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Abstract

Background: In biological systems, pathways coordinate or interact with one another to achieve a complex
biological process. Studying how they influence each other is essential for understanding the intricacies of a
biological system. However, current methods rely on statistical tests to determine pathway relations, and may lose
numerous biologically significant relations.

Results: This study proposes a method that identifies the pathway relations by measuring the functional relations
between pathways based on the Gene Ontology (GO) annotations. This approach identified 4,661 pathway
relations among 166 pathways from Pathway Interaction Database (PID). Using 143 pathway interactions from PID
as testing data, the function-based approach (FBA) is able to identify 93% of pathway interactions, better than the
existing methods based on the shared components and protein-protein interactions. Many well-known pathway
cross-talks are only identified by FBA. In addition, the false positive rate of FBA is significantly lower than others via

pathway co-expression analysis.

significant and explainable pathway relations.

Conclusions: This function-based approach appears to be more sensitive and able to infer more biologically

Background
Pathway analysis is the currently best method for under-
standing the biological meanings of a set of genes derived
from high-throughput experiments, such as gene expression
microarray [1,2]. In biological systems, a pathway is a
sequence of reactions or interactions among a subset of
expressed genes related to a phenomenon or a biological
process. Many methods, such as over-representation analy-
sis [3] and gene set enrichment analysis (GSEA) [4], have
been developed to identify the effective pathways for a given
gene list. However, these methods may find numerous path-
ways that are independently represented. What is challen-
ging is interpreting the significance of these pathways.
Pathways are not isolated entities in a cell, but may have
cross-talks. In biology, the term “cross-talk” refers to the
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phenomenon that signal components in signal transduc-
tion can be shared between different signaling pathways
[5]. Pathways coordinate or interact with one another in
response to external stimuli, often having synergistic
effects on certain biological processes. These interactions
include sharing components, protein-protein interactions,
and transcriptional regulations [5,6]. Perturbations on a
pathway might affect the interacting pathways and com-
prehensively alter the phenotypes of a cell. Therefore,
examining the interactions among pathways is essential
for understanding the regulatory mechanisms of a given
phenomenon.

Several computational approaches have been developed
to identify pathway cross-talks. An intuitive method
involves considering shared components between path-
ways [5,7,8]. Because pathway boundaries are arbitrary,
related pathways may not share any components.
Protein-protein interactions (PPIs) might mediate path-
way interactions. Lu et al. [5] assessed pathway overlaps

© 2012 Hsu et al; licensee BioMed Central Ltd. This is an open access article distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in
any medium, provided the original work is properly cited.


mailto:yang@ym.edu.tw
http://creativecommons.org/licenses/by/2.0

Hsu and Yang BMC Genomics 2012, 13(Suppl 7):525
http://www.biomedcentral.com/1471-2164/13/S7/525

after extending a pathway with interacting proteins of
pathway components. Li et al. [9] constructed a pathway
cross-talk network (PCN) based on PPIs which con-
nected between two pathways’ components. The assump-
tion is that if two pathways interact with each other,
more PPIs are observed between these two pathways
than expected. These methods, however, do not take into
account that some genes in specific pathways may be not
involved under particular condition. To address this,
Huang and Li [10] and Liu et al. [11] incorporated gene
expression profiles and PPIs to select active PPIs, and
constructed phenotype-specific pathway cross-talk net-
works for angiogenesis and Alzheimer’s disease,
respectively.

Though these computational methods could determine
the pathway cross-talks by p-values from different statis-
tic methods, non-statistical significance may be biologi-
cally significant. In other words, cross-talking pathways
may share only a few components or be connected by a
few PPIs. For instance, the BMP and canonical WNT
pathways in the Pathway Interaction Database (PID) [12]
only share one component: GSK3B. In fact, these two
pathways have been reported to possess biologically
meaningful cross-talk [13]. Therefore, developing new
approaches is required to detect cross-talk among
pathways.

Two pathways interact with each other in order to
participate or regulate a particular process for a specific
condition. For instance, the cross-talk between the gluco-
corticoid receptor (GR) and T-cell antigen receptor
(TCR) signaling pathways results in apoptosis during the
development of thymocytes [14]. Additionally, activation
of the GR triggers apoptosis in T cells, but activation of
the TCR blocks GR-induced apoptosis [15]. It also
implies that there is a functional cross-talk between these
two distinct signaling systems. For another example,
BMP and WNT signaling pathways are able to function
independently from each other in numerous biological
processes, such as stem cell differentiation, specification
of cell fates, organogenesis, and carcinogenesis. However,
in some conditions, they have to cross-talk to each other
to cause effects, which cannot be achieved by either path-
way individually [13]. Thus, if two pathways are impli-
cated in many identical biological events, they may have
high possibility to cross-talk in some conditions. In other
words, we may be able to discover cross-talks in func-
tionally related pathways.

In this study, we presented a function-based approach
(FBA) to identify pathway cross-talks, measuring the
functional similarity between pathways via the Gene
Ontology (GO) annotations of pathway components. In
our previous study this method has successfully been
used to understand the functional relationship between
RAS-regulated pathways [16]. Here, we extended this
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idea of pathway functional relations on discovering the
pathway cross-talks.

Results and discussion

Analyzing pathways from single data source

There are many pathway databases available in public
domains, such as KEGG [17], BioCarta, Reactome [18],
GenMAPP [19], PID [12], and others. Because each path-
way database has its own curation standard, a pathway
event in different database may contain different compo-
nents and interactions. For instance, mTOR signaling
pathway is curated by many database, but a few compo-
nents are common (Additional file 1). Therefore, to avoid
redundancies, only the pathway data from a single data-
base were used for analysis in this study.

Pathway data were downloaded from Pathway Interac-
tion Database (PID) [12], which deposits curated and
peer-reviewed human signaling and regulatory pathways.
We chose PID for several reasons. Firstly, pathways in PID
are curated by standardized criteria and reviewed by sev-
eral curators, unlike BioCarta which pathways are contrib-
uted and uploaded by users. Secondly, PID separates a
signaling event into two or more distinct pathways. For
instance, WNT signals are transduced to different path-
ways for different situations. The canonical WNT pathway
is through Frizzled (FZD) family receptors and LRP5/
LRP6 co-receptors for cell fate determination, but the
non-canonical WNT pathways through FZD family recep-
tors and ROR2/RKY co-receptors for cell movement and
tissue polarity [20]. Therefore, unlike KEGG which has
only a WNT signaling pathway, PID deposits canonical
and non-canonical WNT signaling pathways, respectively.
Finally, PID also contains information of pathway cross-
talks which can be used as positive data for evaluating the
performance of different methods.

We collected 168 pathways from PID after removing
redundant and less informative pathways (Additional
file 2). Thus, there were 14,028 non-redundant pathway
pairs. A function-based approach (FBA) was proposed to
identify the pathway cross-talks from these pathway pairs.

Using GO annotations to calculate the functional

relations between pathways

Gene Ontology (GO) is widely used for functional anno-
tations of genes. Most genes have been assigned with mul-
tiple GO terms, and the assignments of GO terms are
generally based on pathways in which the genes partici-
pate. Therefore, the function annotations of a pathway
could be inferred from the GO terms of the pathway com-
ponents. The function-based approach (FBA) that we pro-
posed applies this character to measure the functional
similarities between pathways, comprising two steps: 1)
inferring the representative GO terms for each pathway,
and 2) calculating the similarity among pathways.
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Though pathway components may find numerous rele-
vant GO terms, these terms are not all suitable in
describing the function of a given pathway. This problem
is similar to the GO term enrichment analysis, which is
conducted to investigate whether gene sets associated
with particular GO terms. The Fisher exact test has been
successfully used to identify “enriched” GO terms of a
given gene set [3,21]. If all the genes in a gene set are
from a single pathway, the enriched GO terms should
sufficiently describe the function of this pathway. Thus,
we employed the Fisher exact test to determine the
representative GO terms of each pathway.

On average, 261 representative GO terms emerged per
pathway (Additional file 3), covering 3,935 distinct GO
terms. In these representative GO terms, many related
descriptions and functions were correctly identified.
Taking the WNT-mediated B-catenin pathway (PID path-
way ID: wnt_beta_catenin_pathway) as an example is to
examine if the related GO terms are correctly enriched.
The WNT-mediated B-catenin pathway plays the role in
regulation of cell proliferation and apoptosis and embryo-
nic development [22,23]. In total 283 GO terms were
selected as representative GO terms for the WNT-
mediated B-catenin pathway. The relative terms, such as
“regulation of Wnt receptor signaling pathway (GO:
0030111)”, “regulation of cell proliferation (GO:0042127)”,
“regulation of apoptosis (GO:0042981)”, and “mesoderm
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development (GO:0007498)”, were correctly found. This
example indicates the procedure of Fisher exact test infers
the representative GO term of a pathway indeed.

In principle, functionally related pathways should share
GO term annotations. Each pathway pair has on average
79 common GO terms (Additional file 3). Although the
amount of overlap is tremendous, the information content
of a GO term and the number of representative GO terms
of a pathway should be taken into account to adjust and
normalize the GO term overlap between pathways. We
employed a Vector Space Model [24,25] to quantify the
functional similarity between pathways. A weighting
scheme associated with the importance of each GO term
was determined by the frequency of this term occurring in
annotations of the given pathway and whole human genes,
and was incorporated into the vectors. Finally, a functional
similarity score (funSim) between two pathways was com-
puted via cosine measure. The higher the funSim score,
the more functionally related this pathway pair.

Identification of pathway cross-talk pairs

The application of the aforementioned procedure calcu-
lated the functional similarity (funSim) score of the 14,028
combinations for 168 pathways. The distribution of these
scores is shown in Figure 1A. Though different pathways
may share numerous GO terms (Additional file 3), most
of the pathway pairs have low scores.
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Figure 1 Distributions of functional similarity (funSim) scores. (A) The distribution of functional similarity scores of the pathway pairs and
random sets, respectively. Each data point represents the fraction of the pathway pairs that have a funSim more than the value on the x-axis. (B)
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In order to decide whether two pathways interact with
each other, a cut-off value is required. The cut-off value
was estimate by comparing the distribution of funSim of
pathways with that of random gene sets (Figure 1A). To
control the false positive rate as low as possible, the cut-
off value of funSim was defined as 0.5, so that the false
positive rate at this cutoff-value was less than 0.05%. Here,
the pathway pairs which funSim are larger than the cut-off
value denote as function-related pathway pairs (FRPs).
However, the reliability of this cut-off value was further
examined by two methods.

Firstly, the funSim were examined whether it can cor-
rectly reveal the functional relations. If two pathways are
functionally related, they are more likely to fall into the
same functional category. Therefore, the pathway pair
from the same functional category should have higher
funSim than those not in the same category. To test this
hypothesis, pathways were manually classified into 8
categories based on the description of each pathway in
PID. A pathway may be assigned into more than one
category because a pathway may play multiple roles in a
cell. Since 45 pathways lacked a clear description, only
123 pathways were classified (Additional file 4). For each
functional category, the numbers of FRPs in inter- and
intra-categories were counted, respectively, and the
Fisher exact test was performed to access if these two
values are occurred by chance (see Materials and Meth-
ods section for details). As shown in Table 1, in all cate-
gories, the proportion of FRPs in the same category
(inter-category) is significantly higher than that not in
the same category (intra-category). This result shows that
funSim could distinguish whether pathways are function-
ally related.

Secondly, since all pathways are part of regulator circuit in
the cell, each pathway is expected to have at least one
functionally related pathway. Thus, the largest funSim for
each pathway should in principle larger than the cut-off
value. As shown in Figure 1B, 166 out of 168 pathways
support this argument. The only two pathways that failed
to pass the cut-off value are the “effects of Botulinum

Table 1 The results of functional category analysis
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toxin (botulinumtoxinpathway)” (max funSim = 0.15) and
“circadian rhythm pathway (circadianpathway)” (max fun-
Sim = 0.29). The mechanism of both pathways may be dif-
ferent from other pathways. The “effect of Botulinum
toxin”, for example, is involved in the transportation of
neuron transmitters and muscle contraction causes.
Therefore, the mechanism and effects of this pathway are
quite different from other signal transduction pathways.

On the whole, FBA can correctly identify the functional
relations between pathways. Setting cut-off value of fun-
Sim as 0.5 is reliable to distinguish the functionally
related pathway pairs. Based on this cut-off value, 4,661
out of 14,028 pathway pairs were functionally related
pathway pairs (FRPs), which were among 166 pathways
(Additional file 5). FRPs were considered as putative
pathway cross-talk pairs.

Comparison to other approaches

By re-implementing the analyses described by Li et al [9],
the significantly overlapping pathway pairs (SOPs) and the
significantly interacting pathway pairs (SIPs) were com-
puted. For 14,028 pathway pairs, there were 2,412 SOPs,
which were found by assessing the amount of shared com-
ponents between pathways. The remaining 11,616 pathway
pairs (i.e. non-SOPs) were further analyzed using protein-
protein interactions (PPIs). Finally, 1,681 SIPs were identi-
fied. These two methods are complementary to each
other, so they should be taken together to find all putative
pathway cross-talk pairs, and we denote these two meth-
ods as the physical entity-based approach (PEBA). There-
fore, PEBA identified 4,093 putative pathway cross-talk
pairs among 167 pathways (Additional file 5).

Figure 2 depicts the overlap between the predicted
pathway cross-talks pairs of function-based approach
(FBA) and physical entity-based approach (PEBA). There
were 3,266 pathway pairs in common. Although FBA can
identify 79.8% (3,266/4,093) of pathway pairs by PEBA,
FBA and PEBA still have 1,395 and 827 unique pairs,
respectively. This result shows that FBA and PEBA are
substantially different on pathway cross-talk discovery.

Category # pathways P-value* R

Cell migration 35 332 % 10 3672
Cell adhesion 31 119 x 10 4038
Cytoskeleton organization 37 102 x 103 2489
Immune response 27 6.96 x 10°%° 3211
Cell proliferation 34 634 x 1028 2444
Apoptosis 4 492 x 107° 1657
Development 43 451 x 10°® 1.394
Cell cycle 33 0.001 1.207

* The probability values are derived from Fisher exact test
&R, indicates the relative enrichment.
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Figure 2 Overlap of predicted pathway cross-talk pairs by different methods. The different prediction methods were applied to all possible
combinations of 168 pathways. FRPs are identified by the function-based approach (FBA), and SOPs and SIPs are determined by the physical
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To evaluate the performance of the different method,
143 pathway interacting or cross-talk pairs were
extracted from PID as positive data sets. The perfor-
mance of a method is evaluated in terms of precision and
recall. Precision is the fraction of identified pathway pairs
that are true pathway interactions. Recall is the fraction
of true pathway interactions that are successfully identi-
fied. As shown in Table 2, although the precisions of
both approaches are extremely low due to the limited
size of positive data, FBA achieved recall of 0.93, higher
than PEBA. The higher recall indicates that FBA is more
sensitive than PEBA in discovering pathway cross-talks.

Because PID does not comprehensively collect path-
way interactions, many well-known pathway cross-talk
pairs are not curated into PID. Table 3 presents addi-
tional 23 positive examples summarized from other
methodology and review papers [26-29]. For instance,
the pathway pairs of cxcr4_pathway to et_egfrpathway
and vegfrl pathway to et_egfrpathway are discussed in
the SIP methodology paper [9]. FBA can identify 21 out
of 24 well-known pathway cross-talks, but PEBA only
identified 14 out of 24 pathway pairs. Although FBA is
more sensitive to predict pathway interactions, a few
well-studied pathway cross-talks are not detected by
FBA, but by PEBA. For example, the cross-talk between

Table 2 Performance of different methods applied to 143
pathway interactions from PID

FBA PEBA
Precision 0.029 (134/4,661) 0.026 (106/4,093)
Recall 0.94(134/143) 0.74 (106/143)

glucocorticoid receptor (reg_gr_pathway) and FGF sig-
naling pathway (fgf pathway) was identified by PEBA as
SOP, but the funSim of these two pathways be FAB is
only 0.45 which is less than the cut-off of 0.5. Addition-
ally, the pathway pairs of notch_pathway to tgfbrpath-
way and wnt_canonical_pathway failed to be identified
by both FBA and PEBA (Table 3).

To show that the abovementioned examples are not
isolated cases, BMP signaling pathway (bmppathway) was
chosen as a positive control to study its related pathways.
This pathway is known to play diverse functions in verte-
brates [30-32] and has cross-talk with numerous path-
ways to regulate a wide variety of biological process [33].
FBA identified 14 pathways that may have cross-talks
with the BMP signaling pathway (Table 4). The pathways,
including TGFp, ALK1, ALK2, NOTCH, EGF, WNT, and
SMAD?2/3 signaling pathways, have been reported that
they have cross-talks with the BMP pathway [13,33]. FBA
also detected glypican signaling pathways (glypican_3-
pathway and glypican_lpathway) as related pathways.
Current studies indicate that the main function of glypi-
cans, heparan sulfate proteoglycans on the cell surface,
consists in regulating several signaling pathways, includ-
ing the BMP pathway [34]. However, PEBA identified
total of 5 pathways related to cross-talk with BMP path-
way, but only the NK-xB pathway (nfkappabcanonical-
pathway), which might be activated by the BMP pathway
for immune cytokine response [35], was not identified by
FBA (Table 4).

To summarize the results from these three different test-
ing examples, it appears that FBA has the ability to dis-
cover pathway cross-talks. Moreover, FBA can identify the
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Table 3 List of well-documented pathway cross-talks
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Pathway ID 1 Pathway ID 2 FBA PEBA PMID
erbb2erbb3pathway vegfrl_2_pathway 0.86 SOP 19029832
fgf_pathway erbb1_receptor_proximal_pathway 0.86 SOP 21045207
s1p_s1pl1_pathway vegfrl_2_pathway 0.78 SOP 20555359
s1p_s1p3_pathway erbb1_receptor_proximal_pathway 0.78 SOP 20555359
fgf_pathway pdgfrapathway 0.76 SOP 21045207
wnt_beta_catenin_pathway vegfr1_2_pathway 073 NA 19806668
vegfr1_2_pathway mapktrkpathway 0.71 SIP 18852899
fgf_pathway mapktrkpathway 0.70 SIP 21045207
fgf_pathway et_egfrpathway 0.68 SOP 21045207
vegfr1_pathway et_egfrpathway 067 SIP 19357226
s1p_s1p1_pathway pdgfropathway 067 SOP 20555359
fgf_pathway pi3kciaktpathway 0.64 NA 21045207
erbb_network_pathway et_egfrpathway 063 SOP 19223981
vegfr1_2_pathway tgfbrpathway 0.60 SOP 19180561
hedgehog_2pathway wnt_beta_catenin_pathway 0.60 NA 20085802
notch_pathway hedgehog_2pathway 0.59 NA 17317139
cxcr4_pathway et_egfrpathway 0.58 SIP 17601710
tcr_pathway reg_gr_pathway 0.57 NA 8888490
hedgehog_2pathway fgf_pathway 0.50 NA 20085802
hedgehog_2pathway tgfbrpathway 0.50 NA 20085802
notch_pathway vegfr1_2_pathway 0.50 NA 19273260
fgf_pathway reg_gr_pathway 045*% SOP 21045207
notch_pathway wnt_canonical_pathway 0.23* NA 17317139
notch_pathway tgfbrpathway 0.20* NA 17317139

NA indicates this pathway pair is not identified by PEBA.
* indicates the value is less than cut-off value (funSim = 0.5).

most documented pathway interactions. Because of the
lack of negative data, the false positive rate of each
approach cannot be evaluated. Here, an alternative

Table 4 List of potential cross-talk pathways with BMP
signaling pathway (bmppathway)

Pathway ID FBA PEBA
alkTpathway 0.75 SOP
tgfbrpathway 0.69 SOP
p38_mkk3_6pathway 0.59 NA
glypican_3pathway 0.55 NA
alk2pathway 0.58 SOP
ps1pathway 0.58 NA
wnt_noncanonical_pathway 057 NA
wnt_beta_catenin_pathway 053 NA
smad2_3nuclearpathway 0.53 NA
erbb1_receptor_proximal_pathway 053 NA
glypican_1pathway 0.51 NA
smad2_3pathway 051 SOP
erbb1_downstream_pathway 0.50 NA
wnt_canonical_pathway 0.50 NA
nfkappabcanonicalpathway 046* SIP

* indicates the value is less than cut-off value (funSim = 0.5).
NA indicates this pathway pair is not identified by PEBA.

evaluation, pathway co-expression analysis, was applied to
assess the false positive rate.

Assessment of false positive rate by pathway
co-expression analysis

In a biological point of view, a pair of pathway can interact
with each other if they are expressed at the same time and
in the same place, e.g. tissue. Thus, pathway co-expression
is a requisite for a real pathway cross-talk. This character
can be used to evaluate the false positive rate of pathway
cross-talk prediction methods: if the co-expression of a
predicted pathway pair does not behave well, this pair may
be a false positive.

Although the protein expression data are the best evi-
dence to support co-expression, such data are difficult
to obtain. This study used gene expression as an alter-
native, because a gene needs to be expressed before the
protein is expressed. The expression of a pathway in a
given tissue was assessed by the presence of expressed
sequence tags (ESTs) for the components in this path-
way. If two pathways are expressed in more common
tissue, it implies these two pathways may have higher
probability of being cross-talks. Here, the co-expression
value of a pair of pathway was presented by the
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arithmetic average of Jaccard coefficient and overlap
coefficient (see Methods section for details).

The distributions of co-expression values of putative
pathway cross-talk pairs are given in Figure 3. The com-
mon pairs identified by both of FBA and PEBA have the
significantly higher co-expression values than unique pairs
by FBA and PEBA, respectively (P-value < 2.2 x 106, Wil-
coxon signed-rank test). This is not surprising, since the
common pairs that pass the criteria of the two distinct
approaches are the most reliable pathway cross-talk pairs.
Interestingly, the average co-expression value of unique
pairs of FBA is significantly higher than that of PEBA (P-
value = 5.8 x 10™*%, Wilcoxon signed-rank test). This result
shows that the predicted pairs by FBA are more reliable
than those by PEBA. In other words, the false positive rate
of FBA might be less than that of PEBA.
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From pathway associations to cross-talk mechanisms

The previous results reveal that FBA is advantageous in
discovering real pathway cross-talks. Furthermore, FBA
can assist researchers to find some pathways associations
which mechanisms are explainable. First, we focused on
the pathway pairs which are predicted as FRPs and have
only one common gene. Although these cases are unable
to pass the criterion of SOPs, but this single shared com-
ponent may be important for pathway interaction. Addi-
tionally, this shared component could assist us to
understand the regulating relations between pathways
without additional information.

There were 2,301 pathway pairs with one common gene.
In these pairs, 399 and 329 pairs are FRPs and SIPs,
respectively, and 172 pairs are both FRPs and SIPs. We
examined the 227 unique pathway pairs which are only
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Figure 3 Comparison of co-expression values among sets of pathway pairs inferred by different methods. The distributions of
coexpression values were compared among common pathway pairs, which are identified by FBA and PEBA, unique pairs by FBA, and unique
pairs by PEBA, respectively.
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identified by FBA and found several pathway interactions
which are biologically significant. The first example is the
pathway pair of S1P4 pathway (s1p_slp4_pathway) and
RHOA signaling pathway (rhoa_pathway). These two
pathways share only one gene, i.e. RHOA, and are con-
nected by 20 PPIs which is less than expected value.
Hence, this pair is unable to pass the criteria of PEBA.
However, FBA predicted this pair is highly function-
related with funSim of 0.65. Merging these two pathways
by the Pathway Integration Tool (PINT) [36] shows that
the S1P4 pathway appears as the upstream of the RHOA
signaling pathway (Figure 4). Sphingosine 1-phosphate
(S1P) is a signaling lipid that plays a significant role in the
regulation of cell growth, survival, and migration [27]. S1P
might bind to S1P receptor 4 (S1P4) before regulating the
activity of RHOA for particular biological processes.
Numerous studies have reported that S1P stimulates cell
motility through ROHA activation [27].

Another similar example is the interaction between
syndecan-1-mediated signaling pathway (syndecan_1_-
pathway) and TGFP receptor signaling pathway
(tgfbrpathway). Though these two pathways share only
one gene, i.e. TFGB1, and are connected by 41 PPIs, they
do not satisfy the criteria of PEBA. However, they have a
significantly high functional similarity score (funSim =
0.69), implying these two pathways should interact with
each other. Indeed, this pathway association has been
observed in different situations. In epithelial cells, synde-
can-1 expression is regulated via TGFB-mediated signal-
ing [37]. In cardiac fibrosis, syndican-1 may promote
TGEP activation or activate the downstream TGEFf sig-
naling pathways [38]. These evidences strongly suggest
that these two pathways may interact with each other for
different biological processes.

Page 8 of 15

If a pathway pair does not share any component (i.e.
non-SOP), and the number of PPIs between this pair
fails to pass the statistical test (i.e. non-SIP), this path-
way interactions is easy to ignore by PEBA. Therefore,
FBA is able to re-connect the relations of these pathway
pairs. Total of 200 FRPs among 104 pathways are unable
to be detected by PEBA and without common genes.
Among these pathway interactions, several pathways
formed cliques, which is a set of pathways fully con-
nected to each other. We used CFinder [39] to identify
pathway crosstalk cliques. 17 size-3 cliques were present
among 32 pathways identified (Figure 5). Interestingly, 7
out of 17 cliques contains the interaction between p38
mediated by MAPK (p38_mk2pathway) and class IB
PI3K (pi3kcibpathway) signaling pathways. Indeed, the
cross-talk between these two pathways involves in varied
biological process [40,41]. Additionally, some cliques
have been demonstrated the biological significance. For
example, cross-talks among class IB PI3K (pi3kcibpath-
way), p38 mediated by MAPK (p38_mk2pathway), and
PDGFRP (pdgfrbpathway) pathways are associated with
the differentiation of neural stem cells [42] and prolif-
eration of vascular smooth muscle cells [43]. For
another example, the TCR mediated by JNK (tcrjnkpath-
way), p38 mediated by MAPK (p38_mk2pathway), and
canonical NF-xB (nfkappabcanonicalpathway) pathways
are influenced each other in T cell activation [44].

Such “pathway cross-talk cliques” also imply the com-
plexity of regulations. For example, the pathway cross-
talk clique of S1P1 (s1p_slpl_pathway), atypical NF-xB
(nfkappabatypicalpathway), and EGFR (et_egfrpathway)
pathways (Figure 5) reveals the two ways to regulate one
pathway. The association of S1P1 and EGFR has been
well documented that S1P1 pathway activates the EGFR

~_ &) @w ANOA_CYBA_HTRA

TLNI_VCL

Figure 4 Interaction between S1P4 and RHOA signaling pathways. The pathways are integrated and visualized via the Pathway Integration
Tool (PINT) [36]. The oval nodes denote the proteins, and the octagon nodes denote the protein complexes. The edges between nodes
represent the interactions or reactions. The green and blue nodes correspond to the components in S1P4 and ROHA signaling pathways,
respectively. The yellow node is the common component between pathways.
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signaling in cancer cell [45]. However, S1P1 might also
activate EGFR pathway through the NF-xB pathway. This
phenomenon has been observed in rat vascular smooth
muscle cells in which S1P1 induce EGFR expression via
NEF-xB pathway [46]. This case also demonstrates the
pathway interaction information is useful for understand-
ing the regulatory mechanisms.

Table 5 Pathways used to assess the reproducibility

Assessing reproducibility of cross-talks pairs by FBA

Because there are many pathway databases available, we
examined if FBA can produce the same results by using
different pathway data. We manually collected corre-
sponding signaling events from PID and Reactome,
respectively. The ten signaling events which are all curated
by PID and Reactome, respectively, were analyzed and

# components in Reactome # common components

Pathway # components in PID
BMP signaling pathway 42
EGFR signaling pathway 35
TGFB signaling pathway 55
NOTCH signaling pathway 37
FGFR signaling pathway 55
PDGFR signaling pathway 56
VEGFR signaling pathway 63
p38 MAPK signaling pathway 27
mTOR signaling pathway 70
Insulin pathway 45

23 17
52 16
15 10
16 15
45 26
65 20
1 8
13 2
27 11
108 17
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listed in Table 5. There were 45 possible combinations for
10 pathways. We found no signaling event curated by two
databases is completely identical, and the average size of
pathway components in PID is larger than that of Reac-
tome. Nonetheless, we expected that the FBA can produce
the consistent results from different data sets.

Firstly, the funSim scores of pathway pairs from the
same database were performed. As shown in Figure 6A,
the funSim score between using pathways from PID and
Reactome is highly correlated (Pearson correlation coef-
ficient = 0.78). When cut-off value of 0.5 was used to
distinguish if the two pathways interact with each other,
41 out of 45 pathway pairs are consistent between two
pathway databases. The four inconsistent cases are the
pathway pairs PDGFR-mTOR, mTOR-TGEP, VEGFR-
TGEp, and PDGFR-p38 MAPK. The first three cases are
the funSim > 0.5 by using PID data and funSim < 0.5 by
using Reactome, but the last one is opposite.

Secondly, the funSim scores of pathway pairs from dif-
ferent databases, e.g. for each pathway pairs, one pathway
is from PID, and the other is from Reactome, were calcu-
lated. The funSim scores for PID-Reactome (i.e. the first
pathway from PID and the second one from Reactome)
and Reactome-PID (i.e. the first pathway from Reactome
and the second one from PID) reveal still high correlation
(Pearson correlation coefficient = 0.67) (Figure 6B). Only 8
out of 45 pathway pairs resulted in different conclusions.
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The five cases which funSim of PID-Reactome is larger
than 0.5, but funSim of Reactome-PID is less than 0.5 are
pathway pair FGFR-p38 MAPK, insulin-p38 MAPK, BMP-
TGEB, PDGFR-p38 MAPK, and TGFB-p38 MAPK. Addi-
tionally, the three cases, which funSim of PID-Reactome
are less than 0.5, but funSim of Reactome-PID are larger
than 0.5, are pathway pairs FGFR-VEGFR, PDGFR-
mTOR, and VEGFR-p38 MAPK.

The results show that prediction of pathway cross-
talks by FBA is robust and reproducible even though
the pathways curated by different databases are diverse.
Additionally, the funSim of 0.5 can be a general thresh-
old to determine the pathway cross-talks.

Limitation of FBA for prediction of pathway cross-talks

Despite the fact that FBA has the ability to predict the
pathway cross-talks, it does have limitations. Because the
relations are inferred from the GO annotations of path-
way, the performance of FBA may be dependent on the
quality of GO annotations. In this study, Fisher exact test
with a multiple testing correction was applied to selection
of the representative GO terms of a pathway. However,
this procedure might still infer the false pathway-GO term
associations due to the quality of GO annotations of genes
[47] and the intrinsic limitations of statistical analysis [3].
The former one might be improved by considering the
evidence codes of GO annotations which has been used in
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this study. The latter one might be overcome by the
advanced statistical models [48,49]. Moreover, in the por-
tion of similarity measurement, we did not consider the
relations between GO terms and simply compute the pro-
portion of common terms by cosine measure. Therefore,
FBA might be further improved by the advanced GO
semantic similarity measurement techniques [50,51].

Some important pathway interactions still fail to be
identified by these computational approaches. The notable
example is NOTCH signaling pathway (notch_pathway).
This pathway is important to developmental process and
able to integrate with several major pathways [29]. How-
ever, FAB and PEBA only identified 3 (syndecan_3_path-
way, vegfrl_2_pathway, and hedgehog_2pathway) and 4
(syndecan_3_pathway, p75ntrpathway, pslpathway, and
illpathway) pathways cross-talking with NOTCH pathway,
respectively. Actually, some pathways, such as WNT and
TGEP signaling pathways, interacting with NOTCH path-
way are essential for development [29], but these interac-
tions are not detected by all approaches (Table 3). In
addition, as shown in Figure 1B, “effect of Botulinum
toxin” (botulinumtoxinpathway) and “circadian rhythm
pathway” (circadianpathway) fail to be identified interact-
ing pathways by FBA. These two pathways also fail to be
detected interacting pathways by PEBA, except E2F tran-
scription factor network (e2f_pathway) which was defined
as significantly interacting with circadian rhythm pathway.
All in all, computational approaches have still many lim-
itations for predicting pathway cross-talks.

Conclusions

We present a novel approach to identifying pathway cross-
talks by measuring the functional relations between path-
ways. The functional relations rely on GO annotations of
pathway components through the vector space model.
The concept of this function-based approach (FBA) quite
differs from the physical entity-based approach (PEBA)
which identifies pathway cross-talks based on shared com-
ponents and protein-protein interaction. The comparison
with PEBA corroborates the contribution of FBA. Many
well-studied pathway cross-talks can only be successfully
predicted by FBA. Though FBA identified approximately
4,600 putative pathway interactions among 166 pathways,
the false positive rate of FBA might be significantly less
than that of PEBA, assessed by pathway co-expression
analysis. Therefore, FBA not only is more sensitive to
detect cross-talks but also infers more biologically signifi-
cantly and explainable pathway relations. The most impor-
tant character of FBA is that the analysis results are
reproducible even though different pathway data were
used. With the development of pathway analysis and
visualization tools, this approach can assist biological
researchers to propose a potential mechanism and to
prioritize the pathways for further experimental design.
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Undoubtedly, discovery of pathway cross-talks is indeed
important for understanding biological regulations, but we
may face several challenges. The first problem is the lack
of gold standard data sets. Therefore, we are unable to
evaluate the prediction power of a new method. In this
study, we collected real pathway interactions from PID
and literature. Although the collection is not comprehen-
sive, it may be sufficient for evaluation of different meth-
ods. Additionally, we used an alternative way, considering
the pathway co-expression, to assess the false positive rate.
The second problem is that pathways are dynamic, not
static. Pathway may interact with the other pathways in a
specific condition, but dot not influence each other in
another condition. Several studies address this problem by
incorporating gene expression information to filter the
active interactions. Finally, because each method has its
own advantage on predicting certain pathway cross-talks,
how to integrate different characters to improve the preci-
sion of prediction is an important task in the future.

Materials and methods

Pathway data

Pathway data containing 184 pathways with 2,346 genes
were downloaded from the Pathway Interaction Database
(PID) [12] in Aug. 2010. Because pathways with too few
genes may not possess sufficient biological content for
analysis, 13 pathways with less than five genes were
removed [9]. Additionally, three pathways that entirely
overlapped with other pathways were also ignored,
because they may be redundant. Finally, 168 pathways
with 2,285 genes were collected.

PID also records some pathway interaction informa-
tion. These pathway interactions were extracted from
XML format file of each pathway. Finally, 143 pathway
interactions among 118 pathways were obtained from
PID and regarded as positive data.

Determining GO terms to represent a pathway

The proposed function-based approach (FBA) utilizes GO
annotations to measure the functional similarity between
pathways. The first step required determining the GO
terms that could represent the biological function of a
pathway. The GO terms were obtained from the GO web-
site (http://www.geneontology.org/), and the GO annota-
tions for all human genes were downloaded from NCBI
Entrez Gene (ftp://ftp.ncbi.nlm.nih.gov/gene/DATA/gen-
e2go.gz). Only GO terms from the biological process
ontology were analyzed. To avoid an overestimation of the
performance of our pathway cross-talk predicting method,
only annotations based on directly experimental evidence
were considered, including EXP (inferred from experi-
ment), IDA (inferred from direct assay), IPI (inferred from
physical interaction), IMP (inferred from mutant pheno-
type), IGI (inferred from genetic interaction), IEP (inferred
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from expression pattern), and IC (inferred by curator). In
other words, these gene-GO term associations are sup-
ported by relevant literature.

The over-representation analysis method, a common
method to assess the enrichment of specific biological
themes in a gene list [3], was used to determine the
representative GO terms of a pathway. A one-sided
Fisher exact test was performed to evaluate whether GO
terms are enriched in a pathway, and then the P-values
were adjusted via the Benjamini-Hochberg (BH) method
[52]. GO terms with adjusted P-values < 0.05 were con-
sidered representative GO terms for a pathway.

Measurement of functional similarity between pathways
A vector space model was used to compute the func-
tional similarity between pathways. A pathway is repre-
sented by a specific vector p;, as follows:

pi = (Wi1, Wi, ..., Wipn) (1)

where w; ; is the weight of the representative GO term
j for pathway i, and # is the number of representative GO
terms associated with all pathways. If the pathway does
not have a given GO term, the weight of the GO term for
this pathway is 0. Since not all GO terms are equally
informative, the TF-IDF (term frequency-inverse docu-
ment frequency measure, which is common used for
information retrieval [53], was applied to determine the
weight of each term. The concept is that the importance
of a term increases proportionally to frequency of this
term appearing in the pathway but is offset by the fre-
quency of this term appearing in the whole genes in a
given organism. Therefore, the weight of term j in path-
way i is calculated as:

Ng
tfc, @

where Ng is the total number of genes in a given
organism G, and tf; ; and tfg, ; are the frequency of
genes annotated by term j in pathway i and a given
organism G, respectively. Because GO is presented as a
directed acyclic graph (DAG), a GO term’s semantics
inherits the biological meanings of all its parent terms.
In other words, when a term is used to describe a gene,
all its parent terms also apply to this gene. Therefore,
the frequency of GO term j appearing in pathway i, tf; ;
is given by:

w;; = tf;; * log

Z Ait (3)

techildren(j)

tfi,j =aij +

where a; ; is the number of genes in pathway i anno-
tated by the term j, and children(j) is the set of child
terms of term j.
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The functional similarity between pathways can be
qualified by comparing the vectors. The functional simi-
larity score of a pathway pair, funSim(p; p>), was calcu-
lated by using the cosine measure [54], defined as:

131'132

(4)
|p1] |p2]

funSim(p1, p2) =

The functional similarity was performed pairwisely for
all pathways of the collections.

Background distribution of funSim

The background distribution of funSim was estimated by
a randomization procedure. 9,011 human genes were col-
lected from NCBI Entrez after removing genes without
annotations of GO terms from the biological process
ontology. For each pathway, the number of annotated
GO terms of each gene in a given pathway was counted
and replaced by other gene which was randomly drawn
from the set of 9,011 genes and has the same number of
annotated GO terms. The random gene set list was gen-
erated, and the funSim of each pair of random gene sets
was calculated. The background distribution of fusSim
was established from the merged results of the 100 ran-
dom gene set lists.

Functional category analysis

The pathways were manually categorized into different
functional groups based on the “biological process”
descriptions which were extracted from XML format file
of each pathway in PID. 8 functional categories were
collected. Because a pathway may play multiple roles in
a cell, a pathway may be assigned to multiple functional
categories.

For each functional category, the proportions of func-
tion-related pathway pairs (FRPs) in intra- and inter-cate-
gories were compared. If a given functional category has
k pathways, N;,.;,, and N, pathway pairs are present in
the intra- and inter-category, respectively, where N, is
the pairwise combination of k pathways (i.e., (’;) ), and
Nier is the combination between k pathways and all
pathways excluding pathways in this category. The num-
ber of FRPs, #;,,;,, and #,,,;.,, were then counted in the
intra- and inter-category, respectively. The null hypoth-
esis is that the ratio of #;,4,,/N;nure is the same as the
ratio of #;,,4e;/Niuzer- Fisher exact test was used to assess
the proportional differences of FPRs between the intra-
and inter-category. In addition, relative enrichment, R,,
was calculated and defined as follows:

_ nintra/Nintm

R,
Ninter / Ninter

(5)
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These two factors were used to evaluate the effect of
the function-based method on measurement of func-
tional similarity between pathways.

Identifying pathway cross-talks by shared components
An intuitive manner of studying pathway cross-talks is
by measuring the number of shared components
between pathways. Li et al [9] utilized the Fisher exact
test to assess whether the components of two pathways
were significantly overlapping. The P-values were
adjusted via BH method. The pathway pairs with
adjusted P-value < 0.05 were regarded as the signifi-
cantly overlapping pathway pairs (SOPs).

Identifying pathway cross-talks via protein-protein
interactions

The remaining pathway pairs that were not significantly
overlapping (non-SOPs) were studied via protein-protein
interactions (PPIs). PPIs were downloaded from Quasi-
Pro (http://csb2.ym.edu.tw/quasipro), which integrated
PPI data from nine sources, including DIP [55], BIND
[56], IntAct [57], MIPS [58], MINT [59], HPRD [60],
BioGRID [61], Reactome [18], and Pathway Commons
[62]. This dataset contains 140,382 interactions and
12,164 human genes.

PPIs were used to assess the pathway cross-talks
according to the procedure proposed by Li et al. [9].
The number of PPIs among components of each path-
way pair was counted. An estimation of the background
distribution of the protein-interaction count of each
pathway pair was generated from 1,000 rounds of the
randomization procedure, as described in Li’s study [9].
A one-sided Fisher exact test was performed to assess
whether two pathways are significantly interacting, and
then P-values were adjusted via the BH method. Path-
way pairs with adjusted P-value < 0.05 were considered
significantly interacting pathway pairs (SIPs).

Pathway co-expression analysis

The gene expression information was based on the ESTs
(Expression Sequence Tags) from UniGene (Build 222).
The standardized tissue names for libraries were
obtained from the Cancer Genome Anatomy Project
(CGAP, http://cgap.nci.nih.gov/Tissues/). 46 tissues were
present in the EST dataset, excluding uncharacterized
and pooled tissues. ESTs from the same tissues were
pooled together. A gene is considered to be expressed in
a specific tissue if at least one of its EST sequences is
found in the dataset.

For each pathway and tissue, an assessment was con-
ducted on whether the pathway was expressed in a
given tissue. A p-value was calculated by the hypergeo-
metric test:
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(D)
= ()

where N is the number of total genes in the human
genome, m is the number of expressed genes in a given
tissue, 7 is the number of components in a given path-
way, and k is the number of pathway components
expressed in this tissue. If a pathway with P-value < 0.05
in a given tissue, this pathway is regarded as expressed
pathway in this tissue.

The co-expression value between two pathways was
measured by combining Jaccard coefficient (JC) and
overlap coefficient (OC) defined as:

(6)

E E
= 12 and OC = 12
E1 +E; —Epp

C =
J min(El,Ey_)

(7)

Where E; and E, denote the number of tissues in
which pathway 1 and 2 are expressed, respectively, and
E;, denotes the number of common tissues where both
pathways are expressed. Because both coefficients have
weakness when E; and E, are imbalance, the arithmetic
average of JC and OC was used to refer to as the co-
expression value between two pathways here.
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Additional File 1: Curation of mTOR signaling pathway in different
databases. mTOR signaling pathway in BioCarta (A), KEGG (B), and PID
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Additional File 2: List of PID pathways used in this study.

Additional File 3: Enriched GO terms for each pathway. (A)
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