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Abstract

Background: Massively parallel transcriptome sequencing (RNA-Seq) is becoming the method of choice for
studying functional effects of genetic variability and establishing causal relationships between genetic variants and
disease. However, RNA-Seq poses new technical and computational challenges compared to genome sequencing.
In particular, mapping transcriptome reads onto the genome is more challenging than mapping genomic reads
due to splicing. Furthermore, detection and genotyping of single nucleotide variants (SNVs) requires statistical
models that are robust to variability in read coverage due to unequal transcript expression levels.

Results: In this paper we present a strategy to more reliably map transcriptome reads by taking advantage of the
availability of both the genome reference sequence and transcript databases such as CCDS. We also present a
novel Bayesian model for SNV discovery and genotyping based on quality scores.

Conclusions: Experimental results on RNA-Seq data generated from blood cell tissue of three Hapmap individuals
show that our methods yield increased accuracy compared to several widely used methods. The open source code
implementing our methods, released under the GNU General Public License, is available at http://dna.engr.uconn.
edu/software/NGSTools/.

Background
Recent advances in sequencing technologies have
enabled the completion of a growing number of indivi-
dual genomes, including several cancer genomes (see [1]
for a recent review). While whole-genome sequencing
provides a near-complete catalog of variants and indivi-
dual genotypes, sequencing of mRNA transcripts (RNA-
Seq) is becoming the method of choice for studying
functional implications of genetic variability [2-8]. In
particular, RNA sequencing is an important source of
information for studying the effect of genetic variation
on transcription regulation and establishing causal

relationships between mutations and disease. For cancer
research, comparison of RNA-Seq data generated from
normal tissue and tumor samples can provide the infor-
mation needed to discover driver mutations or to find
new therapy targets [9].
Analysis of RNA-Seq data poses several challenging

computational problems [10]. First, eukaryotic mRNA
transcripts are typically the result of splicing, whereby
non-coding regions called introns are removed from the
pre-mRNA molecule. This makes the use of tools for map-
ping of DNA reads to the reference genome like Maq [11]
or Bowtie [12] not suitable for finding the genomic loca-
tion of reads spanning splicing sites. Several methods
based on spliced alignment have been proposed to identify
splicing sites and assemble full transcripts [7,13-17], how-
ever these methods incur a high computational cost and
require very high sequencing depth, typically with paired
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reads. Even when accurate read mapping is achieved, dif-
ferences in transcription levels result in unequal sequen-
cing depths of different transcripts, making it difficult to
identify variants in regions transcribed at low levels.
Although it is possible to overcome this difficulty by
sequencing both genomic DNA and mRNA and identify-
ing variants from the genomic DNA reads using standard
methods, when the interest is in expressed variants it is
significantly more cost effective to identify them directly
from mRNA reads [18].
Our main contributions are an efficient strategy for

accurate mapping of mRNA reads and a new method for
single nucleotide variant (SNV) detection and genotyp-
ing. Note that we use the term SNV instead of the better
known term SNP (Single Nucleotide Polymorphism)
because SNPs are normally defined relative to a popula-
tion and imply a minimum minor allele frequency
whereas we are interested in finding and genotyping in
an individual all sequence variants that do not match the
reference genome sequence, regardless of their frequency
in the population. To improve the success rate and accu-
racy of read mapping, we map mRNA reads against both
the reference genome and a transcript library such as the
consensus coding sequences (CCDS) database [19] and
then combine mapping results using a simple rule set.
Our method for SNV detection and genotyping is based
on computing, for each locus, conditional probabilities
for each of the ten possible genotypes given the reads,
and then choosing the genotype with highest posterior
probability using Bayes’ rule. The underlying probabilistic
model assumes independence among reads and fully
exploits the information provided by base quality scores.
Unlike other widely used Bayesian methods [11,20], we
consider all four possible alleles at each position, and do
not apply a separate test of heterozygosity.
We validated our methods on publicly available Illu-

mina RNA-Seq datasets generated from blood cell tissue
of three individuals extensively genotyped as part of the
international Hapmap project [21]. The results indicate
that the combined mapping strategy yields improved
genotype calling accuracy compared to performing gen-
ome or CCDS mapping alone and that our SNV detec-
tion and genotyping method is more sensitive than
existing methods at equal levels of specificity. We also
assess the effect on sensitivity and specificity of com-
monly used data curation strategies such as read trim-
ming, filtering of read copies to correct for variable
transcription levels and PCR artifacts, and imposing
minimum allele coverage thresholds.

Methods
Mapping strategy for mRNA reads
Mapping mRNA reads against the reference genome
using standard mapping programs such as Bowtie [12]

or Maq [11] does not require gene annotations but
leaves reads spanning exon junctions unmapped. Spliced
alignment methods such as [13] could theoretically
overcome this difficulty but in practice they are compu-
tationally intensive and not well suited for very short
reads. On the other hand, mapping against a reference
transcript library like the Consensus Coding Sequences
Database (CCDS) [19] recovers reads spanning known
splicing junctions but fails to recover reads coming from
unannotated genes.
We decided to map reads both against the reference

genome and the reference transcript library and to
implement a custom rule set for merging the two result-
ing datasets. We implemented two approaches that we
called hard merging and soft merging. For hard mer-
ging, we require unique alignments against both refer-
ences and agreement between them while in soft
merging we relaxed the uniqueness constraint by requir-
ing a unique alignment to at least one reference and
keeping that alignment. For both approaches we keep
reads that map uniquely to one reference and do not
map to the other one. Table 1 summarizes the decision
rules applied to each read by each approach, depending
on how the read mapped on each reference and on the
concordance between the two alignments. One impor-
tant issue is how to deal with reads aligned to genes
with multiple isoforms. After mapping onto the refer-
ence transcriptome, multiple alignments can be reported
for some reads not because there exist different genomic
locations where the read could come from but because
the same genomic location is shared by several different
transcripts. After mapping against the transcripts data-
base, our module transfers each alignment to absolute
genomic coordinates, splicing accordingly if the align-
ment spans multiple exons, and then checks for each
read with multiple alignments if all of them fall into the
same genomic location. If that is the case, just one
alignment is kept as unique.

Table 1 Decision table for merging of read alignments

Genome
mapping

CCDS
mapping

Agree? Hard
merge

Soft
merge

Unique Unique Yes Keep Keep

Unique Unique No Throw Throw

Unique Multiple No Throw Keep

Unique Not mapped No Keep Keep

Multiple Unique No Throw Keep

Multiple Multiple No Throw Throw

Multiple Not mapped No Throw Throw

Not mapped Unique No Keep Keep

Not mapped Multiple No Throw Throw

Not mapped Not mapped No Throw Throw
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SNV detection and genotyping
Our new Bayesian method, named SNVQ, computes for
each locus the posterior probability of each of the ten
possible genotypes given the reads. For a locus i we let Ri

denote the set of mapped reads spanning this locus. In all
Bayesian methods, the posterior probability of a genotype
is calculated from its prior and conditional probabilities
by using the Bayes rule, P(Gi |Ri) =

P(Ri|Gi)P(Gi)
P(Ri)

. The main
difference between models lies in the way conditional
probabilities are calculated [22]. Both Maq and SOAPsnp
use a different model to calculate probabilities of homo-
zygous and heterozygous genotypes. Maq uses a binomial
distribution on the alleles having the two highest counts
while SOAPsnp uses a rank test to determine heterozyg-
osity. SOAPsnp also assumes as prior information that
the homozygous reference genotype is the most likely
one and calculates conditional probabilities based on Illu-
mina specific knowledge about the reads [20]. We
decided instead to use a uniform set of assumptions for
calculating conditional probabilities of all genotypes.
Assuming independence between reads, the conditional
probability of genotype Gi can be expressed as a product
of read contributions, i.e., P(Ri |Gi) =

∏
r∈Ri

P(r |Gi). For
a mapped read r Î Ri let r(i) be the base spanning locus i
and εr(i) be the probability of error sequencing the base r
(i), which we estimated from the quality score q(i) calcu-
lated during primary analysis using the Phred formula εr
(i) = 10-q(i)/10 [23]. We discarded allele calls with quality
scores zero and one. Let Hi and H′

i be the two real alleles
at locus i, or in other words, let Gi = HiH′

i . The observed
base r(i) could be read from either Hi or H

′
i . If there is an

error in this read, we assume that the error can produce
any of the other three possible bases with the same prob-
ability. Thus, the probability of observing a base r(i)
given than the real base is different is εr(i)/3 while the
probability of observing r(i) without error is 1 - εr(i).
If Gi is a heterozygous genotype (i.e., Hi �= H′

i ) and the
observed allele r(i) is equal to Hi(H′

i) this outcome
could be due to two possible events. Either r(i) was
sampled without error from the haplotype containing
Hi (H′

i) or r(i) was sampled from the haplotype contain-
ing H′

i(H
′
i) but an error turned it to be equal to Hi

(respectively H′
i ). Assuming that both haplotypes are

sampled with equal probability, the first event happens
with probability (1 - εr(i))/2 while the second happens
with probability εr(i)/6. Using the fact that for homozy-
gous genotypes the probability of observing each possi-
ble base does not depend on the haplotype from which
the reads are sampled, we obtain the following formula
for computing the probability of observing read r for
each possible genotype:

P(r |Gi = HiH′
i) =

⎧⎪⎪⎨
⎪⎪⎩

1 − εr(i) , if Hi = H′
i = r(i)

εr(i)

3 , if Hi �= r(i)
∧ H′

i �= r(i)
1
2 − εr(i)

3 , otherwise

Note that no matter which is the genotype Gi, the
sum of the probabilities P(r|Gi) over the four possible
values of ri is equal to one. We complete the model by
setting prior probabilities based on the expected hetero-
zygosity rate h as follows (in all our experiments, we
assumed a heterozygosity rate h = 0.001):

P(Gi = HiH′
i) =

{ 1−h
4 , if Hi = H′

i
h
6 , otherwise

Finally, a variant is called if the genotype with highest
posterior probability is different than homozygous refer-
ence. In the next section we show a comparison of
results among these methods by reanalyzing a publicly
available dataset.

Software and performance issues
We implemented mapped read merging strategies and
SNVQ in Java 1.6 and we packed both programs with a
few additional utilities in a single jar file. The open
source code, released under the GNU General Public
License, is available at http://dna.engr.uconn.edu/soft-
ware/NGSTools/.
In order to enable integration with other analysis tools

we use the SAM format [24] for both the input and the
output of mapped read merging. We also sort align-
ments by chromosome and absolute position to enable
efficient processing in subsequent modules and fast
merging of results from different lanes if available. SAM
files produced by the merging module can be used
directly as input for the SAMtools package [24] to pro-
duce run statistics, pileup information, and for variants
detection. We recommend to run the merging process
lane by lane because it needs to load all unique align-
ments in memory in order to sort them at the end of
the process. We used space efficient data structures that
allow us to process more than ten million reads in a few
minutes, using up to 16 Gb of memory. The code
implementing SNVQ is able to receive as input either
alignments in SAM format or pileup information in the
format described in the SAMtools package. The pileup
format is recommended because it enables faster proces-
sing and reduces the memory requirements. Our experi-
ments indicate that SNVQ is able to process a whole
transcriptome pileup file in about 20 minutes using a
single processor and up to 4 Gb of memory.
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Results and discussion
Experimental setup
We tested the performance of the combined mapping
strategies and SNV detection methods on three publicly
available Illumina RNA-Seq datasets generated from lym-
phoblastoid cell lines derived from three individuals
extensively genotyped as part of the international Hap-
map project [21]: a female with northern and western
European ancestry (NA12878, SRA accession numbers
SRX000565 and SRX000566), a Yoruban male (NA18498,
SRA accession numbers SRX014541, SRX014601,
SRX014618, and SRX014653), and a Yoruban female
(NA18517, SRA accession numbers SRX014577,
SRX014617, SRX014645, and SRX014646). Sequencing
and read mapping statistics (using the hard merging
strategy) for the three datasets are provided in Table 2.
Genotype calling accuracy was assessed using as gold

standard Hapmap SNP genotype calls for the three indi-
viduals. To measure accuracy of genotype calling, we
defined as true positive a correctly called heterozygous
or homozygous non reference SNP and as false positive
an incorrectly called homozygous SNP. We did not con-
sider as error a heterozygous SNP called homozygous or
not called because this can be due to lack of read cover-
age for one or both alleles. We consider that one
method is more accurate than another when it is able to
detect more true positives for the same number of false
positives, or conversely if it detects the same number of
true positives with fewer false positives. When assessing
SNV detection accuracy, we define as true positive a
detected heterozygous or homozygous non reference
SNP, no matter which is the actual genotype call, and as
false positive a homozygous reference SNP marked as
having a variant. Thus, calling as heterozygous a homo-
zygous not-reference SNP is considered a true positive
for SNV detection, because the variant was detected, but
a false positive for genotype calling because an inexis-
tent reference allele is being called.

Comparison of read mapping strategies
We used Bowtie [12] to map the reads against both the
human reference genome (NCBI Build 37.1, downloaded
from the UCSC hg19 genome browser database [25])
and the CCDS transcript library [19]. Table 3 gives read
mapping statistics for the compared methods on the
NA12878 dataset.

To assess the effect of various mapping strategies on
genotyping accuracy, we ran SNVQ on datasets consist-
ing of NA12878 reads mapped uniquely onto the CCDS
transcript library and onto the reference genome,
respectively reads mapped by the hard and soft merging
strategies presented in the methods section. Since for
reads mapped on transcripts it is only possible to detect
SNVs in annotated exons included in the CCDS data-
base, we excluded from this comparison all Hapmap
SNPs located outside of annotated CCDS exons. Figure
1 shows that our merging strategies produce more accu-
rate results than just genome or transcripts mapping for
the NA12878 data. Although this comparison suggests
that genome mapping could be more sensitive than the
merging strategies for some specificity levels, we con-
firmed by repeating the comparison on the full set of
Hapmap SNPs that merging methods dominate for all
levels of specificity (data not shown). Since the perfor-
mance of the hard and soft merging strategies is very
similar, further results are presented only for the former
method.

Comparison of SNV calling and genotyping methods
We compared our SNVQ method with SOAPsnp [20]
and Maq [11], two widely used Bayesian methods imple-
mented in the SAMtools package [24]. We also experi-
mented with the SNV detection method for mRNA
reads of [26], called PMA, which is based in careful fil-
tering of aligned reads and a binomial test equivalent to
setting up a minimum coverage threshold to make a
variant call relative to the total locus coverage. The
trade-off between sensitivity and specificity of this
method is controlled by the maximum p-value required
to discard the null hypothesis of absence of a variant
allele. In terms of outcome, both SOAPsnp and Maq
have the a-priori advantage of not just pointing out the
loci with variant alleles but also inferring the most likely
genotype at each locus. The Bayesian methods also pro-
vide for each locus posterior probabilities of having an
allele different than the reference and of the genotype
itself. We ran all methods on the NA12878 reads
aligned using the hard merge method. Figure 2 shows
that all Bayesian methods have significantly better SNV
detection accuracy than PMA and SNVQ is slightly
more sensitive than SOAPsnp and Maq at different spe-
cificity levels obtained by varying the threshold on the

Table 2 Sequencing and read mapping (using hard merge) statistics for the three RNA-Seq datasets used in our
experiments

Sample Id # Lanes Raw reads Read length Initial bases Mapped read Mapped bases

NA12878 (CEU) 7 113.9M 33 bp 3.8G 34.9M 1.2G

NA18498 (YRI) 4 40M 35-46 bp 1.6G 28.2M 1.1G

NA18517 (YRI) 4 38.6M 35-46 bp 1.6G 28.1M 1.1G
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genotype probability reported by each method. Figure 3
shows that the accuracy gain of SNVQ over SOAPsnp
and Maq is more pronounced for genotyping accuracy.
We confirmed this behavior by running the Bayesian
methods on the set of reads mapped uniquely onto the
genome reference (data not shown). Our results indicate
that the binomial tests of heterozygosity employed by
Maq and SOAPsnp result in under-calling true hetero-
zygous loci. These heterozygous loci are found by
SNVQ thanks to its unified model based on computing
conditional probabilities for every possible genotype.

Comparison of strategies for data curation
In practice SNV detection is the problem of separating
allele calls that are different from the reference because
of sequencing errors from calls that are different from
the reference because they were sampled from a variant
locus. With the current sequencing error rates, if
sequencing errors were randomly distributed, it is not

difficult to show that any of the discussed methods
would have high accuracy. Unfortunately, each sequen-
cing technology has different error patterns which can
break the randomness assumption. In this section we
describe three systematic error patterns characteristic to
Illumina sequencing and assess how common ways to
solve these issues performed in our testing data.
A well-known error bias for Illumina reads (common

in fact to all second-generation sequencing technologies)
is that base calling errors tend to accumulate toward the
3’ end of the reads due to a phenomenon referred to as
de-phasing [27]. To test for this effect, we developed a
module which calculates for a set of aligned reads the
distribution of mismatches per read position from the 5’
to the 3’ end. In absence of any bias, this distribution
should be close to uniform. As shown in Figure 4, the
proportion of mismatches sharply increases towards the

Table 3 Mapping statistics for the NA12878 dataset (million reads)

Run ID Raw reads Transcripts mapping Genome mapping Hard merge Soft merge

SRR002052 12.6 2.9 4.3 4.5 4.7

SRR002054 12.9 3.9 5.7 5.9 6.2

SRR002060 25.7 4.4 6.7 7.0 7.3

SRR002055 11.4 3.7 5.5 5.6 5.9

SRR002063 23.0 3.5 5.6 5.8 6.0

SRR005091 13.9 3.3 4.9 5.0 5.2

SRR005096 14.4 0.6 1.0 1.1 1.1

Total 113.9 22.4 33.8 34.9 36.4

Figure 1 Genotype calling accuracy for reads aligned uniquely
to the reference genome, reads aligned uniquely to the CCDS
transcripts, hard merged alignments, and soft merged
alignments (NA12878 dataset using 41,961 Hapmap SNPs in
CCDS exons as gold standard and SNVQ for genotype calling).

Figure 2 Accuracy comparison for four different SNV detection
methods on the NA12878 hard merged alignments. The
tradeoff between sensitivity and specificity is controlled in the
Bayesian methods (SNVQ, SOAPsnp, and Maq) by varying the
minimum probability of having a genotype different than the
reference, while in PMA it is controlled by varying the maximum p-
value required to reject the null hypothesis of absence of variants.
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3’ end of the NA12878 reads. After observing this pat-
tern in the mismatches rate, we decided to apply a filter
on the aligned reads by disregarding the first base and
the last 10 bases of each aligned read for SNV detection.
Although this trimming strategy is equivalent to throw-
ing away one third of the aligned bases for the
NA12878 dataset, Figure 5 shows that this correction
improves the specificity of the final calls without loosing
sensitivity. Trimming aligned reads instead of raw reads
is better because the bases sampled correctly in the
trimmed region are still used to locate the correct loca-
tion where the read must be aligned.

Another common source of false positive results are
PCR amplification artifacts that produce a large number
of copies of the same read [28]. One usual way to deal
with this issue is to allow just one read to start at each
possible locus. This filter eliminates artificial high cover-
age at every locus, which can be beneficial not only for
discarding reads generated by PCR artifacts but also for
normalizing biases produced by variable transcription
levels. The main drawback of this strategy is that it can
throw away useful read data, thus affecting sensitivity.
An intermediate approach consists on allowing a small
number x of different reads per start locus as described
in [26]. Figure 5 shows that selecting just one read per
start locus is indeed too restrictive for the NA12878

Figure 3 Accuracy comparison among three different Bayesian
methods for genotyping on the NA12878 hard merged
alignments.

Figure 4 Percentage of aligned reads with a mismatch with the reference genome per read position from 5’ end to 3’ end (NA12878
hard merged alignments).

Figure 5 SNVQ genotyping accuracy for three different
filtering strategies applied to NA12878 hard merged
alignments. Results obtained without filtering are included for
comparison.
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dataset but the three reads filter of [26] did not affect
sensitivity and even improved it for stringent specificity
requirements. Although the improvement is not as con-
sistent as the one obtained by trimming aligned reads,
we consider that this filter may be generally useful for
correcting coverage biases without loosing sensitivity.
Finally, to control for the presence of correlated errors

within individual lanes, a natural approach to increase
specificity is to call a variant allele only if it seen in at
least x different lanes, where x is a user specified para-
meter. We used NA12878 dataset, consisting of reads
from seven different lanes, to assess the effect of the
detection threshold on sensitivity and specificity. Figure
6 shows that after requiring a minimum of three lanes
out of seven, the loss of sensitivity is larger than the
improvement in specificity. We compared also the sim-
ple rule of keeping variants passing the threshold of
observing at least two times the non reference allele
with the more stringent rule of observing the non refer-
ence allele in at least two different lanes. We found that
the first filter produced slightly better accuracy for this
dataset.

Effect of coverage on genotyping accuracy
RNA-Seq reads are sampled from transcripts roughly
proportionally to their relative expression levels, result-
ing in uneven coverage of different variants. To assess
the effect of this uneven coverage on genotyping accu-
racy we calculated the average coverage for every exon
in the CCDS database based on the hard merged align-
ments. Average exon coverages are proportional to the

RPKM (Reads per Kilobase per Million Reads) values
more commonly used to report expression levels for
RNA-Seq data, and indeed can be inferred from RPKM
values by taking into account exon lengths and the total
number of mapped reads. Figure 7 shows genotyping
accuracy achieved by SOAPsnp, Maq, and SNVQ on the
NA12878 and NA18517 datasets, computed for several
bins of variants grouped according to the average cover-
age of the exon to which they belong. As expected, all
methods have poor sensitivity for variants with low cov-
erage. Owing to improvements in sequencing data qual-
ity, all methods have improved genotyping accuracy on
the more recent NA18517 data compared to NA12878.
SNVQ consistently outperforms the other two methods,
with most pronounced gains at intermediate coverage
depths and on the lower quality NA12878 data.

Genotype calling from heterogeneous samples
A main motivation for this work has been identification
of expressed non-synonymous somatic mutations in can-
cer tumors, a subset of which are predicted to yield
tumor-specific epitopes with significant immunothera-
peutic potential [29]. In addition to uneven expression
levels, variant calling from cancer RNA-Seq data is
further complicated by the typically heterogeneous nat-
ure of these samples. In order to assess the effect of such
heterogeneity on genotyping accuracy in a context in
which the true genotypes are well characterized we per-
formed experiments on pooled RNA-Seq reads from the
three Hapmap individuals. As shown in Figure 8, the
relative performance of the three compared genotyping
methods on the pooled data is similar to that observed
for individual samples (compare, e.g., to Figure 3); with
SNVQ having a small advantage over SOAPsnp and
Maq. However, at a fixed specificity level, the sensitivity
achieved by all methods is significantly reduced on the
pooled sample. This is illustrated in Figure 9, where tra-
deoff accuracy curves are plotted for SNVQ calls made
from individual RNA-Seq datasets as well as RNA-Seq
reads pooled from the two Yorubans, and all three Hap-
map individuals, respectively. While the accuracy drops
with increased heterogeneity, SNVQ retains the ability to
call a significant fraction of variants with high specificity.

Conclusions
Second generation sequencing of mRNA is becoming
the method of choice to investigate the behavior of
human cells and to reveal the functional effects of varia-
tion. In this paper we introduced a mapping strategy for
mRNA reads which fully utilizes the information con-
tained in both the reference genome sequence and refer-
ence databases of known transcripts such as CCDS. We
also presented a Bayesian model for SNV detection and
genotyping called SNVQ that seeks to improve genotype

Figure 6 SNVQ genotyping accuracy on NA12878 hard merged
alignments for varying number of lanes where each alternative
allele must be seen. Results without filtering and with a threshold
of at least two reads (regardless of their lanes of origin) are also
included for comparison.
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calls by fully exploiting the information contained in
base quality scores. Finally, we performed a comparison
among commonly used mapping, SNV detection and
genotyping methods, and data curation strategies with
the aim to select the most effective methods to identify
expressed single nucleotide variants from RNA-Seq data,
taking advantage of the availability of RNA-Seq data for
Hapmap individuals with well characterized genotypes.

Our experiments indicate that the double reference
mapping and merging strategy yields improved SNV
calling and genotyping accuracy compared with methods
based on mapping to a single reference. The experi-
ments further suggest that SNVQ achieves improved
accuracy over existing methods, and retains its power to
detect variants with a high specificity even from hetero-
geneous RNA-Seq samples.

Figure 7 Percentage of SNVQ true positive, false positive, and false negative alleles as a function of average exon coverage for
NA12878 (a) and NA18517 (b) datasets.
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In future work we seek to integrate our tools with
methods for estimating isoform expression levels [30]
and to extend our model by incorporating allele specific
expression of isoforms [8]. We also plan to integrate
additional transcript annotation sources such as dbEST
and UCSC, and to integrate our methods in a bioinfor-
matics pipeline enabling personalized cancer immu-
notherapy based on tumor transcriptome sequencing.
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