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Abstract

at http//www4a.biotec.or.th/Gl/tools/iloci.

Background: Genome-wide association studies (GWAS) do not provide a full account of the heritability of genetic
diseases since gene-gene interactions, also known as epistasis are not considered in single locus GWAS. To address
this problem, a considerable number of methods have been developed for identifying disease-associated gene-
gene interactions. However, these methods typically fail to identify interacting markers explaining more of the
disease heritability over single locus GWAS, since many of the interactions significant for disease are obscured by
uninformative marker interactions e.g., linkage disequilibrium (LD).

Results: In this study, we present a novel SNP interaction prioritization algorithm, named iLOCi (Interacting Loci).
This algorithm accounts for marker dependencies separately in case and control groups. Disease-associated
interactions are then prioritized according to a novel ranking score calculated from the difference in marker
dependencies for every possible pair between case and control groups. The analysis of a typical GWAS dataset can
be completed in less than a day on a standard workstation with parallel processing capability. The proposed
framework was validated using simulated data and applied to real GWAS datasets using the Wellcome Trust Case
Control Consortium (WTCCC) data. The results from simulated data showed the ability of iLOCi to identify various
types of gene-gene interactions, especially for high-order interaction. From the WTCCC data, we found that among
the top ranked interacting SNP pairs, several mapped to genes previously known to be associated with disease,
and interestingly, other previously unreported genes with biologically related roles.

Conclusion: iLOCi is a powerful tool for uncovering true disease interacting markers and thus can provide a more
complete understanding of the genetic basis underlying complex disease. The program is available for download

Background

A major challenge for human genetics is identifying sus-
ceptibility genes for complex heritable diseases.
Advanced single nucleotide polymorphism (SNP) geno-
typing technology and genome-wide association study
(GWAS) are at the forefront of research in this area. In
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conventional single locus analysis, each variant is tested
individually for disease association. Systematic analysis of
GWAS data in this manner can typically uncover multi-
ple SNPs associated with complex diseases [1-3]. These
analyses have provided valuable insights into the genetics
of complex diseases; however, they typically detect only
common, low-risk variants each with small effect and
explain only a tiny proportion of disease heritability [4].
The existence of interactions among genes (epistasis)
has been proposed to constitute a major proportion of
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disease heritability, which is not captured by single-locus
GWAS [5]. The genetical nature of epistasis can be
described by several different models as shown in a variety
of interaction schema discussed in [6]. Note that genetic
factors primarily function through a complex mechanism;
thus, epistatic interactions are not limited to independent
gene pairs. Multiple genes interacting through a biological
network (i.e. indirect interactions) exist which can modify
disease penetrance and expressivity.

A number of methods for detecting epistatic interactions
among genotypic data have been proposed. Most methods
employ a statistical approach to identify interacting mar-
ker pairs based on deviation from a null distribution and
estimation of type I error. These statistical approaches
have been shown to work well in theory, e.g., regression
methods [7,8], partitioning chi-square [9], Focused Inter-
action Testing Framework (FITF) [10], Bayesian model
selection [11], and other recent approaches [12,13]. How-
ever, the need for control of type I error reduces power to
detect interactions in real data, which is exacerbated by
the huge number of statistical tests performed in this
analysis [14].

Given the challenges for statistical approaches, non-sta-
tistical methods such as machine-learning and data-
mining methods have been proposed for the study of
genetic interactions [15,16]. Instead of model fitting, these
methods attempt to explain all of the heritability in terms
of marker interactions. Multifactor dimensionality reduc-
tion (MDR) is an brute-force method for identifying the
most plausible interactions which fit the data [17]. How-
ever, MDR and other recently published exhaustive non-
parametric approaches [18] are computationally complex
and thus impractical for analysis of GWAS data. To over-
come the computational burden of non-parametric analy-
sis, several techniques have been developed that employ
statistics to assist the non-parametric search for epistasis,
including SNPHarvester [19], SNPRuler [20], and BOOST
[21]. In these methods, the search space is reduced by a
filtering step, usually employing a statistical threshold. The
filtered dataset is then used for non-parametric search for
epistasis. Although these methods can be applied for ana-
lysis of GWAS data, the interactions found rarely offer any
new insights since the majority of interacting markers
map to the same genomic regions. For example, the analy-
sis of WTCCC (Wellcome Trust Case Control Consor-
tium) data by BOOST revealed that after removal of
linked pairs, no interactions were found for five of the
seven diseases. Using another approach for exhaustive
search of interactions, the most recent paper by Ueki and
Tamiya [22] also reported very few interactions in the
WTCCC data.

The possible reason for the disappointingly modest
improvement of the current hybrid approaches is that
they do not adequately account for marker dependencies
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not related to disease. A well known marker dependency
which can confound the identification of genomic regions
associated with disease is linkage disequilibrium (LD). LD
is non-random association of genotypes at two or more
loci that can be on the same or different chromosomes.
LD is caused by a number of factors, including genetic
linkage and the rate of recombination [23]. Earlier
reports [24,25] showed that LD contrast, i.e., differences
in LD patterns between case and control groups can
reveal the disease signal above the noise of background
LD in candidate disease regions. However, to our knowl-
edge, LD contrast has not been employed for compre-
hensive genetic epistasis study, owing to the high
computational complexity.

Clearly, a computationally efficient and comprehensive
prioritization technique is required which accounts for
marker dependencies unrelated to disease. Moreover,
instead of trying to control type I error, a prioritization
procedure may be more effective in revealing more of the
true disease markers which may have modest individual
effects and interact in complex higher-order networks.

In this paper, we propose a novel tool for prioritizing
gene-gene interactions called iLOCi (interacting Loci).
The iLOCi algorithm ranks all SNP pair combinations
according to a novel heuristic that we call p 4. The iLOCi
program is specifically designed to handle large-scale
GWAS data partly through the application of data paralle-
lization. The tests with WTCCC datasets show that the
top ranked pairs by our algorithm reveal novel disease
genes, several of which are consistent with biological net-
works underpining disease etiology.

Methods

iLOCi algorithm

The proposed iLOCi algorithm performs genome-wide
analysis for identifying SNP pairs that are plausibly asso-
ciated with a disease. No prior genetical assumptions are
employed in the algorithm, which allows the exploration
of different dimensions of the association results. The
framework can be characterized into two main modules:
1) calculating SNP pair dependencies separately in case
and control groups and 2) disease SNP pair prioritiza-
tion as shown in Figure 1.

Calculation of SNP pair dependencies

iLOCi explores all possible combinations of SNP pairs.
Given N SNPs from a SNP array with the SNP index
starting from 1 to N, there are a total of

2 2
assigned a unique index (i), where izj.

From the large number of SNP pairs, it is necessary to
identify the dependency unrelated to disease. This
dependency includes linkage disequilibrium (LD),

<N> = N(N=1) possible pairs. Each SNP pair is
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Figure 1 The workflow of the iLOCi algorithm.

population structure, genotype calling artifacts, etc. and
is performed separately between the case and control
groups. This step of the algorithm is called dependence
test. Therefore, for each indexed SNP pair, the algorithm
calculates two scores, Peuse and Peousrorr The calculated p
values using genotypic information were proven to be
concordant with LD values (see Additional file 1). LD
values are calculated using allelic deviation from the
Hardy-Weinberg Equilibrium (HWE) model, which
assumes that, without the introduction of specific dis-
turbing factors, the frequencies of alleles and genotypes
in a population remain constant from one generation to
the next. However, it should be noted that the only
information captured by p values is the correlation
between markers, which is needed for identifying inter-
actions. For LD calculation, the haplotypic phase is also
considered, which is computationally very demanding
for datasets of this size.

To compute marker p values, each SNP locus is con-
sidered as a discrete random variable and the numeric
values of -1, 0 and 1 are assigned to homozygous wild
(w), heterozygous (4), and homozygous variant (v) types
respectively. This encoding ensures zero-means, which
obviates a normalization step. Let x and y be two dis-
crete random variables of SNPx and SNPy, respectively.

Let P, represents a genotypic joint probability mass
function, whose entries are the probability of genotype
combinations from both SNPs. Hence, there are nine
possible genotypic combinations that are represented by
the following matrix:

Pyw Puyn Py
Puyy=| P P Ph
Py Pw Py

For example, P, is a probability that (x,y) are both
homozygous wild type. Each of these probabilities can be
calculated by dividing the number of the joint genotypic
outcomes with the total number of individuals for either
case (N¢ase) or control (Neonerol) groups. For example,

ctrl
ctrl ctrl (x=w,y=w)
P = p(x=w,y=w) - N N . The dependence test must
Ctr

be performed for all possible SNP pairs. The correlation
value Peontror for each SNP pair is calculated as:

CEA - ’ .y PEt ; . potr . Y ¥
[0y P + 2 ynPER + 5y PR + (e PR + 5uda PR+ 2P} + (2P + 2P+ 2,

Note that P, pet P;S,L, and P;Si are the estimated

probability of SNPx wild type, SNPx variant type, SNPy
wild type and SNPy variant type respectively.
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By the same reasoning, p..s. is calculated as:

case _ case __ case case
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Disease SNP pair prioritization

The next step is to identify whether the same SNP pair
(x,y) from case and control groups have contrasting pat-
terns of p values. A difference test is performed by dif-
ferentiating the p values between the case and control
groups using a simple subtraction operation, namely
Padiff= |pcontrol'pcase | .

To select the highly associated SNP pairs, all SNP
pairs are ranked according to the pgir values. The rank-
ing of top SNP pairs was chosen, rather than a P-value
cutoff in order to avoid too many false positive pairs
due to the heavy-tailed distribution phenomenon, where
the Gaussian distribution decreases faster than the dis-
tribution of disease associated SNP pairs [26].

Parallel computing algorithm implemented in iLOCi

The iLOCi algorithm is designed for genome-scale analysis
which requires the computation of a huge number of SNP
interaction pairs, e.g.~1.25x10"" pairs for a 500,000 SNP
dataset. Data parallelization is applied to accelerate this
computationally intensive and time-consuming process.
The SNP interaction matrix is divided into submatrices of
100,000 or fewer SNPs each. Each SNP interaction subma-
trix is computed in parallel using a MacPro workstation
with 2x2.4 GHz quad-core Intel Xeon processors with
8GB RAM. With this configuration, the complete
WTCCC dataset can be analyzed in 19 hours. Details for
implemention of the code and data parallelization are
available upon request.

Testing iLOCi algorithm performance using simulated
data

The performance of iLOCi for detecting disease-associated
gene interactions was evaluated and compared with FastE-
pistasis [27]. The evaluation was made using simulated
datasets, which were generated using the GenomeSIM pro-
gram [28]. The algorithm performance was determined for
detection of four different epistatic interaction scenarios:

1) Single pair interaction without marginal effects:
Eighteen epistatic models in [29] with heritability (h?)
of 0.2, 0.3, and 0.4 were used for performance com-
parison (see Additional file 2: Table S1). These herit-
ability levels were chosen to represent those typically
found in common complex diseases. The minor allele
frequency (MAF), which is the frequency of the less
common allele, was assigned to be two levels, 0.2 and
0.4. In total, there are six model groups comprising
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three models with the same heritability and MAF for
each group. 100 independent datasets containing
1600 samples (800 cases and 800 controls) with 100
SNPs were generated for each model group.

2) Single pair interaction with marginal effects: Six
epistatic models in [30] with MAF of 0.5 were tested
(see Additional file 2: Table S2). 100 independent
datasets containing 800 samples (400 cases and 400
controls) and 100 independent datasets containing
1600 samples (800 cases and 800 controls) with 100
SNPs each were generated for each model group.

3) Multiple independent interacting pairs without mar-
ginal effects: Eight models of multiple interactions
described in supplementary material of [19] were
tested. Each of these models were generated from five
epistatic models described in [29]. Each model used
the same heritability and MAF. 100 independent data-
sets containing 1600 samples (800 cases and 800 con-
trols) and 100 SNPs were generated for each model
group.

4) Higher-order interactions: Data were simulated for
the eight interaction network models based on pair-
wise interaction described in [31] for three-, four-, and
five-loci interating networks (see Additional file 2:
Table S3). 100 independent datasets containing 800
samples (400 cases and 400 controls) were generated.
The number of SNPs varies from model to model.

The algorithm performance was demonstrated by the
percentage of accuracy, which is determined by the pro-
portion of 100 independent datasets in which the algo-
rithm correctly identified the interacting SNP pairs. For
situations 1 and 2, the identification of disease SNP pair is
defined as correct if the disease SNP pair is the top ranked
pair with the highest p g score (for iLOCi) or the lowest
P-value (for FastEpistasis). For multiple independent inter-
acting pairs (case 3), the identification is taken as correct
when all five disease SNPs fall in the top five ranked pairs
with highest p g score (for iLOCi) or lowest P-value (for
FastEpistasis). The prediction of higher-order interactions
is defined as correct when all disease SNPs are found
within all top ranked pairs. The top ranked pairs are
defined as all consecutive pairs comprising at least one dis-
ease SNP in each pair.

Testing algorithm performance using the WTCCC dataset

In addition to the simulated data, our algorithm was
applied to the real genotypic data of WTCCC (Wellcome
Trust Case Control Consortium) [3]. This dataset
encompasses ~500,000 SNP genotypic data of ~17,000
British samples which are divided into 3000 shared con-
trol samples and ~2000 case samples for each of seven
complex diseases: bipolar disorder (BD), coronary artery
disease (CAD), Crohn’s disease (CD), hypertension (HT),
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Figure 2 The performance comparison between iLOCi (I) and FastEpistasis (F) on epistatic models without marginal effects. The
algorithm performance is shown as the percentage of accuracy, which is the number of simulated datasets (out of 100) in which the correct
SNP pair is identified. The accuracy was tested for two different MAF (0.2, 0.4) and three different levels of heritability (A) 04, (B) 0.3, and (C) 0.2.
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Figure 3 The performance comparison between iLOCi and FastEpistasis on epistatic models with marginal effects. The percentage of
accuracy is shown for two different sample sizes (800 and 1600) for six different pairwise interaction models (A-F).
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Figure 4 The Receiver Operating Characteristic (ROC) curves for simulation datasets of hybrid models. The ROC curves are displayed for
five independent interacting SNP pairs.The MAF and heritability parameters were varied (A) h?=0.1, MAF = 0.2, (B) h’=02, MAF = 0.2, (C) h’=03,
MAF = 0.2, (D) h’=04, MAF = 0.2, (F) h’=0.2, MAF = 04, (F) h’=0.1, MAF = 04. The pggvalues are shown that give the maximum true positive
rate with the lowest false positive rate (red dots).
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rheumatoid arthritis (RA), typel (T1D) and type2 (T2D)
diabetes.

For these real datasets, data cleaning was required
prior to the analysis. We considered only SNPs and
individuals passing WTCCC data quality control [3].
We further filtered the SNP set using MAF>0.05 leaving
355,882 SNPs (complete set) for all diseases. We also
generated a SNP marker gene-only subset of 176,148
present in genes (defined as within 10Kb flanking an
annotated gene model reported in RefSeq version 36.3).

First, pqigr values for the seven WTCCC diseases were
calculated for all possible (=63x10° for complete and
~15x10° for the gene-only subset) pairs. Next, the
empirical p g distributions for each disease were graphed
using kernel density plot. For the gene-only SNP subset
analysis, the top ranked 1000 SNP pairs were chosen for
functional analysis to uncover biological significance.
From these pairs, a list of genes was extracted based
upon RefSeq (version 36.3) physical locations of SNPs in
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the genome. To understand the biological significance of
the novel genes reported by our algorithm, we also used
the candidate gene prioritization feature of ToppGene
[32] using the cutoff of P-value = 0.01 with Bonferroni
correction. The training sets for the ToppGene candidate
gene prioritization were the lists of all genes reported in
the HuGE Navigator database [33] for the seven diseases.
The test sets for the ToppGene analysis were the lists of
novel (not reported in HuGE Navigator database) genes
represented among the top ranked 1000 SNP pairs
obtained from iLOCi.

Results

iLOCi algorithm validation

We used simulated datasets to validate the iLOCi algo-
rithm for identifying various disease-associated epistatic
interactions. We chose FastEpistasis for performance
comparison with iLOCi due to the fact that the data
were simulated according to an interaction model;
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Figure 5 The performance comparisons between iLOCi and FastEpistasis on high-order interaction models. The percentage of accuracy
is shown for different models (Ep1, Ep3, Ep5, Ep6, Het1, Het3, S1, S3) of high-order interactions among (A) three-loci, (B) four-loci, and (C) five-
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hence this tool would be most suitable for testing.
Moreover, the theoretical basis for FastEpistasis is
widely accepted for genome-wide analysis.

The first result testing for a single interacting pair
demonstrated that the top ranked iLOCi pair was the dis-
ease interacting pair in 18 different inheritance models
without the presence of marginal effects. Overall, its per-
formance was approximately the same as FastEpistasis
for most of the model groups and slightly better in some
cases (h?=0.2, MAF = 0.4; h?=0.3, MAF = 0.4) as shown
in Figure 2. For epistatic interactions with marginal
effects, iLOCi outperformed FastEpistasis in most mod-
els, except in model 2 for which both methods failed to
detect the interacting disease marker pair (Figure 3).
Furthermore, we want to demonstrate the specificity
as well as sensitivity of iLOCi for detecting multiple
interacting disease marker pairs as would be present in a
real dataset. Therefore, the receiver operating character-
istics (ROC) were plotted for different thresholds of
ranked marker pairs, and for different models of
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heritability and MAF (Figure 4). Generally, iLOCi has
high sensitivity and specificity, although the performance
tends to be worse with lower degrees of heritability.
Moreover, it should be noted that the minimum p g
scores that give 100% sensitivity vary greatly from
0.00511 to 0.41663.

In addition to independent interacting pairs, we exam-
ined the ability of iLOCi and FastEpistasis to detect
higher-order interactions of 3, 4, and 5 loci disease inter-
action networks for eight models at each level (Figure 5).
iLOCi can detect all eight models for all levels of interac-
tions; however, FastEpistasis failed to identify all S3
model interactions. Furthermore, FastEpistasis could
detect, with higher than 50% accuracy, in fewer than 50%
of the 4-loci network models and only Ep1, Ep3 and Ep5
of the 5-loci network models.

In conclusion, these experiments with simulated data
validated the iLOCi algorithm for identifying all four
types of higher-order gene interaction. iLOCi perfor-
mance was comparable to FastEpistasis for a variety of
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W
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Figure 6 The frequency distribution of pgi values from WTCCC datasets. The plot shows the empirical probabilty density function (pdf)
generated from combined pggvalues from all seven diseases of WTCCC datasets.The pdf plots generated from each disease are indistinguishable
from combined pdf. The plots for Weibull distribution (k = 1, A=0.018) and Chi-square distribution (degree of freedom = 1) are shown in the
same axes.
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Table 1 The lookup table of P-values for the associated
Pdiff scores

paisfscore P-value
0.05 6.2177e-2
0.10 3.865%-3
0.15 24037e-4
0.20 1.4945e-5
0.25 9.2925e-7
030 5.7777e-8
0.35 3.5924e-9
040 2.2336e-10
045 1.3888e-11
0.50 8.6353e-13
0.55 5.3735e-14
0.60 3.3307e-15
0.65 2.2204e-16
0.70 <2.2204e-16
0.75 <2.2204e-16
0.80 <2.2204e-16
0.85 <2.2204e-16
0.90 <2.2204e-16
0.95 <2.2204e-16
1.00 <2.2204e-16

The P-values were calculated based on the fitted Weibull distribution with k =
1 and 1=0.018.

two-locus interaction models; however, iLOCi was mark-
edly superior for detecting high-order interactions. This
would be a major advantage of iLOCi for analysis of real
data since high-order interaction is the type of
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interaction likely to be found in real data of complex dis-
eases and may account for current missing heritability.

iLOCi analyses of WTCCC data

The iLOCi algorithm was tested against real data
obtained from WTCCC. The distribution of p g values
follows a Weibull distribution pattern for all seven
diseases (Figure 6). From the Weibull distribution with
k = 1 and 1=0.018, we calculated P-values for pgj¢r
scores ranging from 0.05 to 1.0 (see Table 1). For the
seven diseases, we selected the top 1000 pairs for which
the calculated minimum P-values vary from <2.22e-16
to 1.14e-7 in complete SNP set analysis, and from
<2.22e-16 to 4.72e-5 in gene-only SNP analysis (see
Table 2).

From iLOCi analysis using the complete SNP marker
set, it was found that the great majority of the SNPs
have not been previously reported to be associated with
the diseases [3]. Furthermore, the majority of these
SNPs also do not map to annotated genes. The list of
top 1000 SNP pairs is available in Additional File 3. For
each disease, iLOCi identified ‘hub’ SNPs, i.e. SNPs that
pair with many other SNPs, e.g., rs1553460 pairs with
1000 other SNPs in BD (Table 3).

Owing to the fact that the majority of interacting SNPs
do not map to annotated genes, we re-analyzed the data
using the gene-only SNP subset. ‘Hub’ SNPs were also
observed at the gene level (Table 3). From this analysis,
it was noted that the top ranked 1000 SNP pairs of all
seven diseases map to 321 disease-gene associations that
have been annotated on the HuGE Navigator database

Table 2 The pyiss scores of the 1t and 1000*" ranked SNP pairs and their associated P-values

Complete set of SNPs (355882 SNPs)

Disease 1" Paiss 1P-value 1000™p it 1000™P-value Avg. pgigx SD
BD 0.2878 1.1410e-7 0.2680 3.4206e-7 0.2718£0.0035
CAD 09317 <2.2204e-16 09132 <2.2204e-16 0.9171£0.0031
D 0.3085 3.6109e-8 0.2849 1.3351e-7 0.2887£0.0034
HT 0.2834 14510e-7 0.2626 4.6022e-7 0.2667£0.0037
RA 0.9042 <2.2204e-16 0.8866 <2.2204e-16 0.8903+0.0031
TD 1.0731 <2.2204e-16 0.9996 <2.2204e-16 1.0040£0.0056
12D 03338 8.8226e-9 02159 6.1867e-6 0.2198+0.0052
Gene-only SNPs (176148 SNPs)

Disease 1% paite 1*P-value 1000 i 1000*"P-value Avg. pgirx SD
BD 0.2447 1.2445e-6 02224 4.2957e-6 0.2259+0.0032
CAD 0.9294 <2.2204e-16 09102 <2.2204e-16 0.9143£0.0035
D 0.2653 3.9790e-7 0.2248 3.7769e-6 0.2280£0.0033
HT 0.1793 4.7229e-5 0.1561 1.7142e-4 0.1605+0.0043
RA 0.9040 <2.2204e-16 0.8832 <2.2204e-16 0.8875+0.0036
TD 1.0731 <2.2204e-16 0.9957 <2.2204e-16 1.0007£0.0061
12D 03338 8.8226e-9 02127 7.3731e-6 0.2168+0.0052

The highest and the lowest p g scores including their associated P-values are displayed with the average scores of top 1000 SNP pairs from the analyses of

WTCCC.
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Table 3 The hub SNPs/genes identified in the top-ranked 1000 SNP pairs
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Hub SNPs from analyses of complete SNP set

Disease Hub SNPs (Genomic position) # Interacting SNPs
BD rs1553460 (Chr4:17804959) 1000
CAD 153785579 (Chr17:62472963) 1000
[@b) rs1553460 (Chr4:17804959) 978
154471699 (Chr16:30227808) 22
HT rs10843660 (Chr12:30259724) 999
RA 153785579 (Chr17:62472963) 1000
T1D rs9273363 (Chr6:32734250) 1000
12D 157077039 (Chr10:114779067) 833
1510787472 (Chr10:114771287) 54
rs11196208 (Chr10:114801306) 39
rs11196205 (Chr10:114797037) 30
rs10885409 (Chr10:114798062) 22
154074720 (Chr10:114738487) 17

Hub genes from gene-only SNP analyses

Disease Hub genes # Interacting genes
BD CENPN: centromere protein N 653
CAD CACNGT: calcium channel, voltage-dependent, gamma subunit 1 709
cD ATGI6L1: ATG16 autophagy related 16-like 1 (S. cerevisiae)*** 256
IL23R: interleukin 23 receptor *** 20
HT tcag’.23: similar to ribosomal protein L18; 60S ribosomal protein L18 170
BCATI: branched chain aminotransferase 1, cytosolic *** 57
SAMDA4A: sterile alpha motif domain containing 4A * 27
GABT: GRB2-associated binding protein 1 * 25
RHOJ: ras homolog gene family, member J 20
LYPD5: LY6/PLAUR domain containing 5 * 12
RA CACNGT: calcium channel, voltage-dependent, gamma subunit 1 676
T1D HLA-DQB1: major histocompatibility complex, class Il, DQ beta 1** 686
T2D TCF712: transcription factor 7-like 2 (T-cell specific, HMG-box)*** 481

* Genes associated with disease SNPs that were previously reported in WTCCC original paper

** Genes previously reported to be disease-associated in HUGE Navigator database

*** Genes previously reported to be disease-associated in both WTCCC paper and HUGE Navigator database

Table 4 The disease association of iLOCi selected genes from gene-only SNP analyses

Disease # iLOCi genes in top 1000 SNP pairs Reported in WTCCC Reported in HUGE Navigator database
single SNP analyses
# Analyzed genes # iLOCi genes # Analyzed genes # iLOCi genes
(# SNPs) (# SNPs)

BD 654 42 (1757) 8 665 (16598) 52

CAD 710 29 (2097) 3 735 (11564) 37

cD 279 54 (1651) 4 531 (7181) 10

HT 595 32 (3164) 19 1240 (22004) 64

RA 677 34 (822) 4 503 (5902) 19

D 687 39 (1153) 5 512 (6924) 29

T2D 486 29 (1289) 5 2456 (41244) 110

The table displays the number of previously reported disease-associated genes which were found in all analyzed genes and in the set of genes involved in top
1000 interaction pairs. The reported disease genes are shown for both the genes associated with disease SNPs from WTCCC paper [3] and the ones reported in
HuGE Navigator database [33].
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(see Table 4, Additional File 4). On the other hand, the
majority of the disease interacting genes among these
pairs reported by iLOCi are novel. Moreover, most of
these genes were not reported in the original WTCCC
study (Table 4). To evaluate the biological significance
of the novel genes among these pairs, the ToppGene
candidate gene prioritization tool was employed. The
full results are shown in Additional Files 3 and 4.
Among the novel genes identified by iLOCI, it was
observed that some well known disease pathways from
KEGG [34] contain several of these genes (see Additional
File 5). For instance, the ‘neuroactive ligand-receptor inter-
action’ pathway in BD contains 4 novel genes in addition
to 11 previously reported genes (Figure 7). Other promi-
nent disease pathways include ‘cytokine-cytokine receptor
interaction’ for CAD (Figure 8) and ‘type I diabetes melli-
tus’ for T1D (Figure 9).
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Discussion

In this study, we have developed a new pairwise SNP-
interaction prioritization algorithm for GWAS. We
hypothesized that by first accounting for pairwise mar-
ker dependencies among case and control groups, it
would be possible to observe true disease interactions
above the noise of dependent markers unrelated to dis-
ease, as was proposed in earlier studies of LD contrast
(see Background).

In GWAS data, it is well known that LD generates
strong pairwise dependency signals that are used to
identify disease associated SNPs by imputation. How-
ever, this type of signal predominates pairwise markers
in analysis of gene interactions. For example, in the
approach used by Wan et al. [21], the majority of the
interactions identified for all seven WTCCC datasets
can be attributed to LD effect, i.e., the interacting
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Figure 7 The iLOCi detected genes from BD and their maps in ‘neuroactive ligand-receptor interaction’ pathway. The KEGG pathway
diagram [34] shows the mapping of BD-associated genes identified among 1000 top ranked iLOCi pairs in ‘neuroactive ligand-receptor
interaction” KEGG pathway. The gene families containing the genes previously reported in HUGE Navigator database and the novel disease genes
are highlighted in the red boxes and the blue boxes, respectively, with their associated gene names.
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Figure 8 The iLOCi detected genes from CAD and their maps in ‘cytokine-cytokine receptor interaction’ pathway. The KEGG pathway
diagram [34] shows the mapping of CAD-associated genes identified among 1000 top ranked iLOCi pairs in ‘cytokine-cytokine receptor
interaction’ pathway. The gene families containing the genes previously reported in the HUGE Navigator database and novel disease genes are
highlighted in the red boxes and the blue boxes, respectively, with their associated gene names.

SNPs are within 1Mb of each other in the same geno-
mic region. To validate our approach correcting for
pairwise dependencies unrelated to disease SNP inter-
actions, extensive tests were performed on simulated
data. For a simple model with only one interacting
pair, the top ranked iLOCi pair is correctly identified
as the disease marker pair. When testing for multiple
interacting pairs, iLOCi has high accuracy under the
conditions of high heritability and informativeness, i.e.,
low MAF. On the other hand, low heritability and/or
informativeness leads to type I error as observed by
ROC plot. In general, the pg scores reflect the degree
of heritability and informativeness. Hence, it is not
possible to use a single pgir cutoff for identifying dis-
ease interactions in the real case when the heritability
and informativeness are unknown.

From analyses of real GWAS data, it was found that the
paigr distributions for all seven diseases could be repre-
sented by a single kernel density function with Weibull
distribution. However, the range of pq;¢ values varies
among the diseases and follow the known heritability pat-
tern, i.e., HT has the lowest heritability and lowest top

paigr score, while T1D has the highest heritability and
highest top p 4 score (Table 2). Although it is possible to
calculate P-values of the interacting pairs and use them
as cutoffs for prioritization, we consider the use of P-
value cutoffs inappropriate. For example, a P-value of le-
5 (corresponding to pgie values of approximately 0.2 or
greater) would give approximately 16 million significant
pairs for T1D and 200,000 pairs for HT. The same phe-
nomenon of unacceptable type I error was found by
others when using FastEpistasis for analysis of real data-
sets. It is debatable whether Bonferroni correction is
valid since the tests are not independent, as shown by the
heavy-tailed distributions of pq¢ . Current methods for
correction of type I error by false discovery rate are also
likely to be impractical because of the requirement for
permutation testing.

Instead of using P-value significance thresholds, we
used the top ranked 1000 SNP pairs for prioritization,
which account for a very small portion (<0.0001%) of all
possible pairs. Rather than attempting to identify all
gene interactions, which practically can not be found
[35], we limit the prioritization to the top ranked pairs
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that are most likely to contain the genetic interactions
which are informative of the disease etiology, i.e., disease
pathways. From the full SNP set analysis, several hub
SNPs were identified for each disease which interact
with many other SNPs. For some diseases such as T1D,
these hub SNPs map to well-known disease associated
genes. However, hub SNPs for BD, HT, and CD do not
map to genes. These hub SNPs may mediate interac-
tions at an unknown gene regulatory level, e.g. as non-
coding RNAs, miRNAs or cis-regulatory elements. Since
our knowledge of gene regulation is far from complete
[36], we repeated the iLOCi analysis on the gene-only

SNPs subset. By restricting the analysis to SNP pairs in
genes only, the ToppGene systems approach for gene
prioritization was appropriate, as used by others for
GWAS data [37-39].

Gene-based prioritization of the interacting SNP pairs
revealed significant representation of previously
described disease associated genes. Therefore, we are
confident that the novel genes found among the priori-
tized SNP pairs are novel disease-associated genes. For
each disease, hub genes were found which pair with
many other genes. Some of these disease hub genes are
known and have been replicated as disease genes by
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conventional single-SNP GWAS, including the MHC
gene HLADQBI for T1D and TCF7L2 for T2D. However,
some hub genes have not been reported previously, e.g.
the CACNGI gene for RA. This gene’s SNP shows a
modest P-value (>1e-4) for association by single SNP
analysis [3]; therefore, the disease association of this SNP
is dependent on multiple interactions with other loci. For
each disease, including those with low heritability such as
HT, we are able to suggest novel genes and pathways for
further investigation, including re-analysis of other
GWAS datasets for the same diseases.

Conclusions

In this article, we introduce a novel SNP interaction
prioritization method, called iLOCi. The algorithm is
computationally efficient, and thus suitable for exhaus-
tive search for interactions along markers in a typical
GWAS dataset. We have shown that the approach taken
by iLOCi in which marker dependencies unrelated to
disease are accounted for reveal genetic interactions of
biological relevance to complex disease.

Additional material

Additional file 1: The mathematical details of pgis value and its
relation with LD (iLOCi_details.pdf). This file includes the mathematical
details of iLOCi formula and its relationship with the allele-based LD
calculation.

Additional file 2: Penetrance tables for dataset simulation
(Penetrance_tables.pdf). This file includes the penetrance models used
for dataset simulation of two-locus and high-order ineractions.

Additional file 3: Top 1000 SNP pairs from analyses of complete
SNP set of WTCCC (TopPairs_Complete.xls). This file includes the list
of top 1000 SNP pairs with their associated genes obtained from the
iLOCi analyses of all SNPs passing the quality control step. The evidences
for disease association of each identified gene as reported in WTCCC
original paper and HUGE Navigator database are also shown. The genes
identified as candidate disease genes from ToppGene prioritization are
indicated with their rank numbers and P-values.

Additional file 4: Top 1000 SNP pairs from analyses of gene-only
SNP set of WTCCC (TopPairs_GeneOnly.xls). This file includes the list
of top 1000 SNP pairs with their associated genes obtained from the
iLOCi analyses of gene-only SNPs. The evidences for disease association
of each identified gene as reported in WTCCC original paper and HuGE
Navigator database are also shown. The genes identified as candidate
disease genes from ToppGene prioritization are indicated with their rank
numbers and P-values.

Additional file 5: Pathway enrichment analysis of WTCCC datasets
(Pathway_analysis.xls). This file includes the list of enriched biological
pathways obtained from ToppGene program using the training sets of
HUGE Navigator disease-associated genes. The pathway P-value is
reported along with the list of iLOCi identified genes associated with
such pathway. For each pathway, the number of genes previously
reported in HUGE Navigator database, reported in WTCCC paper, and the
novel disease genes, is shown.
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