glutathione S-transferase mu 3 (brain)

he top seven genes fit the causal scenario SNP → Methylation → Expression
ylation is regulated by gene expression that is under genetic control
ates whether the methylation and expression levels are associated negatively
cated in a CpG island (CGI), in the shore, or outside both. The columns “LEO
rresponding LEO score and P-value. This model fitting p-value is calculated
ypothesis that the model is correct, thus a p-value > 0.01 indicates good fit.
mns contain chromosome number and base pair location (NCBI build 36) of

http://genome.ucsc.edu/
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Additional file 6; Table 1 provides a brief overview of the
expression modules along with 10 top hub genes (genes
with highest module membership) in each module. A
total of 7,743 (56% of total) genes were assigned to a
module while 6,091 background genes were not assigned
to a module. Background genes are labeled 0 and
colour-coded in grey. Gene ontology (GO) enrichment
analysis revealed significant enrichment of multiple
modules in various GO terms (Table 4) which provides
evidence that these modules are biologically meaningful.
A table listing module membership of all genes in ex-
pression modules is provided in Additional file 7.
Table 4 Top GO enrichment terms for expression modules

Module Size Rank p.Bonf Fraction

1 1520 1 1.20E-14 0.65147

1 1520 2 1.90E-14 0.65007

2 703 1 1.30E-05 0.04885

2 703 2 1.50E-05 0.07481

3 658 1 0.00018 0.16382

4 647 1 0.011 0.63711

6 442 1 7.60E-07 0.27229

6 442 2 2.80E-06 0.34217

7 426 1 9.40E-07 0.18734

8 407 1 0.0042 0.66755

9 387 1 1.70E-05 0.82961

10 355 1 1.80E-05 0.07855

10 355 2 3.60E-05 0.19335

12 306 1 2.00E-16 0.1134

12 306 2 4.00E-16 0.17182

12 306 3 1.20E-14 0.14777

12 306 4 2.30E-14 0.09278

13 260 1 0.00041 0.025

13 260 2 0.011 0.025

14 237 1 0.014 0.61086

15 118 1 0.018 0.25688

15 118 2 0.032 0.12844

16 108 1 1.30E-05 0.18478

16 108 2 0.00017 0.1087

17 99 1 2.30E-09 0.36957

18 72 1 3.30E-06 0.1791

18 72 2 1.20E-05 0.22388

19 60 1 1.40E-17 0.31034

19 60 2 2.90E-17 0.32759

20 52 1 7.10E-23 0.32653

20 52 2 7.10E-23 0.32653

23 32 1 0.053 0.17241

For each module we list the top enriched GO terms. Columns list the module label,
Bonferroni-corrected enrichment p-value (the correction is performed with respect
GO ontology, and GO term name. Multiple expression modules exhibit significant e
provides evidence that the modules are biologically meaningful.
In methylation data (13,569 genes) we identified 9
modules of sizes ranging from 37 to 1,067 genes.
Additional file 6; Table 2 provides a brief overview of the
methylation modules along with 10 top hub genes (genes
with highest module membership) in each module. For
reader-friendliness, methylation module labels were
chosen such that modules with significant overlap with
expression modules carry the same label (Methods). A
total of 4,088 (30% of total) genes were assigned to a
module, while 9,481 were not assigned. We observed
that strong co-expression relationships tend to be more
frequent than strong co-methylation. GO enrichment
Ontology Term name

CC membrane-bounded organelle

CC intracellular membrane-bounded organelle

CC ribosome

BP translation

CC extracellular region

CC membrane-bounded organelle

BP response to stress

BP signal transduction

BP immune system process

CC intracellular membrane-bounded organelle

CC intracellular part

BP ncRNA metabolic process

CC mitochondrion

CC ribosome

CC ribonucleoprotein complex

BP translation

BP viral transcription

CC hemoglobin complex

BP heme biosynthetic process

MF protein binding

BP intracellular signal transduction

BP small GTPase mediated signal transduction

BP translation

BP ribosome biogenesis

CC mitochondrion

BP platelet activation

BP blood coagulation

MF structural constituent of ribosome

CC ribosome

BP type I interferon-mediated signaling pathway

BP cellular response to type I interferon

CC external side of plasma membrane

module size, rank of the enrichment p-value for that particular module, the
to the number of GO terms), fraction of the module genes also in the GO term,
nrichment. Row shading separates modules for easier reading. The enrichment
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analysis of methylation modules revealed multiple sig-
nificantly enriched categories (Table 5). A table listing
module membership of all genes is provided in Additional
file 8.

Preservation of co-expression modules in methylation
data and vice versa
A natural question is whether the expression and methy-
lation modules are related. At the most basic level one
can ask whether the expression and methylation mod-
ules can be matched based on significant overlap of the
genes in each module. We found that expression and
methylation modules in general exhibit relatively few
overlapping genes (Additional file 9) although some of
the overlaps are statistically significant. The most signifi-
cant overlap (p=6e-12) is observed between the largest
co-expression module and the largest co-methylation
module. While the cross-tabulation based module over-
lap analysis is a simple and intuitive way of assessing
module preservation, it has several limitations. In par-
ticular, it cannot be used to make strong statements
about the lack of module preservation since alternative
module detection methods applied to the test data may
lead to different results. A rigorous module preservation
analysis is based on the network module preservation
statistic Zsummary (Methods) since it is independent of
the vagaries of detecting modules in test data [28]. We
found that the largest expression module 1 (enriched in
intracellular-related terms) exhibits moderate preservation,
Zsummary≈5. Modules 9 (enriched in intracellular-related
terms), 12 (ribosome), 16 (translation), 17 (mitochon-
drion), and 19 (ribosome) show weak evidence of preser-
vation, while all other expression modules show no
evidence of preservation in methylation data (Zsummary
Table 5 Top GO enrichment terms for methylation modules

Module Size Rank p.Bonf Fra

32 1067 1 4.20E-09 0.1

1 1045 1 8.20E-16 0.79

1 1045 3 1.50E-11 0.08

30 616 1 2.50E-21 0.3

30 616 2 1.60E-18 0.18

7 594 1 8.30E-10 0.15

7 594 2 9.10E-10 0.17

3 427 1 3.20E-12 0.25

12 130 1 0.0032 0.

2 105 1 1.70E-10 0.19

2 105 2 2.30E-10 0.2

2 105 3 3.60E-10 0.32

For each module we list the top enriched GO terms. Columns list the module label,
Bonferroni-corrected enrichment p-value (the correction is performed with respect
GO ontology, and GO term name. Multiple methylation modules exhibit significant
enrichment provides evidence that the modules are biologically meaningful.
≤ 2, Figure 1A). For the methylation modules we found
that modules 1 (intracellular) and 2 (lymphocyte activa-
tion) show weak to moderate evidence for preservation,
while all other modules show no evidence of preservation
(Zsummary < 2, Figure 1B). It is known that the Zsum-
mary statistic tends to increase with module size, reflect-
ing the intuition that a preservation signal observed
among many genes is more significant than a similar pres-
ervation signal observed among only a few genes. To
measure relative preservation irrespective of module size,
the authors of [28] proposed the use of a rank-based stat-
istic medianRank. Additional file 10 shows the median-
Rank statistics in this study. The modules with high
Zsummary have low (i.e., near top) ranks. Hence, the two
preservation statistics offer a largely consistent picture of
module preservation, even though they measure very dif-
ferent quantities.
The weak preservation of co-expression modules in

methylation data and vice-versa shows that in general
modules (clusters) of expression probes do not corres-
pond to modules of methylation probes. However, we
found strong correlations between co-expression mod-
ules and co-methylation modules as described in the
following.
Associations of expression and methylation eigengenes
Although the composition of co-expression modules is
different from that of co-methylation modules, we
observed strong correlations of expression and methyla-
tion module eigengenes (Figure 1C). A module eigen-
gene is a mathematically optimal way of summarizing
the levels of a module (Methods). For example, eigen-
genes of methylation modules 2 and 7 (both enriched in
ction Ontology Term name

875 CC extracellular region

0123 CC intracellular

3333 CC ribonucleoprotein complex

4687 BP anatomical structure development

9509 BP nervous system development

7424 BP immune system process

7102 MF receptor activity

9947 CC extracellular region

075 BP DNA recombination

1919 BP lymphocyte activation

0202 BP leukocyte activation

3232 BP immune system process

module size, rank of the enrichment p-value for that particular module, the
to the number of GO terms), fraction of the module genes also in the GO term,
enrichment. Row shading separates modules for easier reading. Again, the
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Figure 1 Preservation and association of co-expression and co-methylation modules. A. Module preservation statistic Zsummary that
summarizes evidence of preservation of expression modules in methylation data. Each module is labelled by a numeric label and the
corresponding colour. Values of Zsummary below 2 indicate no evidence of preservation; values between 2 and 5 indicate weak to moderate
evidence for preservation. Only the largest module, labelled 1 (turquoise), exhibits Zsummary above 5 that can be considered moderate-strong
evidence of preservation. B. Analogous plot of the Zsummary statistic for preservation of methylation modules in expression data. As in
expression data, only the largest module (also labelled 1, turquoise) exhibits moderate-strong evidence of preservation. C. Robust correlations and
the corresponding p-values of expression (y-axis) and methylation (x-axis) eigengenes. Each row corresponds to an expression eigengene (E.ME)
labelled by numeric module label and colour. Each column corresponds to a methylation eigengene (M.ME) labelled by numeric module label
and colour. Numbers in the table report the robust correlation and the corresponding p-value of the respective expression and methylation
eigengenes. Only correlations whose p-value is below 0.05 are displayed. The table is colour-coded according to correlation such that (strong)
green colour corresponds to (strong) negative correlations, and (strong) red colour corresponds to (strong) positive correlations.
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immune system/response terms) are strongly correlated
with multiple expression eigengenes such as ME 7
(enriched in immune system process), 12 (ribosome), 15
(intracellular signal transduction), 19 (ribosome), and 22
(no significant enrichment). Methylation module eigen-
genes 3 (extracellular region) and 30 (anatomical struc-
ture morphogenesis, nervous system development) also
relate to several expression module eigengenes but the
associations are weaker. In summary, we observed mul-
tiple strong correlations between expression and methy-
lation module eigengenes.
Module membership of individual genes in expression
and methylation modules
Weighted correlation network methods allow one to de-
fine a continuous measure of module membership for
each variable in each module as the correlation of the
variable profile with the module eigengene (Methods).
Additional files 7 and 8 report the module membership
(based on expression and methylation profiles) of all
genes in all modules. Since the expression and methyla-
tion data were measured for the same set of samples, we
are able to also provide the module membership of
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expression profiles in methylation modules and vice-versa.
These Supplementary Files serve as a resource for relating
expression and methylation probes to the modules.

Discussion
We investigated the relationship between genetic vari-
ation, DNA methylation and gene expression in a sam-
ple of 148 healthy subjects using array-based data
derived from whole blood. We found both negative
(levels in opposite direction) and positive (levels in same
direction) associations between cis-acting DNA methyla-
tion probes and corresponding gene expression levels,
confirming previous reports that DNA methylation and
gene expression located within a cis-region can be both
positively and negatively associated, but are predomin-
antly negative [5-7].
In this study we applied FDR correction for multiple

testing for cis associations between methylation and ex-
pression, but imposed a more stringent genome-wide
significance threshold for trans effects since there is a
considerable debate in the literature whether such rela-
tionships are reproducible [29,30]. This resulted in a
limited number of trans associations that do survive this
threshold but with relatively strong effect sizes. It is of
note that such trans associations are enriched for posi-
tive correlations, whereas traditionally it is expected that
methylation and expression are inversely correlated. We
hypothesised that these involve genes involved in general
methylation pathways, such as genes that induce the at-
tachment of a methyl group. However, a gene ontology
analysis did not show any overrepresented pathways
(data not shown).
Furthermore, we observed that methylation probes

with cis-acting effects on gene expression levels are less
likely to be located in CpG islands and more likely to be
present outside CGIs and shores insofar they were not
regulated by genetic variation. Tissue- and cell type-
specific methylation occurs much more often in gene
bodies (outside island and shores) than in CpG island
promoters [31], indicating that methylation at CpG sites
in CpG islands is much more static, which could explain
the underrepresentation of CpG sites associated with ex-
pression (and SNPs) in CpG islands. Only for those
CpGs that were associated with SNPs, we did concur
with previous studies showing more frequent associa-
tions with expression in island shores [2,3]. CpG sites
located in shores tend to be more variable among indivi-
duals and this might lead to an increased number of as-
sociation findings. In addition, trans associations are less
likely to be located in island shores and more likely to
be positioned outside CGIs and shores. Also, trans asso-
ciations are more likely to be positive (67%).
Identification of genetic variants (SNPs) influencing

the methylation and expression levels showed that in
more than 12% of methylation-expression cis-pairs, the
methylation and/or the expression level was associated
with a SNP in cis, suggesting genetic control of these
levels.
Further analysis of genetic regulators (SNPs) of methy-

lation and expression levels investigating the causality
revealed three-way causal relationships. Previous studies
have attempted to identify three-way associations in
various tissues, with mixed results [6,7]. We used local
structural equation models to calculate local edge orient-
ing (LEO) scores based on using a cis-acting SNP as
causal anchor [19,32]. We find that the traditional model
of genetic variants regulating methylation, which in turn
regulates gene expression to be most common in most
of the three-way associations that showed significant evi-
dence for causality (as was hypothesized in literature
[5]). The set of genes for which the S→M→E model fits
best does not exhibit significant enrichment for specific
functions or pathways. Since the S→M→E model is
expected to be ubiquitous, the lack of enrichment is not
surprising. However, one of the genes that fit this model,
PNMA3, is located on the X chromosome. Since inacti-
vation in females may be a confounding factor when
analyzing X chromosomes, we repeated the association
analysis for all significant X chromosomes in males only.
We observed no significant differences when using
males-only, which confirms that the PNMA3 finding is
likely to be true. Strikingly, the reverse model, in which
a genetic variant primarily regulates gene expression,
which in turn regulates DNA methylation, was the best
causal model for a number of genes (including C21ORF56,
HRASLS3, TACSTD2, WBSCR27, SRXN1, GSTM3,
BTN3A2), although the model p-values of these LEO
scores were small, indicating poor fit. For example, one of
these genes, C21ORF56, was highlighted in a previous
genome-wide study where a three-way association for this
gene was identified. Additional experiments indicated that
genetic variation in this gene affects chromatin structure in
this region [5]. The gene itself may be involved in inter-
individual differences in response to DNA damaging
agents [33]. These mechanisms and our data suggest that
loci whereby genetic variation influences expression and
in turn methylation may exist and warrants further study.
The methylation and expression probes that showed a
causal direction in the LEO analysis were all present
within the same gene. However, we observed that of all
the 798 significant cis associations, only 155 (19%)
involved probes that represent the same gene. This may
suggest that the strongest (detectable) causal correlations
between DNA methylation and gene expression are likely
to be local events.
The systems level analysis afforded by WGCNA

reveals that both transcriptome and methylome can use-
fully be organized into modules. Many co-methylation
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and co-expression modules are highly significantly
enriched with gene ontology categories, which provides
indirect evidence that these modules are biologically
meaningful. Our module preservation analysis between
expression and methylation data reveals that most co-
expression modules are comprised of genes that do not
form a module in the methylation data and vice versa.
Only the largest co-expression module shows moderate
to strong preservation and overlap with the largest co-
methylation module. In other words, co-expression
modules and co-methylation modules are largely com-
posed of different genes. On the other hand, several
pairs of expression and methylation eigengenes show
highly significant positive and negative correlations. This
suggests the existence of factors that affect expression
and methylation of different sets of genes, i.e., trans
effects at the module level.
A limiting factor of our study may be the fact that the

Illumina 27k array covers only a selection of CpG sites
and is enriched for promoter regions and CpG islands
near genes. Another increasingly important issue is the
potential difference between hydroxymethylation and
DNA methylation that cannot be distinguished with
current methylation arrays [34,35]. To date, the role of
5-hydroxymethylation is not fully understood but it is
likely that 5-hydroxymethylation plays a role in
demethylation [34-38]. Although there is no reason to
assume a systematic influence of 5-hydroxymethylation
on our results, we cannot rule this out and further re-
finement of methylation levels is warranted. A third pos-
sible limitation is the use of whole blood comprised of
different cell types for our analysis. Yet, although whole
blood does not provide the optimal resolution, these cell
types can be used to study general genetic mechanisms.
Given the sample size we suspect that effects of blood
cell composition are limited and do not play a major role
in the outcome. We measured gene expression and
DNA methylation from the same blood sample so that
the composition of different cell types should not sub-
stantially affect the overall outcome and conclusions.
Moreover, studies have shown that a majority of the
strongest eQTLs overlaps between different tissues and
cell types [6,39].

Conclusions
Overall, this study contributes to our understanding
about the relationship between genetic markers, methy-
lation and expression levels in whole blood of healthy
subjects. We observed cis-associations between methyla-
tion and expression levels to be both positive and nega-
tive, and most likely to be located outside CGIs and
shores. Overrepresentation in shores, as previously
found, was only present when selecting methylation/
expression combinations regulated by genetic variation
in cis. Methylation/expression combinations in trans are
enriched for positive correlations and also located
mostly outside CGI’s and shores. Results from causality
analyses indicate that the conventional model of genetic
variants regulating methylation, which in turn regulates
gene expression, is most common. This is widely sup-
ported in literature [32]. In addition, this indicates that
the causal direction analysis is a useful tool for investi-
gating relationships between genotype, methylation and
expression. Finally, we showed that methylome and tran-
scriptome are organized into modules. Although the co-
expression en co-methylation modules are generally not
preserved in one another, we do find highly significant
correlations between the modules. These findings sug-
gest that there may be other (trans) factors affecting
both methylation and expression, although in different
modules. This study encompasses lookup tables for asso-
ciations between methylation, gene expression, and
genotype, as well as methylome and transcriptome mod-
ules, for further research.

Methods
Ethics statement
All participants gave written informed consent. This
study was approved by Medical Research Ethics
Committee (MREC) of the University Medical Center
Utrecht, The Netherlands.

Pre-processing of genotype, methylation and expression
data
Genotype, methylation and expression data were col-
lected for different numbers of samples. For the 148
healthy subjects eventually analyzed in this paper, data
was available for all three layers of genetic information
after quality control, as described below. Our final data
set consisted of 72 males and 76 females with a mean
age of 52 (range: 19–88); all subjects were of Dutch an-
cestry with at least three of the four grandparents born
in The Netherlands.

Genotype SNP data
Genotype data for subjects was generated on two differ-
ent array platforms, 105 individuals on Illumina
CytoSNP (299,173 SNPs) and 96 on Illumina 300k chips
(300,299 SNPs). For each SNP platform, quality control
procedures were initially performed separately using
PLINK [24]. Subjects were excluded based on > 5% miss-
ing genotypes and gender errors (Additional file 11). We
used linkage disequilibrium (LD) based SNP pruning to
select the most informative SNPs (R2<0.2), only for sub-
sequent quality control steps. This resulted in ~60k
SNPs for both sets to assess heterozygosity (F<3 Standard
Deviation (SD)), homozygosity (F>3SD) and relatedness
by pairwise identity by descent (IBD) values (pihat > 0.1).
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Datasets were merged with Hapmap Phase 3 individuals
to check ethnicity (Additional file 12) (ethnic outliers
detected by visual inspection). After these QC procedures
on subjects (excluding in total 8 individuals) quality
control on SNPs was performed as follows. All SNPs were
filtered on missingness (> 2%) and Hardy Weinberg
(p>1e-6) before merging the two datasets. 84,367 SNPs
were shared between the two datasets. No related samples
were detected in the merged datasets (according to criteria
described above). We imputed the merged dataset with
Hapmap2, release 24 using Beagle [40]. SNPs with an im-
putation score > 0.8 and present originally in one or both
datasets were extracted and 417,708 SNPs remained for
all further analyses.
DNA methylation data
Methylation data was obtained using Illumina Human-
Methylation 27 beadchips for two batches of 105 and 96
healthy subjects. The assay detects methylation status at
CpG sites after bisulfate conversion, by means of probes
designed for either methylated or unmethylated se-
quence. Methylation probes were classified into 3 differ-
ent categories depending on the location of the probe
with respect to a CpG island. Based on the UCSC Table
browser (http://genome.ucsc.edu/; [41]), NCBIbuild36,
categories were defined as CpG island, CpG island shore
(sequences up to 2kb from an island), or outside CpG
islands/shores. Ethnical outliers and samples with gender
errors in genotype data were removed from the methyla-
tion data. Gender was checked by hierarchical clustering
of X-chromosomal probes, excluding four individuals.
Another three individuals were removed based on detec-
tion p-values (> 0.01 for > 1% of probes) and 3,027 of
27,578 probes were excluded based on detection values
(p>0.01 for > 1% of the samples). Both channels of the
methylation array were quantile normalized independ-
ently. Beta values of a probe were calculated by dividing
the methylated signal by the sum of the methylated and
unmethylated signal. Next, five potential array outliers
were removed in an unbiased fashion. Specifically, we
used the SampleNetwork R function package [42] to
calculate the Interarray based sample connectivity score
Z.k. We removed samples with a Z.k value less than −3
since their connectivity is 3 standard deviations below
the mean value. Batch effects of dataset, plate, array and
position were removed using ComBat [43]. After these
procedures, 24,561 probes remained and were mapped
to the human genome using the UCSC Human BLAT
Search function. In total, 25 probes did not map to the
human genome, whereas 338 probes did not map
uniquely (mapped more than once), and both these
probes have been removed. Moreover, 904 probes that
contained a SNP, based on Hapmap release 27, with a
minor allele frequency (MAF) > 1% have been removed
as well, leaving a total of 23,294 probes for analyses.

Gene expression data
Gene expression data was generated in two batches, one
on Illumina H8 beadchip (26 healthy subjects) and one
on Illumina H12 beadchip (147 healthy subjects). Bead-
Studio© software version 3.2.3 was used to generate
background-corrected gene expression data. Data was
normalized, transformed and filtered separately before
merging and batch effect removal. Specifically, the data-
sets were separately quantile normalized and log2 trans-
formed using the Lumi package for R [44]. Probes
were filtered based on detection values generated by
BeadStudio©. The detection p-value threshold was set at
0.01. This resulted in 17,433 expression probes overlap-
ping between both batches. Batch effects resulting from
the use of different arrays at different time points were
removed using ComBat [43]. An unbiased analysis based
on interarray correlations identified 16 samples from
batch 2 as potential outliers, which were subsequently
removed from the analysis. Of 17,433 probes, 15,983
mapped to a single genomic location, based on a previ-
ous study [45]. In addition, 465 probes contained a SNP,
based on Hapmap release 27, with a MAF > 1% and have
been removed, leaving 15,983 probes for analyses.
DNA methylation and gene expression data have been

processed using the same blood sample, excluding pos-
sible batch effects, such as the effect of different time
points.

Identifying cis and trans effects between DNA
methylation and gene expression
We called a methylation probe cis acting with respect to
a given gene expression probe if there was a significant
association (as defined below) within a 500kb interval
between the probes. A methylation probe was called
trans acting if it was significantly associated with the ex-
pression probe (as defined below) outside the 500kb
interval.
To determine whether a significant association exists

between expression and methylation levels we used a
multivariate linear regression model for regressing the
gene expression level (dependent variable) on the methy-
lation level (independent variable) with age and gender
as covariates. We took methylation levels as independent
variable since we are interested in the epigenetic control
of gene expression levels. Associations can be positive
(DNA methylation levels and gene expression levels both
increase or decrease) or negative (increased methylation
level corresponds with a decrease in gene expression
level and vice versa). The Wald test p-value for the asso-
ciation between methylation and expression was used as
significance level. Correction of the significance level for

http://genome.ucsc.edu/
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multiple testing was performed separately for identifying
cis acting methylation probes (FDR correction) and trans
acting methylation probes (Bonferroni correction).

Identification of cis-and trans-acting SNPs
Expression levels and methylation levels that were sig-
nificantly associated with each other were tested for as-
sociation with SNPs to identify cis-and trans-acting
genetic variations. For this analysis, the real and imputed
(imputation score > 0.8) genotypes were used, and a
MAF threshold of 5% for these SNPs was set.
Analogous to our previous definition, a SNP signifi-

cantly associated with a given gene expression or DNA
methylation probe was called cis-acting with respect to
the probe if the SNP and the probe were within 500kb
of each other, and trans-acting if they were more than
500kb apart.
To determine whether a significant relationship exists

between a SNP and a methylation or expression level
we again used a multivariate linear regression model
for regressing the methylation or expression level
(dependent variable) on the SNP (independent variable)
with age and gender as covariates. The regressions were
performed using the PLINK software [24]. Correction
for multiple testing was performed separately for cis-
acting SNPs (0.05 divided by the number of probes) and
trans-acting SNPs (0.05 divided by the number of pos-
sible combinations (p<0.05/(#probes*417,708).

Evaluating causal relationships using local edge orienting
scores of observed cis effects
To evaluate the fit of different causal models involving 3
variables (i.e., a cis-acting SNP, a cis-acting methylation
probe, and a corresponding expression probe), we calcu-
lated the single marker local edge orienting score (LEO.
NB.SingleMarker) as described elsewhere [19,32]. In
short, a SNP can be used as causal anchor for evaluating
the causal relationships between methylation and ex-
pression levels if the SNP is associated with at least one
of them. We use the SNP as causal anchor for calculat-
ing the LEO score since genotypes are fixed at each
locus as opposed to variable methylation and expression
levels [19]. In this case, one can evaluate the fit of the
following five models describing the causal relationships
between a SNP (denoted S), a methylation probe (M)
and an expression probe (E): model 1: S→M→E; model
2: S→E→M; model 3: M←S→E; model 4: S→E←M;
model 5: S→M←E. For each causal model a chi-square
test based model fitting p-value was calculated with the
structural equation modelling (SEM) R package [46].
The relative fit of causal model 1 (SNP→Methylation →
Expression) was assessed using the single anchor
local edge orienting score (LEO.SingleMarker), which is
the logarithm (base 10) of the ratio of the model fitting
p-value divided by that of the next best fitting alternative
model [19]. Thus a positive LEO.SingleMarker score
indicates that the causal model S→M→E fits the data
better than all other competing models. As significance
threshold we used the LEO threshold of 0.8, as recom-
mended in [19] based on extensive simulations as well
as empirical studies. We decided to focus on local cis
effects since there is considerable debate in the literature
whether trans relationships are reproducible [29,30].
Since we were interested in causal direction for prede-
termined three-way associations, we only selected SNPs
associated with both the methylation and expression
levels in cis. To protect the causal analysis from biases
due to age and gender, we utilized residuals of methyla-
tion and expression levels corrected for age and gender
in the causal analysis using a linear regression by Limma
in R [47].

Weighted correlation network analysis of gene expression
and methylation data
A detailed description of our correlation module based
analyses can be found in Additional file 5. Here we pro-
vide a terse summary. Weighted correlation network
analysis implemented in the WGCNA R package [26,27]
was first applied to the expression data to identify co-
expression modules. Co-expresssion modules corres-
pond to clusters of interconnected genes defined as
branches of a hierarchical cluster tree. Since modules
are defined without respect to gene ontology informa-
tion they are initially labelled by arbitrary integers and
coded by colours. Next WGCNA was applied to the
methylation data to find co-methylation modules. For
easier interpretation of the relationships between expres-
sion and methylation modules, we use the same module
labels for modules that show significant overlap. The
matching of module labels was performed using the
function matchLabels from the WGCNA R package; it is
based on significance of module overlaps quantified
using Fisher’s exact test. Weighted networks have the
advantage of preserving the continuous nature of co-
expression and co-methylation information, which is
particularly useful when studying module preservation.
To assess the preservation of expression and methyla-
tion modules in the corresponding complementary data
set, we use the network module preservation statistics
described in [28] and implemented in the function mod-
ulePreservation in the WGCNA R package. Network
module preservation statistics assess whether the density
and connectivity patterns of modules defined in a refer-
ence data set are preserved in a test data set. Network
preservation statistics do not require that modules be
identified in the test data set and hence independent of
the ambiguities associated with module identification
in the test data set. The permutation test of the
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modulePreservation function leads to a composite mod-
ule preservation statistic referred to as Zsummary. The
Zsummary statistic of a given module summarizes the
evidence that the network connections of the module
are more significantly preserved than those of random
set of genes of equal size. We adopted the following
recommended significance thresholds for Zsummary
[26-28]: Zsummary<2 implies no evidence that the
module is preserved, 2<Zsummary<10 implies weak to
moderate evidence, and Zsummary>10 implies strong
evidence for module preservation. Thus, we report Z
summary for each expression and methylation module in
the methylation and expression test data sets, respectively.
Since modules group together highly correlated vari-

ables, it is advantageous to summarize the variable pro-
files using a single representative. We use the module
eigengene E, defined as the first principal component of
the standardized matrix containing the variables in the
module. The module eigengene can be intuitively under-
stood as a weighted average of the variable profiles in
the module.
Additional files

Additional file 1: Table S1. Comprises two tables that list all significant
methylation and expression associations in cis (S1a), and trans (S1b).

Additional file 2: Figure S1. Are two figures that show the coefficient
and explained variance of associations between methylation and
expression.

Additional file 3: Table S2. Contains tables with all significant cis
mQTLs (S2a) and eQTLs (S2b).

Additional file 4: Table S3. Is a table with all LEO results. Combinations
that have a LEO score above 0.8 for the model S>M>E are shown in light
yellow of which LEO scores above 3 are shown in dark yellow. For the
reverse model (S>E>M) combinations with a LEO score above 0.8 are
shown in orange. Significant p-values (above 0.01) are coloured in green.

Additional file 5: Contains supplementary methods, namely, a
more detailed description of Weighted Correlation Network
Analysis (WGCNA).

Additional file 6: Is an overview of the modules identified in the
expression (Table 1) and methylation (Table 2) data.

Additional file 7: Includes a table of continuous module
membership kMEi of all expression profiles in all expression
modules. Each row in the table corresponds to one gene expression
profile. Columns give the gene Entrez idenitifier, module label, and kME
and the corresponding (uncorrected) p-values for each module.
Expression modules are labelled by E.0, E.1, etc.

Additional file 8: Includes a table of continuous module
membership kMEi of all methylation profiles in all methylation
modules. Each row in the table corresponds to one methylation profile.
Columns give the gene Entrez idenitifier, module label, and kME and the
corresponding (uncorrected) p-values for each module. Methylation
modules are analogously labeled by M.0, M.1, etc.

Additional file 9: Shows the overlap of expression and methylation
modules. Each row corresponds to an expression module (labelled by
the numeric labels, colours and total number of genes in the module, on
the left), and each column corresponds to a methylation module
(labelled the numeric labels, colours, and total number of genes in the
module, at the bottom). Numbers in the table indicate number of genes
in the overlap, and the Fisher exact test p-value for the overlap. Only
overlaps whose p-value is below 0.05 are shown. The table is coloured
such that significant overlaps are coloured in strong red colour. Most
overlaps are quite small but some are nevertheless statistically highly
significant.

Additional file 10: Shows the medianRank statistics for the Module
preservation with in (A) preservation of expression modules in
methylation data, and in (B) preservation of methylation modules
in expression data.

Additional file 11: Is a table with the number of excluded samples
per step.

Additional file 12: Is a clusterplot of all samples together with
Hapmap phase 3 populations.
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