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Abstract

Background: Copy number variation (CNV) is a major source of structural variants and has been commonly
identified in mammalian genome. It is associated with gene expression and may present a major genetic
component of phenotypic diversity. Unlike many other mammalian genomes where CNVs have been well
annotated, studies of porcine CNV in diverse breeds are still limited.

Result: Here we used Porcine SNP60 BeadChip and PennCNV algorithm to identify 1,315 putative CNVs belonging
to 565 CNV regions (CNVRs) in 1,693 pigs from 18 diverse populations. Total 538 out of 683 CNVs identified in a
White Duroc × Erhualian F2 population fit Mendelian transmission and 6 out of 7 randomly selected CNVRs were
confirmed by quantitative real time PCR. CNVRs were non-randomly distributed in the pig genome. Several CNV
hotspots were found on pig chromosomes 6, 11, 13, 14 and 17. CNV numbers differ greatly among different pig
populations. The Duroc pigs were identified to have the most number of CNVs per individual. Among 1,765
transcripts located within the CNVRs, 634 genes have been reported to be copy number variable genes in the
human genome. By integrating analysis of QTL mapping, CNVRs and the description of phenotypes in knockout
mice, we identified 7 copy number variable genes as candidate genes for phenotypes related to carcass length,
backfat thickness, abdominal fat weight, length of scapular, intermuscle fat content of logissimus muscle, body
weight at 240 day, glycolytic potential of logissimus muscle, mean corpuscular hemoglobin, mean corpuscular
volume and humerus diameter.

Conclusion: We revealed the distribution of the unprecedented number of 565 CNVRs in pig genome and
investigated copy number variable genes as the possible candidate genes for phenotypic traits. These findings give
novel insights into porcine CNVs and provide resources to facilitate the identification of trait-related CNVs.
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Background
Copy number variation (CNV), a major type of structural
variants, is defined as DNA segments that vary from one
kilobase to several megabases in length and present at vari-
able copy numbers in comparison with a reference genome
[1,2]. Following the completion of pig whole-genome
sequencing, genome-wide polymorphisms including CNV,
SNP and deletion/insertion will be well annotated in the
near future. Currently, Porcine 60K SNP BeadChips are
commercially available for genome-wide analyses of 62,163
SNPs. However, a comprehensive study of genome-scale
CNVs in pigs remains unexplored.
Tilling oligonucleotide array and comparative genomic

hybridization (CGH) array have been commonly used to
detect whole-genome CNVs. In recent years, whole-
genome SNP genotyping arrays offer alternative methods
for CNV detection [3]. Computer programs like PennCNV
[4], QuantiSNP [5], cnvPartition (Illumina) and CNV
Workshop [6] have been developed to identify CNVs from
SNP array data. The unique ability to integrate family rela-
tionships from parent-offspring trios, total signal intensity
and allelic intensity ratio at each SNP marker, and the
allele frequency of SNP makes PennCNV algorithm have
a moderate power and the lowest false positive rate [4].
Winchester et al. (2009) reported that PennCNV is the
most accurate program in the prediction of CNVs for the
Illumina’s platform by comparing different algorithms for
CNV detection [7].
CNVs have been commonly identified in humans, rats,

dogs, cattle and horse, and occupy about 3.7%, 1.4%, 4.2%,
4.6% and 3.6% of their assembled genome, respectively
[8-12]. It has been estimated that CNVs account for at
least 17.7% of heritable variation of gene expression in a
variety of ways including gene dosage effects, disruption of
gene coding region and deletion or duplication of regula-
tory elements [13]. In humans, SNP-tagged CNVs are
enriched for expression quantitative trait loci (eQTL) [14].
CNVs have been confirmed to associate with Mendelian
diseases and complex genetic disorders in humans, such
as schizophrenia [15], body mass index [16], Crohn’s dis-
ease [17] and intellectual disability and various congenital
defects [18]. Similarly, in livestock, more and more studies
evidenced that CNVs play causative effects on phenotypic
variations, such as CNV in intron 1 of SOX5 causing the
pea-comb phenotype in chickens [19], a 4.6-kb intronic
duplication in STX17 for hair greying and melanoma in
horses [20], duplication of FGF3, FGF4, FGF19 and
ORAOV1 resulting in hair ridge and predisposition to der-
moid sinus in Ridgeback dogs [21], and CNV and mis-
sense mutations of the agouti signaling protein (ASIP)
gene leading to different coat colors in goats [22]. But in
pigs, few such examples have been reported at present.
KIT is the first pig gene that has been confirmed that gene
duplication and a splice mutation leading the skipping of
exon 17 are responsible for the dominant white phenotype
and peripheral blood cell [23,24].
Until now, to our knowledge, there are only three studies

on pig CNV discovery. Fadista et al. (2008) found 37
CNVRs across chromosome (SSC) 4, 7, 14 and 17 using a
custom tilling oligonucleotide array [25]. Tang et al. (2010)
investigated the CNV distribution on SSC7 and SSC8 by
CGH array [26]. More recently, Ramayo-Caldas et al.
(2010) detected 49 CNVRs in porcine autosomal chromo-
somes in 55 animals from an Iberian × Landrace cross with
Porcine SNP60 BeadChip [27]. However, the distribution of
CNVs in large scale and diverse pig populations remains
largely unknown.
We herein used Porcine SNP60 BeadChip and PennCNV

algorithm to identify porcine autosomal CNVs in 1,693
animals from 18 populations, and analyzed the CNV distri-
bution in pig genome and different populations. We com-
pared the identified CNVs with the reported porcine CNV
call sets and investigated the copy number variable genes.
Especially, we used a large scale White Duroc × Erhualian
F2 intercross, in which the QTL were mapped for 422 traits
[28]. The intercross allowed us to systematically investigate
the effects of pig CNVs on phenotypic variations.

Results and discussion
CNV discovery, distribution and validation
Experimental samples were recruited from 18 pig popula-
tions including 10 Chinese indigenous breeds with diffe-
rent geographical origins, 2 Western commercial breeds, 1
wild boar and 5 F2 resource populations (Table 1). The
Porcine SNP60 BeadChip data that passed quality control
in a panel of 1,693 animals were included in the analysis of
CNVs by PennCNV. We used a calling criterion of span-
ning three or more consecutive SNPs and standard devi-
ation of log R Ratio ≤ 0.35. The chromosomes X and Y
were excluded from our analysis. As a result, we totally
identified 2,122 putative CNVs in 1,327 individuals includ-
ing 971 population-specific CNVs. These CNVs are located
in all 18 autosomes with a mean size of 223.51 kb ranging
from 50.02 kb to 5.64 Mb. The predicted status for the
CNVs was 1,149 (54.15%) for deletion, 964 (45.43%) for du-
plication and 9 (0.42%) for regions with either deletion or
duplication status according to different animals (Table 1).
Merging identical CNVs from all animals across breeds

yielded 1,315 unique CNVs out of the 2,122 putative CNVs.
CNVRs were determined by aggregating overlapping
unique CNVs. The 1,315 unique CNVs were clustered into
a set of 565 non-redundant CNVRs which encompassed
about 143.03-Mb region equaling approximately 5.84% of
the pig genome (Figure 1). These 565 CNVRs were all
called in ≥ 2 individuals and included 261 loss, 225 gain
and 79 both (Additional file 1: Table S1). The sizes of these
CNVRs ranged from 50.39 kb to 8.10 Mb, with a median
size of 252.71 kb (Additional file 1: Table S1). This size



Table 1 Identification of CNVs in 18 diverse pig populations

Breed Number
of

animals
identified

CNV

Number of CNVs Status of CNVs Average
Size(kb)Total Unique Gain Loss Gain/Loss

White Duroc × Erhualian F2 intercross 752 683 456 370 305 8 227.21

Bamaxiang × Erhualian F2 intercross 77 92 30 41 51 - 184.42

Rongchang × Erhualian F2 intercross 87 159 48 65 94 - 218.72

Shazilin × Erhualian F2 intercross 156 254 149 153 101 - 240.92

Tongcheng × Erhualian F2 intercross 51 104 22 53 51 - 218.52

Bamaxiang 15 66 35 7 59 - 206.91

Dongshan 9 35 12 12 23 - 215.13

Duroc 10 124 52 13 111 - 220.26

Erhualian 16 48 6 16 32 - 232.96

Jinghua 14 75 40 19 56 - 191.21

Minzhu 15 46 6 22 23 1 230.86

Rongchang 63 180 64 90 90 - 194.64

Shanggao Two-End-Black 10 31 6 7 24 - 170.79

Shazilin 8 34 5 12 22 - 144.51

Sutai 10 57 13 22 35 - 206.23

Tongcheng 15 50 12 23 27 - 153.23

White Duroc 3 23 0 6 17 - 183.52

wild boar 16 61 15 33 28 - 141.83

Total 1,327 2,122 971 964 1,149 9 -

Average - 117.89 53.94 53.56 63.83 0.50 223.51

Figure 1 Distribution of CNVRs detected in this study in sus scrofa reference genome assembly 10.2. Black lines represent all 18 porcine
autosomes. Red dots indicate duplicated CNVRs, while deleted CNVRs are highlighted in cyan and regions with both loss and gain are indicated
in orange.
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range was significantly different from that of detected by
the CGH array (ranged from 1.74 to 61.92 kb) [25]. This
difference may be explained by the relatively low coverage
and the non-uniform distribution of SNPs in Porcine
SNP60 BeadChip in the pig genome [29]. But we noted that
the size range in this study was similar to that in Ramayo-
Caldas et al. (2010) where CNVRs were also called with
genotyping data from Porcine SNP60 BeadChip [27].
Just as the cases in human [11] and cattle [30], we found

that the CNVRs were non-randomly distributed across the
pig genome. Chromosome 4, for instance, has only 2.02%
of sequences showing copy number variable, while chromo-
some 18 has > 18.01% of sequences with copy number vari-
ation. Several “hotspots” of copy number variation were
obsevered in this study, such as SSC6: 138.40-145.74 Mb,
SSC11: 43.58-46.62 Mb, SSC13:213.45-215.94 Mb, SSC14:
2.74-7.42 Mb and SSC17: 8.25-10.28 Mb. These regions
contain clusters of four to six CNVRs, indicating CNV hot-
spots (Additional file 1: Table S1; Figure 1).
The quality of our CNV calls was assessed in multiple

ways. Our first assessment was a comparison against a
previously reported porcine CNV dataset identified in 55
animals from an Iberian × Landrace cross with Porcine
SNP60 BeadChip [27]. We found 30 CNVRs that over-
lapped with CNVRs in that dataset, accounting for
61.22% of their CNV calls (Figure 2). The 38.78% of unre-
plicated CNVRs is most likely due to different genetic
background of pig populations in two studies, and cer-
tainly, false positive can not be excluded. For 683 CNVs
detected in the White Duroc × Erhualian F2 resource
population, we validated their Mendelian transmission
using family information. Total 538 out of 683 CNVs fit
Mendelian transmission (78.77%). Finally, a total of 7
CNVRs were randomly selected for validation by quantita-
tive real time PCR assays (CNVR329, 361, 419, 482, 502,
509 and 531; Additional file 2: Table S3). Except CNVR509
for which none of 6 animals were confirmed for this
Figure 2 Comparison between 565 CNVRs identified in this
study and a previously reported porcine CNV dataset in terms
of count and length.
CNVR, we validated the other 6 CNVRs (Additional file 3:
Figure S1).

Porcine CNV frequencies among breeds
Like CNV frequencies in humans [31], CNV numbers
differ greatly among different pig populations. The aver-
age number of CNVs per population was 117.89, ranging
from 23 (White Duroc) to 683 (White Duroc × Erhualian
F2 intercross). The most number of CNVs per sample
was detected in Duroc pigs (12.40 CNVs per animal on
average), in comparison with the least number of 0.91
CNVs per animal in the White Duroc × Erhualian F2
intercross (Table 1).
Of the 565 CNVRs, only 20 CNVRs were detected in

more than 50% of populations (9 populations). Similar
to the finding in humans [31], most CNVRs (72.87%)
were restricted to one population. This should be due to
sampling variances or the fact that they were recent evo-
lution events. Among 18 diverse populations, the largest
number of 310 CNVRs was identified in the White Duroc
× Erhualian F2 intercross (Additional file 4: Table S2). It is
most likely due to the fact that this population was a cross
between European and Asian divergent breeds. Of these
310 CNVRs, 215 were unique to this resource population.
As two Western pig breeds (Duroc and White Duroc) used
in this study, we found that all 5 CNVRs identified in
White Duroc were included within 42 CNVRs detected in
Duroc. It is consistent with the fact that White Duroc is
one of specialized lines of Duroc. Total 26 CNVRs were
unique to the two Western breeds. Among Chinese indi-
genous pig breeds, the most number of 30 CNVRs was
identified in both Jinhua and Shazilin. Moreover, Jinhua
had the highest average number of CNVs per individual
(5.36 per individual; Additional file 4: Table S2).

Gene content of CNV regions
The BioMart gene database based on the Sscrofa 10.2
reference genome assembly [32] was used to retrieve
genes within the detected CNVRs. A total of 1,764 tran-
scripts were annotated within 320 out of 565 putative
CNVRs, including 1,546 transcripts completely located
within the CNVRs and 218 transcripts overlapping with
the CNVRs. These 1,764 transcripts were composed of
1,587 protein coding genes, 37 pseudogenes, 1 retrotran-
sposed genes, 42 miRNAs, 7 rRNAs, 36 snoRNAs, 47
snRNAs and 7 miscRNAs. No annotated transcripts
were identified within the other 235 CNVRs. Of the
1,587 protein coding genes, 1,055 genes were well anno-
tated in pigs including 634 genes that have CNVs in the
human genome (Additional file 5: Table S4) [33]. The
average gene number per Mb in CNVRs was 13.26,
14.74 and 6.01, respectively, for gain, loss and gain/loss.
However, compared to the average gene number per Mb
in whole genome, the CNVRs have higher gene density
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(11.21 vs. 8.37). This result was consistent with the fin-
dings in other species in which a higher gene content
was discovered in CNVRs [9,29,30].
CNV-associated genes or copy number variable genes

have a wide spectrum of molecular functions and pro-
vide a resource for investigating the biological relation-
ship of CNVs with the genetic basis of phenotypic
variations. We performed the gene ontology (GO) ana-
lysis by querying each copy number variable gene into
the records of the GO database [34]. Similar to GO anno-
tation of CNV-associated genes in humans and rats [9,30],
the main terms of molecular function are related to olfac-
tory receptor activity, G-protein coupled receptor activity,
transmembrane receptor activity, receptor activity, molecu-
lar transducer activity and signal transducer activity. In the
cellular component category, the most significant term was
plasma membrane (corrected P = 2.70 × 10-4). Among GO
biological processes, the most overrepresented one was
sensory perception of smell (P = 5.50 × 10-18, Figure 3).
Most these terms relate to the olfactory receptors. This
may be due to the fact that total 84 olfactory receptor genes
were included in the detected copy number variable genes.
We found that many CNV-associated genes appear to be

certain gene clusters or families, such as olfactory receptor
Figure 3 Functional categories of CNV-related genes by gene ontolog
within each GO category. All functions or processes listed have enrichment
family, solute carrier family, apolipoprotein gene family,
myosin gene family, CD gene family, cytochrome C oxidase
gene family, interleukin gene family, protocadherin gamma
gene cluster, beta defensin protein family, neuroblastoma
breakpoint family, zinc finger protein family and ring finger
protein family (Additional file 5: Table S4). Some of these
gene families have been well characterized and play im-
portant roles in biological processes [27,35]. For example,
olfactory receptor family is the most well characterized
CNV-related genes in humans [35]. Over 400 human olfac-
tory receptor genes are reported to be variable in copy num-
ber [36]. In this study, total 84 olfactory receptor genes were
located within CNVRs. More than 15 members of solute
carrier family were detected in CNVRs in this study. Solute
carrier family encodes membrane transport proteins in-
cluding over 300 members organized into 51 families. The
family proteins play important roles in transportation and
exchange of ion, amino acid and other substance which
take part in important biological process [37].

Identification of copy number variable genes as potential
candidate genes for complex traits
The potentially disruptive effect of CNVs on gene ex-
pression, structure and function indicates that CNVs are
y analysis. The bar plot represents the percentage of gene counts
of corrected P values < 0.05.
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likely to contribute to phenotypes. Before this study, a
genome-wide QTL mapping for traits of blood para-
meter [38], meat quality [39], fatness [40], growth [40],
reproduction [41,42], immune capacity [43] and body
conformation [44] was carried out in the White Duroc ×
Erhualian F2 resource population and all QTL have been
published and deposited in the pig QTL database [45].
In this study, all QTL above 5% genome-wide signifi-
cance level were chose to match with CNVRs identified
in the White Duroc × Erhualian F2 resource population.
By integrating analysis of QTL mapping, CNVRs and
the description of phenotypes in knockout mice, we
identified 7 CNV genes including ANP32B, BSCL2,
LTBP3, GDF3, GYS1, KIT and CAV1 as potential candi-
date genes for phenotypes related to carcass length,
backfat thickness, abdominal fat weight, length of scapu-
lar, intermuscle fat content of logissimus muscle (LD),
body weight at 240 day, glycolytic potential of LD, mean
corpuscular hemoglobin (MCH), mean corpuscular vol-
ume (MCV) and humerus diameter (Table 2).
We further chose KIT as a proof-of-principle example

as the confirmed association between KIT duplication
and MCH and MCV. Previous studies have confirmed
that KIT regulatory mutations including the gene dup-
lication and splice mutation are responsible for the
dominant white phenotype in pigs and have pleiotropic
effects on peripheral blood cell measures in Western
commercial pigs [23,24]. A significant QTL for MCH
and MCV at day 240 was detected at SSC8: 43,550,231
in the White Duroc × Erhualian F2 resource population
[43], which fell within the genomic region of CNVR268
(SSC8: 43,425,758-43,955,459; Table 2). More than
378 F2 animals from the intercross inherited this CNV
variant. Two genes of KIT and KDR were located within
this CNVR. The KIT knockout mice exhibited pheno-
types of increased mean corpuscular volume, decreased
Table 2 Identification of potential candidate CNV genes for c
population

CNVR ID CNVR region Trait of overlapped QTL*

CNVR41 chr1: 267,977,629-268,124,492 carcass length

CNVR62 chr2: 8,244,738-8,884,302 Backfat thickness

abdominal fat weight

CNVR61 chr2: 5,766,853-6,201,646 length of scapular

CNVR169 chr5: 65,533,763-65,810,346 intermuscle fat content of LD

body weight at 240 days

CNVR199 chr6: 49,802,217-50,638,891 Glycolytic potential of LD

CNVR268 chr8: 43,425,758-43,955,459 mean corpuscular volume

mean corpuscular hemoglobin

CNVR560 chr18: 27,001,689-32,149,496 Humerus diameter

* QTL identified in the White Duroc × Erhualian resource population.
hemoglobin content and diluted coat color [54]. Further-
more, association analysis showed that CNV268 was signifi-
cantly associated with MCH and MCV in the White
Duroc × Erhualian F2 resource population (P = 1.17 × 10-5).
And if we included the CNV268 as fixed effect in QTL
mapping, the QTL on SSC8 for MCH and MCV was never
detected again.
Moreover, the result obtained in this study was also

consistent with the causative relation between KIT dupli-
cation and dominant white coat color identified before
[56]. The CNVR268 harboring KIT was detected only in
the solid white breed White Duroc. It was absent in all
other pigs from diverse populations having colored phe-
notypes. It is noteworthy that the CNVR was either not
found in Chinese belt-like breeds including Bamaxiang,
Dongshan, Shanggao, Jinhua, Shazilin and Tongcheng, or
in Rongchang pigs with the white coat color. This was in
agreement with our previous conclusions that the belt-
like and white coat colors in Chinese pigs were not
caused by the dominant white allele of KIT [57,58].
Although some identified copy number variable genes

were not overlapped with our reported QTL, they have
been reported to associate with complex traits in pigs,
humans or mice. For instance, we detected an 836.67-kb
CNV in SSC6: 49,802,217-50,638,891 in the White
Duroc × Erhualian resource population. This region con-
tains the alpha-1-fucosyltransferase (FUT1) gene. FUT1
has been identified as a strong candidate gene encoding
the intestinal Escherichia coli F18 receptor that deter-
mines susceptibility to oedema disease, post-weaning
diarrhoea in Western piglets and total number of born
piglets [59,60]. APOE/C4/C2 gene cluster is located
within a 427.46-kb CNV region on SSC6: 46,893,592-
47,321,053. The APOE/C1/C4/C2 gene cluster variation
in humans is associated with plasma lipids, particularly
low density lipoprotein (LDL) level and coronary heart
omplex traits in the White Duroc × Erhualian F2

CNV gene Phenotype in knockout mice Reference

ANP32B decreased body size [39,46]

BSCL2 decreased subcutaneous adipose tissue [40,47]

BSCL2 decreased retroperitoneal fat pad weight [40,47]

LTBP3 decreased length of long bones [44,48]

GDF3 decreased white adipose tissue amount [39,49]

GDF3 abnormal developmental patterning [40,50]

GYS1 decreased skeletal muscle glycogen level [39,51]

KIT increased mean corpuscular volume [43,52]

KIT decreased hemoglobin content [43,53]

diluted coat color [54]

CAV1 increased bone size and stiffnes [44,55]



Chen et al. BMC Genomics 2012, 13:733 Page 7 of 10
http://www.biomedcentral.com/1471-2164/13/733
disease [61]. CNVR128 (SSC3: 120,293,272-120,344,603)
harbors HADHA and HADHB, encoding the mitochon-
dria trifunctional protein (MTP) alpha- and beta-subunits,
respectively. The HADHA-HADHB deficient mice had a
decreased weight gain and cardiac arrhythmias [62].

Conclusions
In this study, we revealed the distribution of the unprece-
dented number of 565 CNVRs in 1,327 pigs from 18
diverse populations, and found that CNVRs were non-
randomly distributed in the porcine genome. CNV num-
bers differ greatly among diverse populations. More than
72.87% of CNVRs were restricted to one population. The
main functional categories of CNV-related genes were
similar to those of in other mammals. With the QTL
mapping data and the identified CNVRs in the White
Duroc × Erhualian F2 intercross, and the description of
phenotypes in knockout mice, we identified 7 copy num-
ber variable genes as potential candidate genes for por-
cine complex traits. These findings give novel insights
into porcine CNVs and provide resources to facilitate the
further identification of trait-related CNVs.

Methods
Animals
A total of 1,693 animals from 18 pig populations inclu-
ding 10 Chinese indigenous breeds, 2 Western commer-
cial breeds, 1 wild boar and 5 F2 resource populations
comprising White Duroc × Erhualian, Bamaxiang ×
Erhualian, Rongchang × Erhualian, Shazilin × Erhualian
and Tongcheng × Erhualian were used in this study
(Table 1). Thereinto, 1,021 animals were obtained from
the large scale White Duroc × Erhualian F2 resource
population in which two White Duroc boars and 17
Erhualian sows were crossed as founder animals to pro-
duce F1 animals, and 59 F1 sows were randomly mated
with 9 F1 boars to generate 1,912 F2 individuals. Total
422 traits related to growth, meat quality, body compo-
sition, blood physiological and biochemical parameters,
reproduction and immune capacity were well pheno-
typed in this intercross and genome-wide QTL mapping
was carried out for these traits [38-44]. All animal pro-
cedures were conducted according to the guidelines for
the care and use of experimental animals established by
the Ministry of Agriculture of China.

Genome-wide SNP genotyping
Genomic DNA was extracted from ear or spleen tissues
with the routine phenol/chloroform extraction method.
All 1,693 animals were genotyped with Porcine SNP60
BeadChip using the Infinium HD Assay Ultra protocol
(Illumina Inc., San Diego, USA). The position of each
SNP in the pig genome assembly (Sscrofa10.2) was
determined by SOAP2 software [63]. The quality control
of genotypes was performed with GenABEL procedure
in R. The SNPs in sex chromosomes and those not
mapped or mapped to multi-positions in the Sscrofa10.2
assembly were discarded. A final set of 5,2596 SNPs on
18 autosomes with a unique position in Sscrofa10.2 was
used for further analysis.

CNV calling
PennCNV was used to CNV calling. The software inte-
grates a Hidden Markov Model (HMM) for high resolution
copy number variation detection with whole-genome SNP
genotyping data [4]. The signal intensity data of log R Ratio
(LRR) and B allele frequency (BAF) were exported from
Illumina BeadStudio software. Individual-based CNV call-
ing was performed using the default parameters of the
HMM model by integrating Log R Ratio, BAF, population
allele frequency and the SNP distance.
To reduce the false discover rate in CNV calling, we

used a calling criteria requiring that the standard deviation
(SD) of LRR must be under or less 0.35, the CNV con-
tained three or more consecutive SNPs and the length of
CNV region must be more than 50 kb at the calling-level.
We set the “-qcnumcnv 50” argument in the command
line to treat any samples with > 50 CNV calls as low qua-
lity samples and eliminated them from analysis. GC model
file was used to adjust the signal intensity values for CNV
calling. For F2 individuals, the “-trio” argument was
employed in CNV calling to make use of the family infor-
mation. The CNVs whose 50.0% of sequence overlapped
with the telomere region and those detected in only one
individual and not overlapped with any other discovered
CNVs were also removed from analysis. All putative CNVs
identified in this study were pooled across breeds. We
aggregated the overlapping CNVs identified across all
samples to determine CNVRs following the previously
published protocols [2].

Quantitative real time PCR
Seven CNVRs were randomly selected for validation by
quantitative real time PCR (qPCR). The 2-△△Ct method
was used to estimate relative quantification (RQ) of
CNVRs [64]. This comparative method used a target
assay for the CNV region and a reference assay of
β-ACTIN as an internal control. The test and control
primers were verified for their amplification efficiency.
Six DNA samples were randomly selected including
those with or without copy number variant for each
CNVR. Primers and TaqMan probes labelled with FAM
for each CNVR were designed with Allele 6.0 software
(Applied Biosystems, Foster City, USA) and are listed in
Additional file 2: Table S3. qPCR was carried out in a
total volume of 20 μl mixture containing 1 × Premix Ex
Taq™ (TaKaRa, Dalian, China), 0.2 μmol/L each primer,
1 × ROX Reference Dye II and 100 ng genomic DNA in
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an ABI 7500 FAST instrument (Applied Biosystems,
Foster City, USA). The thermal cycle parameter was:
30 sec at 95°C, and 40 cycles of 3 sec at 95°C and 30 sec
at 60°C. Each sample was analyzed in triplicate. Results
were analyzed with the ABI7500 software v2.0.5 (Applied
Biosystems, Foster City, USA).

Gene identification and functional classification
Genes within porcine CNVRs were annotated by BioMart
[32]. These genes were tested for enrichment of molecule
function, cell component and biological process in gene
ontology (GO) terms in DAVID Bioinformatics Resources
6.7 [65]. Considering the limited number of pig genes
assigned to GO terms, the human annotated genes that
were homologous to pig genes were used as the back-
ground. Multiple tests were corrected by FDR corrections
and enrichment threshold was set as EASE score of
adjusted FDR P ≤ 0.05.

Statistical analysis
Association of the CNV268 with MCH and MCV was
analyzed with a mixed linear model. Gender and batch
were considered as fixed effects. The QTL for MCH and
MCV was re-mapped with the CNV268 as the fixed
effect. All the analyses were performed with R package.

Additional files

Additional file 1: Table S1. CNVRs identified in this study and its state.

Additional file 2: Table S3. Primers and probes used for qPCR assays.

Additional file 3: Figure S1. The schematic diagrams depicting the
validation of 7 CNVRs by quantitative real time PCR.

Additional file 4: Table S2. The distribution of CNVs and CNVRs in each
of 18 diverse populations.

Additional file 5: Table S4. 1,055 well annotated genes located within
the identified CNV regions. The 634 genes marked by * are also the copy
number variable genes in human.
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