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Abstract

Background: The peanut (Arachis hypogaea L.) is an important oilseed crop in tropical and subtropical regions of
the world. However, little about the molecular biology of the peanut is currently known. Recently, next-generation
sequencing technology, termed RNA-seq, has provided a powerful approach for analysing the transcriptome, and
for shedding light on the molecular biology of peanut.

Results: In this study, we employed RNA-seq to analyse the transcriptomes of the immature seeds of three
different peanut varieties with different oil contents. A total of 26.1-27.2 million paired-end reads with lengths of
100 bp were generated from the three varieties and 59,077 unigenes were assembled with N50 of 823 bp. Based
on sequence similarity search with known proteins, a total of 40,100 genes were identified. Among these unigenes,
only 8,252 unigenes were annotated with 42 gene ontology (GO) functional categories. And 18,028 unigenes
mapped to 125 pathways by searching against the Kyoto Encyclopedia of Genes and Genomes pathway database
(KEGG). In addition, 3,919 microsatellite markers were developed in the unigene library, and 160 PCR primers of SSR
loci were used for validation of the amplification and the polymorphism.

Conclusion: We completed a successful global analysis of the peanut transcriptome using RNA-seq, a large
number of unigenes were assembled, and almost four thousand SSR primers were developed. These data will
facilitate gene discovery and functional genomic studies of the peanut plant. In addition, this study provides
insight into the complex transcriptome of the peanut and established a biotechnological platform for future
research.

Background
The peanut (Arachis hypogaea L.), also known as the
groundnut, is an important oilseed crop in the tropical
and subtropical regions of the world. It is grown on six
continents but mainly in Asia, Africa and America. Pea-
nuts are cultivated on 23.51 million hectares worldwide,
with a total global production of approximately 35.52
million tons (the weight includes the shell). China is the
largest producer in the world, accounting for 37.6%

(13.34 million tons) of the total world production (FAO,
2009, http://faostat.fao.org).
Peanuts have a desirable fatty acid profile and are rich

in vitamins, minerals and bioactive materials, including
several known heart-healthy nutrients, such as monoun-
saturated and polyunsaturated fatty acids, potassium,
magnesium, copper niacin, arginine, fibre, a-tocopherol,
folates, phytosterols, and flavonoids. Indeed, peanut con-
sumption has been associated with an improvement in
the overall quality of the diet and nutrient [1-4].
In China, almost 60% of the peanuts are used to pro-

duce peanut oil [5]. Peanut oil, due to its high monounsa-
turated fat content, is considered healthier than saturated
oils and is resistant to rancidity. Monounsaturated fat,
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much of which is oleic acid, is a healthy type of fat that
has been implicated in the health of skin [6] and has
been demonstrated to reduce cardiovascular disease risk
and/or risk factors in both epidemiological and clinical
studies [1,2,7].
The development of the peanut seed has been studied

intensely to understand the physiological, biochemical,
and molecular characteristics that determine the oil qual-
ity and their beneficial nutritional contributions. How-
ever, the development of the peanut seed is a complex
process involving a cascade of biochemical changes,
which involve the transcriptional modulation of many
genes, yet little is known about these transcriptional
changes and their regulation. To date, little research in
this area has been reported. Bi [8] developed a seed
cDNA library for the peanut to analyse gene expression
levels during seed development, and 17,000 expressed
sequence tags (ESTs) were sequenced and used for
microarray analysis. Recently, the development of next-
generation high-throughput DNA sequencing technology
has provided a novel method for both mapping and
quantifying transcriptomes (RNA-seq) [9]. RNA-seq
technology has been successfully applied quite ubiqui-
tously to species such as humans, yeast, mice, grape,
Arabidopsis, rice, soybeans, sesame, and sweetpotato
[9-19]. Moreover, RNA-seq data are highly reproducible,
with few systematic discrepancies among technical repli-
cates [20]. The latest paired-end tag sequencing strategy
of RNA-seq further improves the DNA sequencing effi-
ciency and expands short-read lengths, providing a better
depiction of transcriptomes [21]. Transcriptomic infor-
mation is used in a wide range of biological studies and
provides fundamental insight into biological processes
and applications, such as the levels of gene expression
[22], the gene expression profiles during development
[13,17] or after experimental treatments [23], gene dis-
covery [24], SSR mining [10,11,25], and SNP discovery
[12,25-27]. However, transcriptomic information is lack-
ing for the peanut plant because this information is diffi-
cult to obtain and, to date, there has been little interest
in such data.
Chen [28] reported that the accumulation of seed oil in

peanuts could be divided into three stages based on phe-
notype, namely, the initial accumulation stage, the fast
accumulation stage and the steady accumulation stage. As
we are interested in identifying genes that are expressed in
the seed during the fast accumulation period, we carried
out a global analysis of the peanut transcriptome during
seed development using the Illumina RNA-seq method.
We also present an overview of the RNA-seq data for the
peanut as a potential model for future RNA-seq analyses
and to establish a biotechnological platform for peanut
research.

Methods
Sample Preparation and Sequencing
Three peanut varieties, which greatly differ in oil con-
tent but are similar in mature process, were used in this
study. Jihua 4 (JH4), a variety with a high oil content
(57%), as determined in a 2009 field experiment in
Hebei, China, was bred at the Hebei Institute of Agricul-
tural Sciences and is widely grown in Northern China.
Kaixuan01-6 (K01), a germplasm resource with a similar
oil content (52%), also determined in the above field
experiment in Hebei, was provided by the Yantai Insti-
tute of Agricultural Sciences in the Shandong Province
of China. Te21 (T21), a germplasm resource with a low
oil content (48%), as determined in China, was also
used.
For each variety, RNA was isolated from ten immature

seeds of five plants, which were harvested at 7 weeks
after flowering during the 2010 growing season from a
farm in Hebei province (Shijiazhuang, Hebei, China).
Total RNA was extracted using a previously described
method [20]. The RNA quality and quantity were deter-
mined using an Agilent 2100 Bioanalyzer (Agilent Tech-
nologies, Santa Clara, CA). Beads coated with oligo(dT)
were used to isolate poly (A) mRNA after the total RNA
was collected. Fragmentation buffer (Ambion, Austin,
TX) was added to digest the mRNA to produce short
fragments. The first strand of cDNA was synthesised
using random hexamer primers, followed by synthesis of
the second strand. The short fragments were purified
with the QIAquick PCR Purification kit (Qiagen, Valen-
cia, CA) for both end repair and the poly (A) addition
reaction. The purified DNA libraries were amplified by
PCR for 18 cycles. Finally, Solexa HiSeq™ 2000 was
employed to sequence the libraries using PCR amplifica-
tion (BGI, Shenzhen, China).

De novo Assembly and Analysis of Illumina Reads
The samples were assembled with SOAPdenovo [29]
separately. The numbers of paired-end Illumina reads of
JH4, K01, and T21 were 27,159,362, 26,938,530, and
26,142,148, respectively. The reads were first combined
to form longer fragments, i.e., contigs. The reads were
then mapped back to the contigs, and the paired-end
reads and contigs from the same transcript were
assembled to form a longer sequence, with N for
unknown sequences (i.e., scaffolds). Paired-end reads
were again used for gap filling of the scaffolds to obtain
unigenes with the least Ns that could not be extended
on either end. For future analyses, the unigenes from
the three samples were assembled again to acquire non-
redundant unigenes (All-Unigenes) that were as long as
possible. The All-Unigenes assembled from the three
samples were compared with the NCBI non-redundant
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(NR) protein database using blastx v2.2.14 [30] with an
E-value cut-off of 1e-5. Based on the results of the pro-
tein database annotation, Blast2GO [31] was employed
to obtain the functional classification of the unigenes
based on GO terms. WEGO software [32] was used to
perform the GO functional classification for all of the
unigenes and to understand the distribution of the gene
functions of this species at the macro level. The KEGG
database (V56.0, Oct. 1, 2010) [33] was used to annotate
the pathway of these unigenes.

SSR mining and primer design
We employed MIcroSAtellite (MISA) http://pgrc.ipk-gate-
rsleben.de/misa/ for microsatellite mining. In this study,
the SSRs were considered to contain motifs with two to
six nucleotides in size and a minimum of 5 contiguous
repeat units. Based on MISA results, Primer3 v2.23
(http://primer3.sourceforge.net) was used to design the
primer pairs with default setting, and the PCR product
size ranging from 100 to 280 bp. Six varieties were selected
to validated the polymorphism of 160 random SSR mar-
kers. The six varieties included three varieties (Jihua 2,
Jihua 5, and SW9721), which were all bred at the Hebei
Institute of Agricultural Sciences, and the three varieties
(JH4, K01, T21) used in this study. The SSR data on the
six varieties were obtained following the methods
described by Liang [34].

Results and Discussion
Sequencing and De novo Assembly of Solexa Short Reads
We generated 27.2, 26.9 and 26.1 million 100-bp paired-
end reads for the JH4, K01 and T21 varieties, encompass-
ing 2.44, 2.42 and 2.35 Gb of sequence data, respectively
(Table 1). The GC contents of the three varieties were
48.94%, 49.05%, and 47.94%, respectively.
Assembling these reads produced 44,028, 47,110 and

44,157 unigenes for the JH4, K01 and T21 varieties,
respectively; only unigenes greater than 200 bp in length
were further analysed. The N50 values of these three uni-
genes were 664 bp, 616 bp and 616 bp, respectively. After
the final clustering, 59,077 unigenes were obtained, with
approximately equal contribution from varieties JH4
(74.53%), K01 (79.74%), and T21 (74.74%) (The peanut
transcriptome sequences is available at National Centre
for Biotechnology Information (NCBI) Transcriptome
Shotgun Assembly (TSA) database, http://www.ncbi.nlm.
nih.gov/, accession numbers are JR540742-JR590649). The

length of the unigenes varied from 200 bp to 10654 bp,
with an average of 619 bp, and the N50 value was 823 bp.
The majority of the reads were in the range of 201-500 bp
(64.80% of the unigenes), and 46,176 unigenes (78.16% of
all of the unigenes) were shorter than 1 k. These results
should provide a sequence basis for future studies, such as
gene cloning and transgenic studies.

Characterisation of the unigenes
Among the 59,077 unigenes, the sequence directions of
42,997 of the unigenes were determined using blastx
against the NCBI non-redundant (NR), Swiss-Prot, KEGG,
and clusters of orthologous groups (COG) of protein data-
bases with an E-value cut-off of 1e-5. In addition, the pro-
tein coding regions of 39,204 unigenes were predicted.
The unigenes were compared against the NCBI NR pro-

tein database using blastx. Among the 59,077 unigenes,
40,100 (67.88%) had at least one significant match with an
E-value below 1e-5. A total of 18,977 unigenes had no sig-
nificant matches to any known protein, the result that
may be partly due to novel genes or highly divergent
genes, or these unigenes could represent untranslated
regions. For validating redundancy of the data set with
publicly available data, sequence similarity search was con-
ducted against the NCBI Unigene database ftp://ftp.ncbi.
nlm.nih.gov/repository/UniGene/Arachis_hypogea/ using
blastn with an E-value cut-off of 1e-10. The results indi-
cated that out of 59,077 unigenes, 34,815 (58.93%) showed
significant similarity to publicly unigenes database. All the
information on the redundancy of the data set with the
publicly available data were showed in the supplemental
file (Additional file 1: Table S1).
We identified novel transcribed sequences using blastn

and the NCBI mRNA database sequences for peanut
with an E-value cut-off of 1e-10. A total of 24,814
(42.00%) of the unigenes did not significantly match the
mRNA database and were, thus, considered putative
novel transcribed sequences (Figure 1). The lengths of
the novel unigenes varied from 200 bp to 6267 bp, with
an N50 value of 288 bp. Among these novel unigenes,
only 1,046 (4.2%) were longer than 1 kb. A total of
14,407 (58.1% of the novel transcribed sequences) of the
unigenes had at least one significant match against the
NCBI NR protein database. RT-PCR was carried out to
validate these expression distributions further by select-
ing 10 random novel unigenes (Figure 2). The result indi-
cated that all ten unigenes got right amplifications. The

Table 1 Summary of the short reads and the assemblies for three varieties.

Variety Total Reads Total Nucleotides (nt) GC Percentage Unigenes Contribute to All-Unigenes

JH4 27,159,362 2,444,342,580 48.94% 44,028 74.53%

K01 26,938,530 2,424,467,700 49.06% 47,110 79.74%

T21 26,142,148 2,352,793,320 47.94% 44,157 74.74%
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new information provided by this study could be useful
to further peanut research.

Functional classification of the peanut unigenes
Of the 40,100 annotated unigenes, only 8,252 of the uni-
genes could be assigned at least one GO term, indicat-
ing that the peanut plant differs from model plants on
genetic basis, and the search methodology of GO analy-
sis is not suitable for peanut. These 8,252 unigenes were
grouped into 42 GO functional categories (http://www.
geneontology.org), which are distributed under the three
main categories of Molecular Function (9,207), Biologi-
cal Process (5,660) and Cellular Components (6,739)
(Figure 3). Within the Molecular Function category,

genes encoding binding proteins (43.45%) and proteins
related to catalytic activity (39.88%) were the most
enriched. Proteins related to metabolic processes
(30.42%) and cellular processes (29.6%) were enriched in
the Biological Process category. With regard to the Cel-
lular Components category, the cell (33.02%) and cell
part (33.01%) were the most highly represented cate-
gories. A total of 146 genes were annotated with the
category of lipid biosynthetic process (GO: 0008610),
and 69 genes were classified into the fatty acid biosyn-
thetic process group (GO: 0006633) in the next level.
Further analyses of these genes should provide informa-
tion about fatty acid metabolism in peanuts.
A total of 18,028 unigenes were annotated with 125

pathways in the KEGG database (V56.0, Oct. 1, 2010);
metabolic pathways were the most enriched (3,899), fol-
lowed by plant-pathogen interaction pathways (1,290).
Some pathways, such as the fatty acid metabolism pathway
and fatty acid biosynthesis, the functions of which are
clearly linked to the changes in the seed oil that take place
during peanut ripening, would characterise in more detail
in another paper (Zhang et al., unpublished).

SSR mining from the peanut seed transcriptome
Microsatellite markers (SSR markers) are some of the
most successful molecular markers in the construction of
a peanut genetic map and in diversity analysis. In this
study, 5,883 microsatellites were detected in 4,993 uni-
genes, of which, 728 sequences contained more than 1
SSR. The microsatellites included 2,120 (36.0%) dinucleo-
tide motifs, 3,506 (59.6%) trinucleotide motifs, 166 (2.8%)
tetranucleotide motifs, 42 (0.7%) pentanucleotide motifs
and 49 (0.8%) hexanucleotide motifs (Figure 4A). The
most abundant repeat type was (AG/CT), followed by
(AAG/CTT), (ATC/ATG), (ACC/GGT), (AAC/GTT) and
(AGG/CCT), respectively. (Figure 4B). Based on the 5,883
SSRs, 3,919 primer pairs were successfully designed using
Primer3 (Additional file 2: Table S2). A total of 160 primer
pairs (Additional file 3: Table S3) were randomly selected
to validate these polymorphisms in six varieties. All 160 of
the markers yielded amplification products, and 65
(40.63%) exhibited polymorphisms among the six varieties.

Conclusion
In this study, we performed a global characterisation of the
peanut transcriptome by RNA-seq using next-generation
Illumina sequencing. We generated 26.1-27.2 million
paired-end reads, comprising 59,077 unigenes from three
different varieties of peanut with different oil contents.
These unigenes were annotated with 42 GO functional
categories and 125 pathways. A total of 5,883 microsatel-
lites were identified among the 59,077 unigenes, and 3,919
primer pairs were developed based on the sequence
library. These data will facilitate gene discovery and

Figure 1 Characterization of nonredundancy of the unigenes
set with publicly available data. mRNA means the
nonredundancy of unigenes set with NCBI peanut mRNA database;
Unigene means the nonredundancy of unigenes set with NCBI
peanut unigene database.

Figure 2 Validation of novel transcribed sequences.
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functional genomic studies in peanuts. We gained insight
into the complex transcriptome of the peanut and estab-
lished a biotechnological platform for future research.

Additional material

Additional file 1: Table S1. The information on the redundancy of the
data in this study with publicly available data.

Additional file 2: Table S2. The primer pairs were successfully designed
by Primer3 for all microsatellite.

Additional file 3: Table S3. 160 random markers were used to validate
the amplification and polymorphism.

Acknowledgements
This work was supported by the earmarked fund for China Agriculture
Research System (CARS-14), the Research Program on Quality-Improvement
and Profit- Incensement for Major Economic Crops in Hebei Province
(2011055005) and the Key Basic Research Program of Hebei Province
(10960122D).

Author details
1Institute of Food and Oil Crops, Hebei Academy of Agriculture and Forestry
Sciences/Laboratory of Crop Genetics and Breeding of Hebei Province,
Shijiazhuang 050031, China. 2National Millet Improvement Center of China,
Institute of Millet Crops, Hebei Academy of Agriculture and Forestry
Sciences, Shijiazhuang 050031, China. 3Protein Science Laboratory of the
Ministry of Education, School of Life Sciences, Tsinghua University, Beijing
100084, China. 4Key Laboratory of Crop Germplasm Resources and
Utilization, Ministry of Agriculture/The National Key Facility for Crop Gene
Resources and Genetic Improvement/Institute of Crop Science, Chinese
Academy of Agricultural Sciences, Beijing 100081, China. 5Crops Research
Institute, Guangdong Academy of Agricultural Sciences, Guangdong 510000,
China.

Authors’ contributions
JZ carried out the peanut seed RNA isolation and sequence data analyses
and drafted the manuscript. SL and JD designed the experiment and
assisted in manuscript preparation. SC, JW, ZC, QZ, XL and YL prepared the
plant materials and co-designed the experiments. All of the authors read
and approved the final manuscript.

Received: 30 November 2011 Accepted: 12 March 2012
Published: 12 March 2012

References
1. Stephens AM, Dean LL, Davis JP, Osborne JA, Sanders TH: Peanuts, Peanut

Oil, and Fat Free Peanut Flour Reduced Cardiovascular Disease Risk
Factors and the Development of Atherosclerosis in Syrian Golden
Hamsters. J Food Sci 2010, 75:H116-H122.

2. Kris-Etherton PM, Pearson TA, Wan Y, Hargrove RL, Moriarty K, Fishell V,
Etherton TD: High-monounsaturated fatty acid diets lower both plasma
cholesterol and triacylglycerol concentrations. Am J Clin Nutr 1999,
70:1009-1015.

Figure 3 Go annotation results of transcriptome.

Figure 4 Characterization of SSRs mining. (A) Distribution to
different repeat type classes; (B) Frequency of classified repeat types.

Zhang et al. BMC Genomics 2012, 13:90
http://www.biomedcentral.com/1471-2164/13/90

Page 5 of 6

http://www.biomedcentral.com/content/supplementary/1471-2164-13-90-S1.XLS
http://www.biomedcentral.com/content/supplementary/1471-2164-13-90-S2.XLS
http://www.biomedcentral.com/content/supplementary/1471-2164-13-90-S3.XLS
http://www.ncbi.nlm.nih.gov/pubmed/20546405?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20546405?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20546405?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20546405?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10584045?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10584045?dopt=Abstract


3. Kerckhoffs DA, Brouns F, Hornstra G, Mensink RP: Effects on the human
serum lipoprotein profile of beta-glucan, soy protein and isoflavones,
plant sterols and stanols, garlic and tocotrienols. J Nutr 2002,
132:2494-2505.

4. Griel AE, Eissenstat B, Juturu V, Hsieh G, Kris-Etherton PM: Improved diet
quality with peanut consumption. J Am Coll Nutr 2004, 23:660-668.

5. Ge SR, Sui QW, Yu SL: Simply analysis of the situation and
countermeasures of peanut production in China. J Peanut Sci 1993, 4:3-6.

6. Ozcan MM: Some nutritional characteristics of kernel and oil of peanut
(Arachis hypogaea L.). J Oleo Sci 2010, 59:1-5.

7. Fraser GE, Sabate J, Beeson WL, Strahan TM: A possible protective effect of
nut consumption on risk of coronary heart disease. The Adventist
Health Study. Arch Intern Med 1992, 152:1416-1424.

8. Bi YP, Liu W, Xia H, Su L, Zhao CZ, Wan SB, Wang XJ: EST sequencing and
gene expression profiling of cultivated peanut (Arachis hypogaea L.).
Genome 2010, 53:832-839.

9. Mortazavi A, Williams BA, McCue K, Schaeffer L, Wold B: Mapping and
quantifying mammalian transcriptomes by RNA-Seq. Nature Methods
2008, 5:621-628.

10. Wang Z, Fang B, Chen J, Zhang X, Luo Z, Huang L, Chen X, Li Y: De novo
assembly and characterization of root transcriptome using Illumina
paired-end sequencing and development of cSSR markers in
sweetpotato (Ipomoea batatas). BMC Genomics 2010, 11:726.

11. Wei W, Qi X, Wang L, Zhang Y, Hua W, Li D, Lv H, Zhang X:
Characterization of the sesame (Sesamum indicum L.) global
transcriptome using Illumina paired-end sequencing and development
of EST-SSR markers. BMC Genomics 2011, 12:451.

12. Lu T, Lu G, Fan D, Zhu C, Li W, Zhao Q, Feng Q, Zhao Y, Guo Y, Huang X,
et al: Function annotation of the rice transcriptome at single-nucleotide
resolution by RNA-seq. Genome Res 2010, 20:1238-1249.

13. Severin AJ, Woody JL, Bolon Y-T, Joseph B, Diers BW, Farmer AD,
Muehlbauer GJ, Nelson RT, Grant D, Specht JE, et al: RNA-Seq Atlas of
Glycine max: A guide to the soybean transcriptome. BMC Plant Biology
2010, 10:160.

14. Nagalakshmi U, Wang Z, Waern K, Shou C, Raha D, Gerstein M, Snyder M:
The transcriptional landscape of the yeast genome defined by RNA
sequencing. Science 2008, 320:1344-1349.

15. Wilhelm BT, Marguerat S, Watt S, Schubert F, Wood V, Goodhead I,
Penkett CJ, Rogers J, Bahler J: Dynamic repertoire of a eukaryotic
transcriptome surveyed at single-nucleotide resolution. Nature 2008,
453:1239-1243.

16. Cloonan N, Forrest AR, Kolle G, Gardiner BB, Faulkner GJ, Brown MK,
Taylor DF, Steptoe AL, Wani S, Bethel G, et al: Stem cell transcriptome
profiling via massive-scale mRNA sequencing. Nat Methods 2008,
5:613-619.

17. Zenoni S, Ferrarini A, Giacomelli E, Xumerle L, Fasoli M, Malerba G, Bellin D,
Pezzotti M, Delledonne M: Characterization of Transcriptional Complexity
during Berry Development in Vitis vinifera Using RNA-Seq. Plant
Physiology 2010, 152:1787-1795.

18. Sultan M, Schulz MH, Richard H, Magen A, Klingenhoff A, Scherf M,
Seifert M, Borodina T, Soldatov A, Parkhomchuk D, et al: A global view of
gene activity and alternative splicing by deep sequencing of the human
transcriptome. Science 2008, 321:956-960.

19. Filichkin SA, Priest HD, Givan SA, Shen R, Bryant DW, Fox SE, Wong WK,
Mockler TC: Genome-wide mapping of alternative splicing in Arabidopsis
thaliana. Genome Res 2010, 20:45-58.

20. Marioni JC, Mason CE, Mane SM, Stephens M, Gilad Y: RNA-seq: An
assessment of technical reproducibility and comparison with gene
expression arrays. Genome Res 2008, 18:1509-1517.

21. Fullwood MJ, Wei CL, Liu ET, Ruan Y: Next-generation DNA sequencing of
paired-end tags (PET) for transcriptome and genome analyses. Genome
Res 2009, 19:521-532.

22. Torres TT, Metta M, Ottenwalder B, Schlotterer C: Gene expression profiling
by massively parallel sequencing. Genome Res 2008, 18:172-177.

23. Hegedus Z, Zakrzewska A, Agoston VC, Ordas A, Racz P, Mink M, Spaink HP,
Meijer AH: Deep sequencing of the zebrafish transcriptome response to
mycobacterium infection. Mol Immunol 2009, 46:2918-2930.

24. Clark MS, Thorne MA, Vieira FA, Cardoso JC, Power DM, Peck LS: Insights
into shell deposition in the Antarctic bivalve Laternula elliptica: gene
discovery in the mantle transcriptome using 454 pyrosequencing. BMC
Genomics 2010, 11:362.

25. Iorizzo M, Senalik DA, Grzebelus D, Bowman M, Cavagnaro PF, Matvienko M,
Ashrafi H, Van Deynze A, Simon PW: De novo assembly and
characterization of the carrot transcriptome reveals novel genes, new
markers, and genetic diversity. BMC Genomics 2011, 12:389.

26. Graham IA, Besser K, Blumer S, Branigan CA, Czechowski T, Elias L,
Guterman I, Harvey D, Isaac PG, Khan AM, et al: The genetic map of
Artemisia annua L. identifies loci affecting yield of the antimalarial drug
artemisinin. Science 2010, 327:328-331.

27. Oliver RE, Lazo GR, Lutz JD, Rubenfield MJ, Tinker NA, Anderson JM,
Wisniewski Morehead NH, Adhikary D, Jellen EN, Maughan PJ, et al: Model
SNP development for complex genomes based on hexaploid oat using
high-throughput 454 sequencing technology. BMC Genomics 2011, 12:77.

28. Chen SL, Li YR, Xu GZ, Cheng ZS: Simulation on Oil Accumulation
Characteristics in Different High-Oil Peanut Varieties. Acta Agronomica
Sinica 2008, 34:142-149.

29. Li R, Zhu H, Ruan J, Qian W, Fang X, Shi Z, Li Y, Li S, Shan G, Kristiansen K,
et al: De novo assembly of human genomes with massively parallel
short read sequencing. Genome Res 2010, 20:265-272.

30. Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W,
Lipman DJ: Gapped BLAST and PSI-BLAST: a new generation of protein
database search programs. Nucleic Acids Res 1997, 25:3389-3402.

31. Conesa A, Gotz S, Garcia-Gomez JM, Terol J, Talon M, Robles M: Blast2GO: a
universal tool for annotation, visualization and analysis in functional
genomics research. Bioinformatics 2005, 21:3674-3676.

32. Ye J, Fang L, Zheng H, Zhang Y, Chen J, Zhang Z, Wang J, Li S, Li R,
Bolund L: WEGO: a web tool for plotting GO annotations. Nucleic Acids
Res 2006, 34:W293-W297.

33. Kanehisa M, Araki M, Goto S, Hattori M, Hirakawa M, Itoh M, Katayama T,
Kawashima S, Okuda S, Tokimatsu T, et al: KEGG for linking genomes to
life and the environment. Nucleic Acids Res 2008, 36:D480-D484.

34. Liang X, Chen X, Hong Y, Liu H, Zhou G, Li S, Guo B: Utility of EST-derived
SSR in cultivated peanut (Arachis hypogaea L.) and Arachis wild species.
BMC Plant Biology 2009, 9:35.

doi:10.1186/1471-2164-13-90
Cite this article as: Zhang et al.: De novo assembly and Characterisation
of the Transcriptome during seed development, and generation of
genic-SSR markers in Peanut (Arachis hypogaea L.). BMC Genomics 2012
13:90.

Submit your next manuscript to BioMed Central
and take full advantage of: 

• Convenient online submission

• Thorough peer review

• No space constraints or color figure charges

• Immediate publication on acceptance

• Inclusion in PubMed, CAS, Scopus and Google Scholar

• Research which is freely available for redistribution

Submit your manuscript at 
www.biomedcentral.com/submit

Zhang et al. BMC Genomics 2012, 13:90
http://www.biomedcentral.com/1471-2164/13/90

Page 6 of 6

http://www.ncbi.nlm.nih.gov/pubmed/12221200?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12221200?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12221200?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15637214?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15637214?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20032593?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20032593?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/1627021?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/1627021?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/1627021?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20962890?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20962890?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18516045?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18516045?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21182800?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21182800?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21182800?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21182800?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21929789?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21929789?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21929789?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20627892?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20627892?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20687943?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20687943?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18451266?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18451266?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18488015?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18488015?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18516046?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18516046?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20118272?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20118272?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18599741?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18599741?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18599741?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19858364?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19858364?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18550803?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18550803?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18550803?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19339662?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19339662?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18032722?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18032722?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19631987?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19631987?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20529341?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20529341?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20529341?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21810238?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21810238?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21810238?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20075252?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20075252?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20075252?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21272354?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21272354?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21272354?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20019144?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20019144?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/9254694?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/9254694?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16081474?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16081474?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16081474?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16845012?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18077471?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18077471?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19309524?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19309524?dopt=Abstract

	Abstract
	Background
	Results
	Conclusion

	Background
	Methods
	Sample Preparation and Sequencing
	De novo Assembly and Analysis of Illumina Reads
	SSR mining and primer design

	Results and Discussion
	Sequencing and De novo Assembly of Solexa Short Reads
	Characterisation of the unigenes
	Functional classification of the peanut unigenes
	SSR mining from the peanut seed transcriptome

	Conclusion
	Acknowledgements
	Author details
	Authors' contributions
	References

