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Abstract

Background: GemSIM, or General Error-Model based SIMulator, is a next-generation sequencing simulator capable
of generating single or paired-end reads for any sequencing technology compatible with the generic formats SAM
and FASTQ (including Illumina and Roche/454). GemSIM creates and uses empirically derived, sequence-context
based error models to realistically emulate individual sequencing runs and/or technologies. Empirical fragment
length and quality score distributions are also used. Reads may be drawn from one or more genomes or
haplotype sets, facilitating simulation of deep sequencing, metagenomic, and resequencing projects.

Results: We demonstrate GemSIM’s value by deriving error models from two different Illumina sequencing runs
and one Roche/454 run, and comparing and contrasting the resulting error profiles of each run. Overall error rates
varied dramatically, both between individual Illumina runs, between the first and second reads in each pair, and
between datasets from Illumina and Roche/454 technologies. Indels were markedly more frequent in Roche/454
than Illumina and both technologies suffered from an increase in error rates near the end of each read.
The effects of these different profiles on low-frequency SNP-calling accuracy were investigated by analysing
simulated sequencing data for a mixture of bacterial haplotypes. In general, SNP-calling using VarScan was only
accurate for SNPs with frequency > 3%, independent of which error model was used to simulate the data.
Variation between error profiles interacted strongly with VarScan’s ‘minumum average quality’ parameter, resulting
in different optimal settings for different sequencing runs.

Conclusions: Next-generation sequencing has unprecedented potential for assessing genetic diversity, however
analysis is complicated as error profiles can vary noticeably even between different runs of the same technology.
Simulation with GemSIM can help overcome this problem, by providing insights into the error profiles of individual
sequencing runs and allowing researchers to assess the effects of these errors on downstream data analysis.

Background
Next-generation sequencing (NGS) technologies, such as
Illumina’s Genome Analyzer [1] and Roche/454’s GS
FLX [2], produce massive volumes of data. For instance,
Illumina’s Genome Analyzer IIx can produce up to 640
million 150 bp paired-end reads in a single run [3].
Increasing availability of high volume data is opening
new possibilities to researchers. These include assess-
ment of rare variants in viral populations via deep
sequencing, metagenomic sequencing of bacterial com-
munities, and pooled resequencing of human

chromosomes. Extracting meaningful information from
these kinds of sequencing projects is often difficult,
however, due to the error rates associated with NGS.
Separating true variants from sequencing errors remains
challenging. Furthermore, analysis is complicated by an
ever-increasing variety of downstream software, and a
lack of clear standards [4]. Both selecting the most
appropriate sequencing technology, and choosing the
appropriate software package and parameter values for
data analysis are typically done via a ‘hit and miss’
approach - a costly exercise, even in the world of ‘cheap’
NGS.
Simulation of NGS data, followed by software bench-

marking, presents an alternative approach. Early pub-
lished simulators include GenFrag [5]. Its usefulness for
modern NGS projects is limited by a simplistic error
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model, a single input genome, and a lack of quality
score information. SamTools [6] also supplies a simula-
tor, however it uses a uniform error rate. A uniformly
increasing error rate is used in a slight improvement
released as ‘dwgsim’[7]. NGS features highly heteroge-
nous error profiles [8,9], so the usefulness of this simu-
lator must be questioned.
There is growing evidence that sequence context (i.e.,

the nucleotide sequence surrounding a base and the
base’s position within the read) influences error rates in
both Roche/454 and Illumina sequencing [8,9]. This
awareness has led to more advanced simulators such as
MetaSim and Flowsim [10,11]. While MetaSim generates
reads from many input genomes and uses sequence-con-
text error models, it cannot be trained on real data and
does not assign quality values to reads, limiting its poten-
tial applications. The recent program Flowsim is the
most realistic NGS simulator to date, with advanced
error modelling and quality scores [11]. However it oper-
ates only in ‘flowspace’ and is therefore entirely limited
to simulation of Roche/454 pyrosequencing data. Like-
wise, the unpublished simulator SimSeq [12] empirically
captures some characteristic features of Illumina error
models, however only allows a single input genome, does
not empirically derive all parameters, and cannot simu-
late Roche/454 data. ART [13], an unpublished cross-
platform simulator, also uses context-dependent error
models and does assign quality scores. However it
appears limited to a single genome and does not allow
training on user’s own data sets. Thus there is a need for
a realistic, cross-platform NGS simulator, as multiple
sequencing platforms are likely to persist, each with their
own strengths and weaknesses [14].
Here, we describe GemSIM - a General, Error Model

based SIMulator of NGS sequencing data. It uses the
generic and standardised formats SAM (aligned reads)
[6] and FASTQ (raw reads) [15], thus ensuring Gem-
SIM’s applicability to both current and emerging NGS
technologies. GemSIM creates empirical error models
from real NGS data, facilitating technology-, machine-,
and even run-specific simulation. GemSIM considers a
sequence-context composed of a window of three bases
before the current base, the current base, and one base
after the current base (we call this the ‘sequence-context
word’). GemSIM also assigns realistic, empirically-
derived quality scores to simulated single or paired-end
reads. It can draw reads from either single or multiple
genomes or haplotype sets, making it applicable to deep
sequencing, metagenomic, and resequencing projects.
We demonstrate GemSIM’s usefulness for evaluating
error models and benchmarking downstream analysis
software by using GemSIM to capture the error profiles
of two different paired-end Illumina runs and one
Roche/454 Titanium run, and by simulating reads from

a set of in silico generated Buchnera aphidicola haplo-
types. We then attempt to identify SNPs using the pop-
ular program VarScan [16] and assess the effects of
different error profiles and technologies on SNP-calling
accuracy.

Implementation
GemSIM is implemented in Python as a command line
package, consisting of the four programs GemErr, Gem-
Haps, GemReads, and GemStats. The GemSIM work-
flow is as follows:

GemErr
GemErr generates empirical error models from real
data. A SAM format alignment of control data is used
as input. A list of polymorphic sites or sites which are
known to differ from the reference genome may also be
supplied; these sites are then considered to be true
SNPs and are ignored during error model calculation.
Reads are sequentially parsed, tracking the total num-

ber of reads and read length distributions. For paired-
end reads, insert size, whether the read is the first or
second read in the pair, and the proportion of properly
aligned pairs are also recorded. For each base of each
read the following information is then stored: a) nucleo-
tide type and base position in read; b) mismatch or true
base for the position; c) indels following the current
position; d) preceding three bases in the read; e) follow-
ing base in the read, and f) quality scores for true and
mismatch bases and insert bases. Although it is mainly
the sequence preceding the current position that is
known to affect error rates [8,9], the following base in
the read is tracked to allow accurate simulation of indels
within homopolymers. Sequence aligners record these
errors either at the start or end of a homopolymer. By
taking the following base into consideration, indels are
only inserted once within long homopolymers, at the
end, rather than potentially multiple times within the
homopolymer. Empirical distributions for tracked infor-
mation are stored to a file and used as error models for
input into GemReads.
If a particular sequence-context word is not contained

at least some minimum × number of times (default × =
4) within the reference genome, then the model is
updated using information based on the longest nucleo-
tide sequence that occurs at least × times in the refer-
ence. For instance, if AACTG is missing from the
reference, however ACTG can be found five times, then
the matrix entry where T is the current position, G is
the following position, and AAC are the three bases
before the current position is updated by considering all
other matrix entries where the two bases before the cur-
rent position are AC, the current position is T, and G is
the following position.
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GemStats (optional)
GemStats takes an error model generated by GemErr,
and calculates a set of statistics based on this model -
for paired-end reads, models for the first and second
read in a pair are considered separately. Statistics
reported include the overall mismatch, insertion, and
deletion error rates; the error rate for each nucleotide;
and the error rate by base position within the read.
Additionally, any sequence-context words with an error
rate more than two standard deviations greater than the
average error rate are also reported.

GemHaps (optional)
GemHaps takes a genome sequence, and an input com-
mand specifying haplotype frequencies and the number
of SNPs in each haplotype (here, haplotypes are defined
as a group of related nucleotide sequences, each differ-
ing by at least one SNP). The positions of mutations are
randomly determined, and haplotypes are written to a
file for input into GemReads. Alternatively, users may
create their own tab-delimited haplotype file (for
instance, describing SNPs generated according to an
evolutionary model).

GemReads
GemReads requires as input an error model file (gener-
ated by users with GemErr or supplied in GemSIM), a
FASTA genome file or directory of FASTA genomes
(metagenomics mode), an optional haplotype file (user
defined or from GemHaps), and a tab-delimited species-
abundance text file (metagenomics mode only). Addi-
tionally, the user specifies whether the reference genome
(s) are circular or linear, and which quality score offset
to use (33 or 64, depending on the required FASTQ
output version). The requested number of single or
paired-end reads are generated as follows, and output as
FASTQ files:

(1) Read length and insert length (paired-end only)
are randomly chosen from the empirical distribu-
tions defined by the error model (read length may
also be set to a static value).
(2) In metagenomics mode, an input reference gen-
ome is chosen with probability proportional to the
species abundance and genome size.
(3) Read location and direction are chosen at ran-
dom, and the read is copied from the input genome.
(4) Read is assigned to a haplotype (if supplied) and
updated with SNPs, where appropriate.
(5) Errors are introduced according to the error
models, accounting for read position, sequence-con-
text word, and 1st or 2nd read in pair (for paired-
end reads).

(6) Quality scores are assigned using recorded
empirical distributions contained in the error model
file.

For paired-end reads, steps 1-6 are repeated, however
the insert size is used in conjunction with the previous
read position and direction to determine the read loca-
tion. Our error model also tracks how many read pairs
have one read that does not align. We simulate this by
generating a read that consists entirely of Ns with low
quality scores, forcing it not to map. For instance, for 100
bp paired-end Illumina sequencing data, one read would
contain 100 Ns, each with a quality score of ‘B’ or 2.

Results and Discussion
Data processing and performance
We used GemSIM to calculate error models for and
simulate reads from three different sequencing runs:
Illumina Genome Analyzer IIx with Illumina Sequencing
Kit v4 chemistry (Illumina v4); Illumina Genome Analy-
zer IIx with TrueSeq SBS Kit v5-GA (Illumina v5); and
Roche/454 FLX Titanium (Roche/454). For the Illumina
simulations, error models were calculated from PhiX
control lane data aligned with Novocraft V2.07.06 [17].
Soft-clipping was disabled, reads aligning equally well to
two genomic positions were randomly aligned to one of
them, and the insert size was set with a standard devia-
tion of 200. All other parameters were given their
default values. 94.7% (v4) and 97.5% (v5) of reads
aligned. For the Roche/454 simulation, we used aligned
plasmid control data from a Hepatitis C Virus study
[18]. This alignment was performed using Mosaik
V1.1.0021 [19]. The maximum percentage mismatch
allowed was increased to 1%, while all other parameters
were set as recommended for Roche/454 Titanium.
85.4% of these reads aligned. Simulated reads were
drawn from a set of B. aphidicola haplotypes, created by
GemHaps using the B. aphidicola Cc reference genome
[GenBank ID: PC000263.1]. The number of simulated
reads was five million and one million for Illumina GAII
and Roche/454 FLX Titanium respectively. This gave a
reference coverage of around 1000×. For consistency,
alignment of simulated reads was done using Novocraft
for the Illumina data and Mosaik for the Roche/454
data [18]. Memory and runtime data are summarised in
Table 1 and show that GemSIM can be run with modest
memory requirements (< 1 Gb) on a single CPU/desk-
top computer within a reasonable time frame. As mem-
ory requirements are dictated mainly by the size of the
sequence-context word and read length, they are largely
independent of the number of reads processed or simu-
lated. Runtime scales linearly with the total number of
bases processed or simulated.
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5-mer presence and frequency
Our approach to error modelling is dependent on k-mer
choice, which needs to be long enough to capture
sequence-context information, but also short enough to
be represented in the reference genome to be simulated
and the control genomes used for error modelling. All
possible 5-mers were represented more than four times
in the B. aphidicola reference genome, while 83 (or 2%)
of all 6-mers were found less than four times. Further-
more, more than 90% of all possible 5-mers were found
four or more times in both the PhiX and the plasmid
genomes, used for modelling Illumina and Roche/454
errors, respectively. Less than 30% of all possible 6-mers
were present four or more times in these two genomes,
while all possible 4-mers were found more than four
times in the plasmid genome, and all but one in the
PhiX genome (Table 2). This suggests that a k-mer
length of 5 provides an appropriate balance between
capturing relevant sequence-context information and
the possibility of overfitting the data (with associated
wasted run time and memory requirements).
The fact that most 5-mers are contained within the

control genomes used also supports the notion that the
derived error models can be used to accurately simulate

reads from any unrelated reference genomes. For the
10% of 5-mers not well represented within the control
genomes, GemSIM derives an error rate based on the
relevant 4-mer (or 3-mer, for the one PhiX 4-mer men-
tioned above).

Error analysis
Error models for Illumina v4, Illumina v5, and Roche/
454 were analysed with GemStats. Error rates are sum-
marised in Table 3. Striking differences between the
error profiles of Illumina v4 and Illumina v5 are appar-
ent, justifying the need for empirical chemistry- or run-
specific error models when simulating NGS data. Com-
bining results for the first and second reads in a pair,
Illumina v5 had an error rate of 0.31%, five times lower
than the error rate of Illumina v4 (1.66%). Illumina v4
also showed large differences between the first and sec-
ond reads in a pair with second reads having consider-
ably greater error rates. Roche/454 gave the least errors
and its mismatch error rate of 0.12% is in line with
recently published estimates [8]. Consideration of the
top five mismatches within their sequence-context sug-
gests that all runs had some trouble with homopoly-
mers, particularly in G or C homopolymers for the
Illumina runs. This problem has been well document
for Roche/454 data [8,20], and there is some evidence
that homopolymers are also problematic for Illumina
data [21]. Our data also supports the known problem
with the CGG motif in Illumina sequencing [9,21].
For all three simulations, error rates increased (to vary-

ing extents) towards the tail end of the read (Figure 1).
While this is a recognised issue for Illumina sequencing,
the literature is ambiguous with respect to Roche/454
sequencing data [8,9]. While a positional effect for
Roche/454 can be seen in Figure 1, the magnitude of this
effect is extremely small when compared to Illumina
sequencing data and would probably not be observed if
only reads with length < 400 bp are considered. The posi-
tional increase in error rate for Illumina v5 is also rather
modest, and is only slightly more elevated for the second
read in the pair. In contrast, Illumina v4 exhibits a strong
influence of base position within the read on error rate,
characterised by sudden peaks and a marked increase in
error rates near the end of the read.
While insertions were roughly twice as common as

deletions in the Illumina runs, in general, indel error
rates in both Illumina runs were two to three orders of
magnitude lower than in the Roche/454 run. This is
consistent with previous findings that mismatches are
the predominant forms of error in Illumina, while indels
are the most frequent errors in Roche/454 sequencing
[20,22], showing that the GemSIM error-modeling
approach captures these key characteristics of the differ-
ent sequencing platforms.

Table 1 Memory and runtime for Illumina and Roche/454
simulations

Program, data Memory
(Gb)

Runtime (h:
min)

Data processed
(bases)

GemErr, Illumina
v4

0.34 3:15 0.9 × 108

GemErr, Illumina
v5

0.34 4:23 1.1 × 108

GemErr, Roche/454 0.39 0:20 1.3 × 107

GemReads,
Illumina v4

0.44 3:08 5.0 × 108

GemReads,
Illumina v5

0.46 3:10 5.0 × 108

GemReads, Roche/
454

0.46 2:45 4.0 × 108

Memory requirements and runtime are given separately for the two main
programs within the GemSIM workflow, GemErr and GemReads. Both
programs were run on a single Intel Xeon E5530 2.4 GHz CPU. To facilitate
comparison, the number of bases processed to create the error models is
given for GemErr, while the number of simulated bases is given for
GemReads. For the simulations, all reads were generated from the same set of
B. aphidicola haplotypes (created with GemHaps) using the appropriate error
model.

Table 2 Number of low-frequency (< 4) k-mers in
reference and control genomes

Genome 3-mer 4-mer 5-mer 6-mer

B. aphidicola 0 0 0 83

phiX 0 1 98 2918

pGEM-T/HCV plasmid 0 0 28 2979
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Table 3 Error model statistics for Illumina v4, Illumina v5, and Roche/454

Ill. v4 1st read Ill. v4 2nd read Ill. v5 1st read Ill. v5 2nd read Roche/454

Overall (%) 0.99 2.40 0.28 0.34 0.12

A (%) 1.23 2.86 0.25 0.33 0.14

T (%) 0.91 2.19 0.34 0.39 0.10

G (%) 0.78 2.00 0.23 0.23 0.12

C (%) 1.12 2.78 0.29 0.41 0.12

1st most freq. (%) GGGTA - > GGGGA
(4.47)

ACAAG - > ACACG
(3.94)

GGGTC - > GGGGC
(5.85)

AGGTG- > AGGGG
(3.69)

AAACA - > AAAAA
(1.07)

2nd most freq.
(%)

AGGTG - > AGGGG
(3.71)

AGGTG - > AGGGG
(3.29)

CTCGG - > CTCCG (5.83) CGGTG - > CGGGG (2.7) CCCAC - > CCCCC
(1.02)

3rd most freq.
(%)

CCCAA - > CCCCA
(3.15)

CCCAA - > CCCCA
(3.24)

GGGCG - > GGGGG
(4.06)

GGGTG - > GGGGG
(2.45)

CCCCG - > CCCAG
(0.75)

4th most freq.
(%)

CGGTG - > CGGGG
(3.06)

GGGTA - > GGGGA
(3.14)

CGGTG - > CGGGG
(3.65)

GGGTC - > GGGGG
(2.03)

AAAGG - > AAAAG
(0.70)

5th most freq.
(%)

GGGTG - > GGGGG
(2.71)

ACAAA - > ACACA
(2.97)

GGGTA - > GGGGA
(3.20)

CGGTC - > CGGGC
(1.98)

AGGAA - > AGGGA
(0.52)

Insertions (%) 0.000723 0.000935 0.000622 0.001300 0.290000

Deletions (%) 0.000434 0.000482 0.000353 0.000484 0.270000

Values give the error rates for each technology. Several measures of error rate are given, including: overall error rates; average error rate for each nucleotide;
error rates for the five sequence-context words most likely to result in mismatches (1st most freq. to 5th most freq); and average insertion and deletion rates. For
the top five mismatches, the sequence-context word is given with the actual mismatch base in bold (true sequence - > error sequence).
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Figure 1 Error rate by position within read.
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SNP-calling
For each error model, simulated reads were drawn from
a set of five haplotypes derived from the B. aphidicola
reference genome, with frequencies of 1%, 3%, 5%, 7%
and 84%. The four low-frequency haplotypes each con-
tained 100 randomly placed SNPs and the same haplo-
types (with their associated SNPs) were used for all
simulations and downstream analysis.
SNP-calling was performed using VarScan v2.2.3 [16]

on pileup files generated with SamTools v0.1.12a [6]. As
we were interested in identifying low-frequency true
SNPs and associated false positives (errors), the mini-
mum variant frequency parameter was set to zero. Mini-
mum coverage was set to 100 and the minimum
number of reads supporting each SNP was set to five.
As VarScan largely depends on individual base quality
scores to distinguish between true SNPs and sequencing
errors, we varied the minimum average quality (M.A.Q.)
parameter from 10 to 40 and investigated its interaction
with specific error profiles and SNP-calling accuracy.
SNP-calling was highly accurate for SNPs with a fre-

quency > 3% for all sequencing platforms simulated.
Roche/454 showed a slightly lower true positive rate (i.e.
an increased false negative rate) than the Illumina simu-
lations. When using VarScan with a M.A.Q. of 20, 379
out of 400 SNPs were identified (86, 97, 97, and 97 for
frequencies 1, 3, 4 and 7%, respectively). In contrast, all
400 SNPs were identified from both Illumina simula-
tions. Upon closer inspection, 11 of the false negatives
with true frequency of 1% failed to be supported by five
reads. All the remaining false negatives were associated
with homopolymer indel errors. Inspection of the pileup
file showed these SNPs were contained in the data; how-
ever VarScan reported them as indels instead.
Any inaccurate SNP calls within +/- 1% of a known

haplotype frequency were classed as false positives. For
Illumina v5 and Roche/454, all false positives had a fre-
quency under 1% (+/- 1%). Illumina v4 showed a drasti-
cally increased false positive rate, as can be expected
from the higher average error rate of this run. Despite
this, false positives were still restricted to under 3% (+/-
1%) population frequency. As M.A.Q. was increased,
however, some false positives with a true frequency of
1% (+/-1%) were now given a frequency by VarScan of
3% (+/-1%). This can be seen as spikes in the frequency
= 3% graph, between M.A.Q. 30 and M.A.Q. 40. This
can be understood by considering how the M.A.Q. para-
meter works. The VarScan manual states that M.A.Q. is
the ‘minimum base quality at a position to count a read’
[23]. This means VarScan uses M.A.Q. to select a subset
of reads from which to make a call. Thus increasing M.
A.Q. reduces the sampling of reads, which in turn
reduces the accuracy of the SNP frequency calculation
when frequencies are small. This highlights the need for

a detailed understanding of any chosen data and analysis
pipeline and the value of performing benchmarking with
simulated data.
VarScan also has a minimum coverage parameter and

its strong interaction with the M.A.Q. parameter is
shown by Table 4. When calculating coverage, VarScan
only ‘counts’ bases that have a quality above a given M.
A.Q and thus coverage effectively decreases as M.A.Q.
increases. This interaction explains why a M.A.Q. value
of 39 gives the most accurate overall results for Illumina

Table 4 Number of genomic sites considered by VarScan
for increasing values of M.A.Q

M.A.Q. Illumina v4 Illumina v5 Roche/454

10 416376 416380 416374

11 416376 416380 416374

12 416376 416380 416372

13 416376 416380 416370

14 416376 416380 416369

15 416376 416380 416368

16 416376 416380 416365

17 416376 416380 416361

18 416376 416380 416357

19 416376 416378 416357

20 416376 416378 416353

21 416376 416378 416353

22 416376 416378 416349

23 416375 416378 416345

24 416375 416378 416340

25 416375 416378 416336

26 416375 416378 416328

27 416375 416378 416323

28 416375 416377 416317

29 416375 416377 416312

30 416375 416377 416303

31 416374 416377 416292

32 416372 416376 416284

33 416371 416376 416271

34 416368 416376 416260

35 14370 416376 416251

36 0 416375 416233

37 0 416375 416226

38 0 416374 416110

39 0 416368 416076

40 0 416358 415943

M.A.Q gives the minimum quality a base within a read must have for VarScan
to ‘count’ it. At each position with the genome, there must be at least 100
bases (from 100 reads) with a quality above the value of M.A.Q, for the
genomic position to be considered by VarScan when scanning for SNPs. For
example, a value of zero means there were no sites within the reference
genome where there were more than 100 aligned bases with a quality score
greater than the specified M.A.Q.

McElroy et al. BMC Genomics 2012, 13:74
http://www.biomedcentral.com/1471-2164/13/74

Page 6 of 9



v5, however results in no SNPs being called for Illumina
v4. As we set the minimum coverage to 100, any geno-
mic position where VarScan counts less than 100 reads
will be ignored. Using a M.A.Q. of 39, for the Illumina
v5 simulation less than 0.003% of the genome is ignored,
whereas for Illumina v4 100% of the genome is ignored.
Although increasing M.A.Q. decreases false positives,
there is a clear trade-off between decreasing false posi-
tives by eliminating low-quality bases and increasing
false negatives by disregarding good data. This again
reinforces the need to understand individual sequencing
runs, even if they originate from the same technology
(in our case, the sequencing runs used to create error
models for the two Illumina simulations were performed
by the same technician on the same machine). Without
simulation, it would be difficult to choose an optimal M.
A.Q. value and almost impossible to interpret any find-
ings. Following this simulation, for a B. aphidicola
sequencing experiment resembling our Illumina v5
simulation a M.A.Q. of 39 will give confident and accu-
rate results. Furthermore, we expect to identify 100% of
SNPs with frequency > = 3% and 71% of SNPs with fre-
quency of 1% (see Figure 2). We also expect that across
the length of the genome, 101 false positives with fre-
quency of 1% (+/-1%) will also occur.

Conclusions
By considering errors within their sequence-context in
real data, GemSIM captured known features of Illumina
and Roche/454 error profiles, thus validating our
approach. GemSIM therefore facilitates independent,
objective, and comparable simulation of both Roche/454
and Illumina sequencing data. Analysis of the error
models created by GemSIM also provided new insights
into error profiles, specifically that there were substan-
tial differences between the error profiles of the Illumina
v4 and Illumina v5 sequencing runs. While it is not
clear whether this difference is due to the change in
chemistry or to some other factors, it does show that
sequencing runs can vary substantially, even when per-
formed by the same sequencing provider using the same
machine. Furthermore, differences between these error
profiles have a substantial impact on downstream analy-
sis, as shown by our study of SNP-calling accuracy in
simulated data.
Our findings call for empirically derived, run-specific

error models in sequencing simulation. GemSIM meets
this need with a set of python scripts that can be run on
a standard desktop computer. By allowing analysis of
run-specific error models created from the user’s own
data, GemSIM helps researchers to identify unique fea-
tures of their data - understanding of which may be
invaluable for downstream data analysis. Error-model
analysis also facilitates quality control and identification

of ‘bad quality’ sequencing runs, such as the Illumina v4
run described here. Finally, simulation of sequencing
data based on empirically-derived error models allows
researchers to choose the most appropriate sequencing
platform for their project, assess the impacts of errors
on downstream data analysis, and objectively interpret
any findings.
GemSIM is most suited to simulating resequencing or

metagenomic projects where known reference sequences
exist, as it relies on the presence of a reference sequence
to initially generate reads (error models are then super-
imposed on top of the read). For example, GemSIM can
be used in a deep resequencing project to establish at
which coverage any further sequencing may not provide
any increase in SNP detection accuracy. GemSIM may
also prove itself valuable in developing and benchmark-
ing de-novo assemblers, by assessing how well a known
genome can be reconstructed from simulated reads. By
providing a manually modified reference genome to
GemSIM, users could also simulate reads to assess the
detection of large genomic rearrangements via de-novo
assembly.
Future improvements to GemSIM may include

increasing the number of bases tracked before the cur-
rent position during error model construction, as it is
possible that error profiles are even more heterogenous
than reported here. For Roche/454 sequencing, indel
errors are known to increase with increasing homopoly-
mer length, while there is evidence to show that Illu-
mina sequencing accuracy can be influenced by the
sequence up to 10 bases before the current position [9].
Currently, the number of bases before the current posi-
tion is limited by both memory requirements and the
need for the sequence-context word to be present in the
control dataset. With future improvements in comput-
ing power and memory handling, it will be feasible to
allow users to optionally increase the sequence-context
word length, when appropriate.
As new sequencing technologies emerge, we will also

continue testing and developing GemSIM for compat-
ibility. Recently released platforms, such as the Illumi-
na’s MiSeq and Pacific Biosciences RS system, can be
readily assessed as they are compatible with the two
generic formats required by GemSIM, FASTQ and
SAM.
The error models described in this paper are provided

with the GemSIM package as generic technology-speci-
fic error models, for users who do not have access to
control data. New error models for different platforms
and chemistries will be supplied, as they become
available.

Availability and requirements
Project name: GemSIM.
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Figure 2 True positives, false positives, and accuracy for increasing values of M.A.Q. Graphs for true positives and false positives are in
absolute numbers, while accuracy is on a scale from zero to one. (Accuracy is defined as (true positives)/((total SNP no.) + (false positives)). One
equals perfect accuracy.) False positive graphs for ‘SNP frequency = 1%’ and ‘all SNP freq. together’ are on a logarithmic scale. For false positive
graphs, any false positives within +/-1% of the specified frequency are included in the graph.
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Project home page: http://sourceforge.net/projects/
gemsim/
Operating system(s): platform independent.
Programming language: Python 2.6
Other requirements: Numpy, Python 2.6
License: GNU GPL v3.
Any restrictions to use by non-academics: none.

Acknowledgements
KM was supported by an Australian Postgraduate Award. FL was supported
by an NHMRC Fellowship (Nos. 510428). Illumina sequencing was funded by
the Australian Cystic Fibrosis Research Trust. This project was also supported
by the National Health and Medical Research Council of Australia (NHMRC)
Program Grant No. 510448. We would like to thank Rowena Bull and
Andrew Lloyd for provision of the plasmid control data.

Author details
1Centre for Marine Bio-Innovation and School of Biotechnology and
Biomolecular Sciences, UNSW. Sydney, NSW Australia, 2052. 2Inflammation
and Infection Research Group, Evolutionary Dynamics of Infectious Diseases,
School of Medical Sciences, University of New South Wales, Sydney, NSW
Australia, 2052.

Authors’ contributions
KM wrote the GemSIM code, KM, FL and TT participated in data analysis, KM
drafted the manuscript and FL and TT revised it, and KM, FL and TT
contributed to study design and conception. No funding bodies contributed
to study design or data analysis. All authors read and approved the final
version of the manuscript.

Competing interests
The authors declare that they have no competing interests.

Received: 21 September 2011 Accepted: 15 February 2012
Published: 15 February 2012

References
1. Bentley DR, Balasubramanian S, Swerdlow HP, Smith GP, Milton J,

Brown CG, Hall KP, Evers DJ, Barnes CL, Bignell HR, et al: Accurate whole
human genome sequencing using reversible terminator chemistry.
Nature 2008, 456:53-59.

2. Margulies M, Egholm M, Altman WE, Attiya S, Bader JS, Bemben LA, Berka J,
Braverman MS, Chen YJ, Chen Z, et al: Genome sequencing in
microfabricated high-density picolitre reactors. Nature 2005, 437:376-380.

3. Genome Analyzer IIx. [http://www.illumina.com/systems/
genome_analyzer_iix.ilmn].

4. Nielsen R, Paul JS, Albrechtsen A, Song YS: Genotype and SNP calling
from next-generation sequencing data. Nat Rev Genet 2011, 12:443-451.

5. Engle ML, Burks C: GenFrag 2.1: new features for more robust fragment
assembly benchmarks. Comput Appl Biosci 1994, 10:567-568.

6. Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, Marth G,
Abecasis G, Durbin R: The Sequence Alignment/Map format and
SAMtools. Bioinformatics 2009, 25:2078-2079.

7. Whole Genome Simulation. [http://sourceforge.net/apps/mediawiki/dnaa/
index.php?title=Whole_Genome_Simulation].

8. Gilles A, Meglecz E, Pech N, Ferreira S, Malausa T, Martin JF: Accuracy and
quality assessment of 454 GS-FLX Titanium pyrosequencing. Bmc
Genomics 2011, 12:245.

9. Nakamura K, Oshima T, Morimoto T, Ikeda S, Yoshikawa H, Shiwa Y,
Ishikawa S, Linak MC, Hirai A, Takahashi H, et al: Sequence-specific error
profile of Illumina sequencers. Nucleic Acids Res 2011, 39:e90.

10. Richter DC, Ott F, Auch AF, Schmid R, Huson DH: MetaSim: a sequencing
simulator for genomics and metagenomics. PLoS One 2008, 3:e3373.

11. Balzer S, Malde K, Lanzen A, Sharma A, Jonassen I: Characteristics of 454
pyrosequencing data–enabling realistic simulation with flowsim.
Bioinformatics 2010, 26:i420-425.

12. SimSeq. [https://github.com/jstjohn/SimSeq].
13. ART. [http://bioinformatics.joyhz.com/ART/].

14. Metzker ML: Sequencing technologies - the next generation. Nat Rev
Genet 2010, 11:31-46.

15. Cock PJ, Fields CJ, Goto N, Heuer ML, Rice PM: The Sanger FASTQ file
format for sequences with quality scores, and the Solexa/Illumina FASTQ
variants. Nucleic Acids Res 2010, 38:1767-1771.

16. Koboldt DC, Chen K, Wylie T, Larson DE, McLellan MD, Mardis ER,
Weinstock GM, Wilson RK, Ding L: VarScan: variant detection in massively
parallel sequencing of individual and pooled samples. Bioinformatics
2009, 25:2283-2285.

17. Novocraft. [http://www.novocraft.com].
18. Bull RA, Luciani F, McElroy K, Gaudieri S, Pham ST, Chopra A, Cameron B,

Maher L, Dore GJ, White PA, Lloyd AR: Sequential Bottlenecks Drive Viral
Evolution in Early Acute Hepatitis C Virus Infection. PLoS Pathog 2011, 7:
e1002243.

19. mosaik-aligner. [http://code.google.com/p/mosaik-aligner/].
20. Huse SM, Huber JA, Morrison HG, Sogin ML, Welch DM: Accuracy and

quality of massively parallel DNA pyrosequencing. Genome Biol 2007, 8:
R143.

21. Sequence assembly with MIRA3. [http://sourceforge.net/apps/mediawiki/
mira-assembler/].

22. Dohm JC, Lottaz C, Borodina T, Himmelbauer H: Substantial biases in
ultra-short read data sets from high-throughput DNA sequencing.
Nucleic Acids Res 2008, 36:e105.

23. VarScan User’s Manual. [http://varscan.sourceforge.net/using-varscan.html].

doi:10.1186/1471-2164-13-74
Cite this article as: McElroy et al.: GemSIM: general, error-model based
simulator of next-generation sequencing data. BMC Genomics 2012
13:74.

Submit your next manuscript to BioMed Central
and take full advantage of: 

• Convenient online submission

• Thorough peer review

• No space constraints or color figure charges

• Immediate publication on acceptance

• Inclusion in PubMed, CAS, Scopus and Google Scholar

• Research which is freely available for redistribution

Submit your manuscript at 
www.biomedcentral.com/submit

McElroy et al. BMC Genomics 2012, 13:74
http://www.biomedcentral.com/1471-2164/13/74

Page 9 of 9

http://sourceforge.net/projects/gemsim/
http://sourceforge.net/projects/gemsim/
http://www.ncbi.nlm.nih.gov/pubmed/18987734?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18987734?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16056220?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16056220?dopt=Abstract
http://www.illumina.com/systems/genome_analyzer_iix.ilmn
http://www.illumina.com/systems/genome_analyzer_iix.ilmn
http://www.ncbi.nlm.nih.gov/pubmed/21587300?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21587300?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/7828076?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/7828076?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19505943?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19505943?dopt=Abstract
http://sourceforge.net/apps/mediawiki/dnaa/index.php?title=Whole_Genome_Simulation
http://sourceforge.net/apps/mediawiki/dnaa/index.php?title=Whole_Genome_Simulation
http://www.ncbi.nlm.nih.gov/pubmed/21592414?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21592414?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21576222?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21576222?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18841204?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18841204?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20823302?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20823302?dopt=Abstract
https://github.com/jstjohn/SimSeq
http://bioinformatics.joyhz.com/ART/
http://www.ncbi.nlm.nih.gov/pubmed/19997069?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20015970?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20015970?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20015970?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19542151?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19542151?dopt=Abstract
http://www.novocraft.com
http://www.ncbi.nlm.nih.gov/pubmed/21912520?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21912520?dopt=Abstract
http://code.google.com/p/mosaik-aligner/
http://www.ncbi.nlm.nih.gov/pubmed/17659080?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17659080?dopt=Abstract
http://sourceforge.net/apps/mediawiki/mira-assembler/
http://sourceforge.net/apps/mediawiki/mira-assembler/
http://www.ncbi.nlm.nih.gov/pubmed/18660515?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18660515?dopt=Abstract
http://varscan.sourceforge.net/using-varscan.html

	Abstract
	Background
	Results
	Conclusions

	Background
	Implementation
	GemErr
	GemStats (optional)
	GemHaps (optional)
	GemReads

	Results and Discussion
	Data processing and performance
	5-mer presence and frequency
	Error analysis
	SNP-calling

	Conclusions
	Availability and requirements
	Acknowledgements
	Author details
	Authors' contributions
	Competing interests
	References

