
PROCEEDINGS Open Access

A de novo next generation genomic sequence
assembler based on string graph and MapReduce
cloud computing framework
Yu-Jung Chang1†, Chien-Chih Chen1,2†, Chuen-Liang Chen2, Jan-Ming Ho1*

From Asia Pacific Bioinformatics Network (APBioNet) Eleventh International Conference on Bioinformatics
(InCoB2012)
Bangkok, Thailand. 3-5 October 2012

Abstract

Background: State-of-the-art high-throughput sequencers, e.g., the Illumina HiSeq series, generate sequencing
reads that are longer than 150 bp up to a total of 600 Gbp of data per run. The high-throughput sequencers
generate lengthier reads with greater sequencing depth than those generated by previous technologies. Two
major challenges exist in using the high-throughput technology for de novo assembly of genomes. First, the
amount of physical memory may be insufficient to store the data structure of the assembly algorithm, even for
high-end multicore processors. Moreover, the graph-theoretical model used to capture intersection relationships of
the reads may contain structural defects that are not well managed by existing assembly algorithms.

Results: We developed a distributed genome assembler based on string graphs and MapReduce framework,
known as the CloudBrush. The assembler includes a novel edge-adjustment algorithm to detect structural defects
by examining the neighboring reads of a specific read for sequencing errors and adjusting the edges of the string
graph, if necessary. CloudBrush is evaluated against GAGE benchmarks to compare its assembly quality with the
other assemblers. The results show that our assemblies have a moderate N50, a low misassembly rate of misjoins,
and indels of > 5 bp. In addition, we have introduced two measures, known as precision and recall, to address the
issues of faithfully aligned contigs to target genomes. Compared with the assembly tools used in the GAGE
benchmarks, CloudBrush is shown to produce contigs with high precision and recall. We also verified the
effectiveness of the edge-adjustment algorithm using simulated datasets and ran CloudBrush on a nematode
dataset using a commercial cloud. CloudBrush assembler is available at https://github.com/ice91/CloudBrush.

Background
With the rapid growth of DNA sequencing throughput
delivered by next-generation sequencing technologies [1],
there is a pressing need for de novo assemblers to effi-
ciently handle massive sequencing data of genomes using
scalable, on-demand, and inexpensive commodity cloud
servers. De novo genome assembly is a fundamental step
in analyzing a newly sequenced genome without a back-
bone sequence. De novo assembly software must deal

with sequencing errors, repeat structures, and the com-
putational complexity of processing large volumes of data
[2]. The most recent assemblers use de Bruijn graphs
[3-10] or string graphs [11-14] to model and manipulate
the sequence reads. Using the de Bruijn graph model of
sequence assembly requires breaking reads into short
k-mers [3]. Typically, de Bruijn graph-based assemblers
must recover the information lost from the breaking of
reads, and attempt to resolve small repeats using read
threading algorithms [14]. Using the string graph model
of assembly can help avoid this issue. However, with the
deeper coverage depth of read data, our preliminary stu-
dies show that the underlying string graph used to model

* Correspondence: hoho@iis.sinica.edu.tw
† Contributed equally
1Institute of Information Science, Academia Sinica, Taipei, Taiwan, ROC
Full list of author information is available at the end of the article

Chang et al. BMC Genomics 2012, 13(Suppl 7):S28
http://www.biomedcentral.com/1471-2164/13/S7/S28

© 2012 Chang et al.; licensee BioMed Central Ltd. This is an open access article distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in
any medium, provided the original work is properly cited.

https://github.com/ice91/CloudBrush
mailto:hoho@iis.sinica.edu.tw
http://creativecommons.org/licenses/by/2.0

the intersection of reads becomes much more complex
than expected by previous assembly algorithms [15].
After building the assembly graphs, algorithms based

on de Bruijn graphs or string graphs manipulate the
graph-theoretic models by using several operations of
graph simplification to repair erroneous reads and to
remove redundancy in graphs, such as removing short
dead-end tips and bubbles of similar paths [2]. Erro-
neous reads and repeats may also result in more com-
pounds with branch structures that complicate the
assembly, especially as the sequencing depths of reads
become greater and error rates increase. One example
of the challenges faced is the chimerical links of edges,
also known as chimerical connections [4], formed by
partial overlap of two unrelated contigs (Figure 1),
where the partial overlaps are caused by sequencing
errors. Other examples are ambiguous branching caused
by short repeats and “braids” formed by shared branches
(Figures 2, 3).
To unfold these complex branch patterns into correct

linear paths in string graphs, we present an Edge Adjust-
ment (EA) algorithm to remedy this problem. The algo-
rithm utilizes the sequence information of all graph
neighbors for each read and eliminates the edges connect-
ing to reads containing rare bases. We also used simulated

read datasets of Escherichia coli genomes of varying
sequencing depths and error rates to verify the effective-
ness of the EA algorithm. In addition, we integrated the
EA algorithm into a distributed assembly program [15]
based on string graphs and MapReduce cloud computing
framework [16,17], known as CloudBrush. We evaluated
the method against the GAGE benchmarks established by
Salzberg et al [18] to compare assembly quality with other
de novo assembly tools. Moreover, we introduced a pair of
novel indices to measure the quality of sequence assembly,
known as precision and recall, to indicate whether the out-
put contigs are faithfully aligned (i.e., without inversions or
rearrangements) with a contiguous region in the target
genome, and whether the output contigs fully cover the
entire target genome. It is noteworthy that these two
indices are important for follow-up annotation and analy-
sis of the target genome. Finally, we ran CloudBrush on a
nematode dataset using a computing cloud [19] and ana-
lyzed its performance.

Results
Structural defects in string graphs
In using the graph-based assembly approach, sequencing
error may generate complex structures in the graph. For
example, sequencing errors at the end of reads may

D

B
C

A

H

F
G

E

A B

C

D

E F HG
Figure 1 The chimerical link structure C-G in a string graph.

Chang et al. BMC Genomics 2012, 13(Suppl 7):S28
http://www.biomedcentral.com/1471-2164/13/S7/S28

Page 2 of 17

create tips in the graph, and sequencing errors within
long reads may create bubbles in the graph. Tips and
bubbles are well-defined problems with a solution mak-
ing use of the topological features of the graph as
described in [4] and [10]. Some errors, however, create
more complex structures that cannot be readily identi-
fied from the topology of the graph. In this report, we
refer to these structures are “structural defects.” A well-
known structural defect is the chimerical link problem.
Figure 1 displays an example of chimerical links caused
by sequencing error in string graph. In this instance, the
chimerical link is caused by false overlap between node
C and node G. In addition to sequencing errors, repeat
regions also cause structural defects in a string graph;
for example, the well-known “frayed rope” pattern [2].
Furthermore, repeats shorter than the read lengths may
also complicate processing in string graphs; for example,

if a short repeat exists in reads D, E, F, I, J, L, and M,
where C, D, E, and F are reads from a specific region in
the genome, while I, J, L, and M are reads from another
region in the same genome (Figure 2). It is noteworthy
that in the string graph, the edge between nodes D and
L is denoted as a “branch structure” which may lead an
assembly algorithm to report an erroneous contig. In
addition to false overlaps, missing overlaps also intro-
duce structural defects into the string graph; for exam-
ple, the formation of a braid structure caused by
sequencing errors appearing in continuous reads (Figure
3). In this instance, two missing overlaps forbid the
adjacent reads from being merged together; node B lost
an overlap link to node C, and node D lost an overlap
link to node E (Figure 3). Similar to the chimerical link
problem, it is challenging to use topological features of
the graph to deal with braid structures.

C
D

I
J

E
F

C

D

E F

I J

L
M

L M
Figure 2 The short-repeat branch D-L in a string graph.

Chang et al. BMC Genomics 2012, 13(Suppl 7):S28
http://www.biomedcentral.com/1471-2164/13/S7/S28

Page 3 of 17

Edge Adjustment with the neighbors’ contents
We present the Edge Adjustment (EA) algorithm to fix
structural defects in string graphs. For a node n in the
string graph G, the EA algorithm adjusts edges of n by
examining neighbors of n to decide whether each neigh-
bor has sequencing errors or not. Figure 4 shows the
pseudo code of the Edge Adjustment algorithm in
sequential version. Note that we are dealing with NGS
reads with the same length. Thus neighbors of n may be
divided into two groups, i.e., forward neighbors and
reverse neighbors. A forward neighbor of n overlaps
with the suffix of n; while a reverse neighbor of n over-
laps with the prefix of n. To construct node n’s Position
Weight Matrix (PWM) of its neighbors in one of the
two directions, we first align the reads of the neighbors
to n. Then, we use the subsequences of each read ran-
ging from the end of node n to the end of the second-
last neighbor to define PWM of n. A consensus
sequence of neighbors can be obtained by computing
the PWM of the neighbors. PWM has four rows corre-
sponding to A, T, C and G respectively. An element of
PWM in column i is the number of occurrences of b at
position i, where bÎ{A, T, C, G}. We may then define
the consensus sequence of these subsequences as
follows:

Consensusi =
{

βi|βi/Si > 0.6
′N′|∀βi/Si ≤ 0.6

}
(1)

where i represents the position in the consensus
sequence corresponding to the column position in PWM;

bÎ {A, T, C, G}; bi is the number of occurrences of b at
position i; and Si is the sum of occurrence of letters at
position i. We use the letter ‘N’ at position i of the con-
sensus sequence, if for every letter in {A, T, C, G}, we
have bi /Si ≤ 0.6. Note that if the percentage of ‘N’ in the
consensus sequence is greater than 10%, then this con-
sensus sequence is rejected by the EA algorithm and all
neighbors in the specific direction are retained. Other-
wise, the consensus sequence is used to detect sequen-
cing errors in each neighbors n’ of n by comparing the
subsequence of n’ with the consensus sequence. The
edge (n, n’) is removed if the subsequence of n’ is found
inconsistent with the consensus sequence. In our experi-
ment, the subsequence of n’ is said to be consistent with
the consensus sequence if every character of the subse-
quence is equal to the character, except character ‘N’, on
the consensus sequence at the same position. Note that,
for each node of the string graph, the EA algorithm gen-
erates a consensus sequence for each direction to per-
form the consistency check and to remove edges which
are inconsistent with the consensus sequence. In an illus-
tration of an EA algorithm, read 1 has three neighboring
reads: 2, 3, and 4 (Figure 5). The range of the PWM
exists from the end of read 1 to the end of read 3. Since
read 2 has a character ‘A’ which is different from the first
character ‘T’ of the consensus sequence (Figure 5), the
edge between read1 and read2 will be removed. Next, we
use the following examples to illustrate the reduction of
structural defects in a string graph by using the EA
algorithm.

A
B
C
D
E
F

A B

C

D

E F

Figure 3 The braid structure in a string graph.

Chang et al. BMC Genomics 2012, 13(Suppl 7):S28
http://www.biomedcentral.com/1471-2164/13/S7/S28

Page 4 of 17

One example each of a chimerical link problem, a branch
structure problem, and a braid problem that were solved
with the EA algorithm are displayed (Figures 6, 7, 8). To
solve the chimerical link problem, the EA algorithm gener-
ates a consensus sequence for read A (shown in red) from
the neighboring reads B, C, and D (Figure 6). Since read C
has one character that is different from the consensus
sequence, the overlap link between reads A and C will be

removed. By contrast, the EA algorithm generates a consen-
sus sequence for read G (shown in green) from the neigh-
boring reads C, E, and F (Figure 6). Thus, the overlap link
between reads C and G will be removed in a similar
manner.
To solve the branch structure problem, the EA algo-

rithm generates a consensus sequence for read L from
the neighboring reads D, I, and J (Figure 7). Therefore,

Require: overlap graph G = (N, E)
1: for all nodes n N do
2: construct Position Weight Matrix (PWM) of the forward neighbors
3: ConsensusSequence ComputeConsensusSequence(PWM)
4: if ConsensusSequence != then
5: for all forward neighbors u n.AdjacencyList do
6: if !consistent(u.sequence, ConsensusSequence) then
7: remove the edge between u and n
8: end if
9: end for
10: end if
11: construct Position Weight Matrix (PWM) of the reverse neighbors
12: ConsensusSequence ComputeConsensusSequence(PWM)
13: if ConsensusSequence != then
14: for all reverse neighbors w n.AdjacencyList do
15: if !consistent(w.sequence, ConsensusSequence) then
16: remove the edge between w and n
17: end if
18: end for
19: end if
20: end for

1: function ComputeConsensusSequenc(parameters: matrix)
2: ConsensusSequence
3: for each column ci of matrix do // from i = 1 to matrix.length
4: if the ratio of letter ‘A’ in ci > 0.6 then
5: ConsensusSequence ConsensusSequence + “A”
6: else if the ratio of letter ‘T’ in ci > 0.6 then
7: ConsensusSequence ConsensusSequence + “T”
8: else if the ratio of letter ‘C’ in ci > 0.6 then
9: ConsensusSequence ConsensusSequence + “C”
10: else if the ratio of letter ‘G’ in ci > 0.6 then
11: ConsensusSequence ConsensusSequence + “G”
12: else
13: ConsensusSequence ConsensusSequence + “N”
14: end if
15: end for
16: if (N’s ratio in ConsensusSequence > 10%) then
17: return
18: else
19: return ConsensusSequence
20: end function

Figure 4 The pseudo code of the EA algorithm in sequential version.

Chang et al. BMC Genomics 2012, 13(Suppl 7):S28
http://www.biomedcentral.com/1471-2164/13/S7/S28

Page 5 of 17

TCGGAATAGC
GAATAGCAGAGTAGC

AATAGCTGAATAGCTAG
ATAGCTGACTAGCTAGCC

TGANTAGCTAG

TRead 1

Read 2
Read 3
Read 4

Consensus
Sequence

Position
Weight
Matrix

Figure 5 The illustration of position weight matrix.

D

B
C

A

H

F
G

E

A B

C

D

E F HG

C

Figure 6 The example of the chimerical link structure was solved by using Edge Adjustment.

Chang et al. BMC Genomics 2012, 13(Suppl 7):S28
http://www.biomedcentral.com/1471-2164/13/S7/S28

Page 6 of 17

read D differs from the consensus sequence, which is
primarily represented by reads I and J. The overlap link
between reads D and L is removed.
To solve the braid structure problem, in which

instance the errors in reads C and D complicate the
graph structure, the EA algorithm removes the overlap
links between reads C and E and between reads B and
D (Figure 8). Thus, reads C and D are isolated from the
main graph, and no braid structure exists.

Analysis of edge adjustment
We prepared simulated datasets generated from the E. coli
genome to evaluate effectiveness of the EA algorithm. In
other words, the position of each read on the target gen-
ome, and thus positions of sequencing errors on the read
are also present in the dataset. We subsequently construct

the overlap graph of the dataset by creating a node to pre-
sent each read, and an edge between each pair of reads if
they have a sequence overlap with size no smaller than an
integer k. Two attributes are associated with each edge of
the overlap graph from the simulated data. In the first
attribute, if the positions of the two reads overlap with
each other on the genome, then the overlapping region is
designated as a true edge; otherwise, it is designated as a
false edge. The second attribute is used to denote whether
any sequencing error exists on the two reads of the edge.
Therefore, we can now classify edges of the overlap graph
into four classes according to these two attributes. Class I
denotes the subset of true edges without sequencing
errors; class II denotes the subset of true edges with
sequencing errors; class III denotes the subset of false
edges with sequencing errors; and class IV denotes the

C
D

I
J

E
F

C

D

E F

I J

L
M

L M

D

Figure 7 The example of the branch structure was solved by using Edge Adjustment.

Chang et al. BMC Genomics 2012, 13(Suppl 7):S28
http://www.biomedcentral.com/1471-2164/13/S7/S28

Page 7 of 17

subset of false edges without sequencing errors. It is note-
worthy that class I edges are most desired to improve the
quality of data for subsequent stages of sequence assembly.
By contrast, class III edges are chimerical edges; class II
edges contain sequencing errors; and class IV edges con-
tain reads that intersect repeats. Edges of classes II, III,
and IV may introduce errors or structural defects into the
later stages of sequence assembly. Therefore, it is the
design goal of the EA algorithm to minimize the number
of class II, III, and IV edges and to maximize the number
of class I edges.
To test the effectiveness of the EA algorithm, we gener-

ated four sets of simulated data. In the first and second
sets, 36-bp reads were generated at a constant coverage
depth of 100×, and single base errors were inserted at
rates of 0.5% and 1%, respectively. In the third and fourth
sets, 150-bp reads were generated at a constant coverage
depth of 200×, and single base errors were inserted at
rates of 0.5% and 1%, respectively. Table 1 shows the num-
ber of edges of the overlap graphs before and after per-
forming the EA algorithm. We observed that most of the

edges removed by EA algorithm were class II edges (i.e.,
possessing sequencing errors). We also observed that the
EA algorithm was quite effective in removing class III (chi-
merical) edges for the two 150-bp datasets, and satisfac-
tory in removing the class III edges for the two 36-bp
datasets. By contrast, only about 20% of the class IV edges
(i.e., those containing reads that intersect repeats) are
removed by the EA algorithm.
We define a braid index to provide an approximate mea-

sure of the number of braid structures in a set S of reads.
To acquire the braid index, we first constructed the over-
lap graph Go(S) of S. We next constructed a simplified
string graph Gs(S) of S which is obtained from Go(S) by
removing contained reads, transitive edges, and concate-
nating, “one-in one-out” nodes. For each node v of Go(S),
we next examined its neighborhood for a pair of vertices,
u1 and u2, and an additional vertex v’, such that the follow-
ing properties exist: (1) (u1, u2) is not an edge of Go(S); (2)
u1 and u2 form a consensus when both are aligned to v;
(3) (v, v’) is not an edge of Go(S); and (4) v and v’ form a
consensus when aligned to u1 and u2. The braid index is

A
B
C
D
E
F

A B

C

D

E F

Figure 8 The example of braid structure was solved by using Edge Adjustment.

Chang et al. BMC Genomics 2012, 13(Suppl 7):S28
http://www.biomedcentral.com/1471-2164/13/S7/S28

Page 8 of 17

then defined as the number of tuples (v, v’, u1, u2) satisfy-
ing the aforementioned four properties. Table 2 shows the
braid indices of the simplified string graphs of the four
data sets with and without the performance of the EA
algorithm. We observed that a dataset with a larger
sequencing error has a larger braid index and may there-
fore possess more complicated braid structures. By con-
trast, the EA algorithm has also been shown to be effective
in removing braid structures.

Evaluation of assembly accuracy
Hypothetically, a perfect assembly result produces nothing
but subsquences of the reference sequences. In particular,
rearrangements do not exist in any contigs. To distinguish
superior assembly results from those containing collapsed
repetitive regions or rearrangements, we designed a strict
measurement scheme known as precision and recall. The
precision and recall focus on the quality of the contigs. A
contig must be aligned along its whole length with a base
similarity of at least 95% in order to be considered valid.
The union of all the valid contig areas in the references
was treated as a true positive, and the recall was defined
using the following formula:

Recall =
number of true positive bases in reference

total length of reference sequence
(2)

Similarly, the union of all the valid contigs areas on
the side of contigs was treated as a true positive in con-
tigs, and the precision was defined using the following
formula:

Precision =
number of true positive bases in contigs

total length of contigs
(3)

Importantly, we only evaluate contigs whose length ≥
200 bp.
We used three real and two simulated datasets to test

CloudBrush and the other assemblers. The first real
dataset was a set of short read data from an E. coli
library (NCBI Short Read Archive, accession no.
SRX000429) consisting of 20.8 M 36-bp reads. The sec-
ond real dataset was released by Illumina, which
included 12 M paired-end 150-bp reads. This dataset
contains sequences from a well-characterized E. coli
strain K-12 MG1655 library sequenced on an Illumina
MiSeq platform. For the two real datasets, we select the
first half of reads to evaluate assemblers, and their cov-
erage depth was 81× and 197×, respectively. We used
D1 and D2 to denote the 36-bp and 150-bp datasets,
respectively. Furthermore, we downloaded Caenorhabdi-
tis elegans sequence reads (strain N2) from the NCBI
SRA (accession no. SRX026594) as the D3 dataset, con-
sisting of 33.8 M read pairs sequenced using the

Table 1 The edge analysis of overlap graph before and after Edge Adjustment

Simulated
E. coli Dataset

Edge Type # of edges before
Edge Adjustment

of edges after
Edge Adjustment

100 × 36 bp
0.5% error
dataset

Class I 92829732 92754696 [99.92%]

Class II 14519426 322510 [2.22%]

Class III 252762 118542 [46.90%]

Class IV 377856 294110 [77.84%]

100 × 36 bp
1% error
dataset

Class I 76439532 76364264 [99.90%]

Class II 24836446 749900 [3.02%]

Class III 358432 76162 [21.25%]

Class IV 132412 92834 [70.11%]

200 × 150 bp
0.5% error
dataset

Class I 115230002 115163888 [99.94%]

Class II 74214420 438274 [0.59%]

Class III 1347100 51988 [3.86%]

Class IV 403836 322746 [79.92%]

200 × 150 bp
1% error
dataset

Class I 32604042 32580388 [99.93%]

Class II 53758272 554020 [1.03%]

Class III 1422472 57494 [4.04%]

Class IV 256952 225124 [87.61%]

Chang et al. BMC Genomics 2012, 13(Suppl 7):S28
http://www.biomedcentral.com/1471-2164/13/S7/S28

Page 9 of 17

Illumina Genome Analyzer II and a constant coverage
depth of 67×. The two simulated datasets were gener-
ated at random from the E. coli K-12 genome using 36-
bp reads with 100× coverage depth and 1% mismatch
errors, and with 100-bp reads with 200× coverage depth
and 1% mismatch errors.
We performed assemblies on these datasets using

Edena [12], Velvet [4], Contrail [10] and CloudBrush
assemblers. Edena is the first string graph-based assem-
bler for data of short reads. Velvet is one of the first de
Bruijn graph-based assemblers for short reads that is
often used as a standard tool for assembling small- to
medium-sized genomes. Contrail is the first de Bruijn
graph-based assembler using the MapReduce frame-
work. Each assembler is required to set the parameter k,
i.e., the minimum length of overlap for two contigs to
form a longer contig. Considering the relationship
between parameter k and coverage depth [20], we used
k = 21 on dataset D1 and 100× simulated data, k = 75
on dataset D2 and 200× simulated data, and k = 51 on
dataset D3. Importantly, we did not use pair-end infor-
mation in this experiment.
Figure 9 shows the precision and recall of contigs with

different length thresholds on the two simulated datasets
of E. coli genome with a 1% error rate and datasets D1
and D2. We observed that CloudBrush outperforms the
others for the two simulated datasets; the other assem-
blers generated more mis-assembly contigs when reads
become longer from 36 bp to 150 bp (Figures 9a and 9b).
For datasets D1 and D2, CloudBrush have similar per-
formance of precision and recall leading the other

assemblers (Figures 9c and 9d). Since longer reads and a
larger error rate may generate more complex structure
defects. CloudBrush may have a greater ability to handle
complicated graph structures by using the EA algorithm.
We considered a number of different evaluation criteria,

which are summarized in Tables 3 and 4. It is noteworthy
that CloudBrush and Contrail ran on a cluster with 150
nodes each having 2 core CPU and 4 GB of RAM; while
Edena and Velvet ran on a single machine which has 16
core CPU and 128 GB of RAM. Besides, Edena failed to
work on datasets D2 and D3 in longer read data; therefore,
no results were generated. Furthermore, we computed
precision and recall by parsing the result of MegaBLAST
[21].

Comparison with other tools using GAGE benchmarks
To provide a comprehensive comparison, we used the
benchmarks of GAGE [18] to evaluate CloudBrush and
compared it with eight assemblers that were evaluated in
GAGE benchmarks. Since GAGE provides the assembly
results for each assembler, we used the precision and recall
to evaluate each assembler to complement the evaluation
of GAGE. Tables 5 and 6 summarize the validation results
for the two genomes Staphylococcus aureus and Rhodo-
bacter sphaeroides.
As described in [18], a more aggressive assembler is

prone to generate more segmental indels as it strives to
maximize the length of its contigs, while a conservative
assembler minimizes errors at the expense of contig size.
We observed that the SGA assemblies have the fewest
errors of misjoins and indels of > 5 bp, but have the

Table 2 The analysis of simplified string graph with and without Edge Adjustment

Simulated Data Graph feature without
Edge Adjustment

with
Edge Adjustment

100 × 36 bp
0.5% error
dataset

of node 2502312 1572470

of edge 2220162 26079

braid index 342736 750

100 × 36 bp
1% error
dataset

of node 4418943 2964253

of edge 4051264 46649

braid index 873835 802

200 × 150 bp
0.5% error
dataset

of node 3839687 2680727

of edge 6618017 7739

braid index 1750824 242

200 × 150 bp
1% error
dataset

of node 5085964 4245557

of edge 8501560 16767

braid index 2350695 413

Chang et al. BMC Genomics 2012, 13(Suppl 7):S28
http://www.biomedcentral.com/1471-2164/13/S7/S28

Page 10 of 17

shortest N50 (Tables 5 and 6). CloudBrush generated the
second fewest number of errors, but led to a longer N50,
which identified CloudBrush as a conservative assembler
that could still assemble longer contigs.
A caveat on the use of the assembly precision and

recall for contigs is required. When misjoined errors
occur in a very long contig, the whole contig will be inva-
lidated, and the precision and recall will obviously
decrease in proportion to the contig length. By contrast,

when misjoined errors occur in a shorter contig, the pre-
cision and recall may only decrease slightly. We observed
that SGA and CloudBrush produced the highest preci-
sions and recalls (Tables 5 and 6), indicating that the
contigs generated will have very few artificial breakpoints
generated by assemblers; moreover, it will reduce the
noisy interrupts in the subsequent genome annotation
and comparative genomic analysis. It is noteworthy that
some assemblers e.g., Bambus2 [22] and SOAPdenovo

(a) 100x36bp 1% error simulated data

0.00%

20.00%

40.00%

60.00%

80.00%

100.00%

120.00%

>
75

00
0

>
40

00
0

>
30

00
0

>
20

00
0

>
10

00
0

>
10

00

>
20

0

CloudBrush
Precision
CloudBrush
Recall
Contrail
Precision
Contrail
Recall
Velvet
Precision
Velevt
Recall
Edena
Precision
Edena
Recall

(b) 200x150bp 1% error simulated data

0.00%

20.00%

40.00%

60.00%

80.00%

100.00%

120.00%

>
25

00
00

>
15

00
00

>
10

00
00

>
50

00
0

>
35

00
0

>
25

00
0

>
15

00
0

>
50

00

>
50

0

CloudBrush
Precision
CloudBrush
Recall
Contrail
Precision
Contrail
Recall
Velvet
Precision
Velvet
Recall

(c) D1 dataset (E. coli)

0.00%

20.00%

40.00%

60.00%

80.00%

100.00%

120.00%

>
50

00
0

>
40

00
0

>
35

00
0

>
30

00
0

>
25

00
0

>
20

00
0

>
15

00
0

>
10

00
0

>
50

00

>
10

00

>
50

0

>
20

0

CloudBrush
Precision
CloudBrush
Recall
Contrail
Precision
Contrail
Recall
Velvet
Precision
Velvet
Recall
Edena
Precision
Edena
Recall

(d) D2 dataset (E. coli)

0.00%

20.00%

40.00%

60.00%

80.00%

100.00%

120.00%

>
15

00
00

>
10

00
00

>
50

00
0

>
35

00
0

>
25

00
0

>
15

00
0

>
50

00

>
50

0

CloudBrush
Precision
CloudBrush
Recall
Contrail
Precision
Contrail
Recall
Velvet
Precision
Velvet
Recall

Figure 9 The variation of precision and recall with different lower bounds of length on simulated data and datasets D1 and D2.

Table 3 Evaluation of assemblies of the simulated dataset (100×, 36 bp, 1% error) and dataset D1 with CloudBrush,
Contrail, Velvet, and Edena

Dataset Assembler # of contigs1 N50 Largest contig size Precision Recall # of valid
contigs1

of invalid contigs1 Runtime
(sec)

100 × 36 bp
1% error

CloudBrush 447 17907 95387 99.79% 97.51% 420 27 6218

Contrail 906 8982 40066 99.72% 96.76% 858 48 5499

Velvet 507 15632 100501 99.68% 96.95% 498 9 590

Edena 4012 1436 11264 98.84% 91.85% 3868 144 2524

D1 dataset CloudBrush 521 15149 66832 99.26% 97.10% 481 40 5555

Contrail 930 8605 40066 99.73% 96.81% 886 44 4789

Velvet 505 15862 73042 99.62% 96.90% 494 11 452

Edena 889 9045 44942 99.18% 96.34% 823 66 1401
1 Contigs with lengths > 200 bp are counted.

Chang et al. BMC Genomics 2012, 13(Suppl 7):S28
http://www.biomedcentral.com/1471-2164/13/S7/S28

Page 11 of 17

[8], have lower precision and recall due to the fact that
their misjoined errors and longer indels occur in longer
contigs.

Run time analysis
To evaluate the performance of our approach, we per-
formed CloudBrush analysis on three different sizes of
Hadoop clusters using machines leased from the hicloud
[19]. The three clusters consisted of 20, 50, and 80 nodes,
respectively. Each node had 2 virtual CPUs (each one is
equivalent to 1 GHz2007 Xeon processor) and 4 GB of
RAM. We used the dataset D3 of C. elegans as the bench-
mark to analyze the runtime of CloudBrush. CloudBrush
is counted separately in two phases: Graph Construction
and Graph Simplification. We observed that the Graph
Construction is the primary bottleneck of CloudBrush
with 20, 50, or 80 nodes (Figure 10). However, with an
increase in the number of nodes, the computation time
of Graph Construction decreases substantially, while the
runtime of Graph Simplification decreases only slightly.
Using 20 nodes as a baseline, when the number of nodes
is increased 2.5-fold, the construction time is decreased
2.3-fold and the simplification time is decreased by

1.3-fold. When the number of nodes increases 4-fold, the
reductions in runtime are 3.2- and 1.5-fold for the con-
struction and simplification, respectively. The experi-
ments show that Graph Construction tended to possess
superior scalability in MapReduce.

Discussion and conclusions
With the rapid growth of sequence data, genome assembly
remains one of the most challenging computational pro-
blems in genomics. String graph-based approaches have
the benefits of read coherence [11], less memory require-
ment, and successful experience in analyzing Sanger
sequence data [23]. In this report, we identify several types
of structural defects in string graphs resulting from
sequencing errors and short repeats. To remedy the struc-
tural defects in string graphs, we developed the EA algo-
rithm that utilizes information from the consensus of
graphical neighbors. To validate the effectiveness of the
EA algorithm, we used simulated data to define four types
of edges and a braid index to help evaluate the structural
defects in string graphs. The experimental results show
that the EA algorithm efficiently minimizes structural
defects in string graphs. Thus far, the EA algorithm is not

Table 4 Evaluation of assemblies of the simulated dataset (200 × 150 bp, 1% error) and dataset D2 and D3 with
CloudBrush, Contrail, and Velvet

Dataset Assembler # of contigs1 N50 Largest
contig size

Prec
-ision

Recall # of valid
contigs1

of invalid
contigs1

Runtime
(sec)

200 × 150 bp
1% error

CloudBrush 229 112531 327245 99.20% 96.00% 152 77 10616

Contrail 2540 7554 36335 90.12% 95.92% 957 1583 15823

Velvet 209 78642 327101 99.63% 98.10% 168 41 1317

D2
dataset

CloudBrush 361 52961 156592 98.10% 98.15% 230 131 8622

Contrail 300 43609 124089 98.47% 96.98% 250 50 7200

Velvet 189 71764 174184 93.60% 92.20% 164 25 927

D3
dataset

CloudBrush 37064 8880 114585 93.65% 92.41% 24603 10387 48603

Contrail 31870 8274 105244 96.99% 90.89% 25236 6116 44619

Velvet 23565 10847 106863 95.55% 89.01% 20187 2838 13963
1 Contigs with lengths > 200 bp are counted.

Table 5 Evaluation of S aureus (genome size 2,872,915 bp)

Assembler Num N50 (kb) N50
corr. (kb)

Indel
> 5 bp

Misjoins Precision Recall # of valid
contigs (> 200 bp)

of invalid
contigs

(> 200 bp)

ABySS 302 29.2 24.8 9 5 75.06% 94.31% 219 83

ALLPATHS-LG 60 96.7 66.2 12 4 93.35% 92.28% 55 5

Bambus2 109 50.2 16.7 164 13 63.20% 61.69% 90 19

MSR-CA 94 59.2 48.2 10 12 90.14% 88.96% 79 15

SGA 1252 4 4 2 4 97.95% 95.61% 1134 118

SOAPdenovo 107 288.2 62.7 31 17 60.22% 60.35% 59 48

Velvet 162 48.4 41.5 14 14 82.66% 81.08% 136 26

CloudBrush 527 9.7 9.5 2 10 96.72% 96.00% 447 80

Chang et al. BMC Genomics 2012, 13(Suppl 7):S28
http://www.biomedcentral.com/1471-2164/13/S7/S28

Page 12 of 17

suitable for studies on SNPs, because it only removes the
edges. We suggest that correcting the edges with sequence
logos will maintain information for SNP analysis; this is
the subject of a future study.
To demonstrate the validity of CloudBrush, we used

GAGE benchmarks [18] to compare CloudBrush with
other state-of-the-art assembly tools. The evaluation
results show that CloudBrush is a conservative assem-
bler that nevertheless can generate precise contigs that
avoid error propagation in downstream analysis with
moderate N50 contig lengths. We also tested the scal-
ability of CloudBrush using three different sizes of
hadoop clusters to assemble ~7-Gbp data of the C. ele-
gans dataset on a hicloud™ computing service [19]. The
study results show that the stage of graph construction
is the primary performance bottleneck and its scalability
in the MapReduce framework is quite impressive.

In future studies, we will incorporate the scaffolding
issue and mate-pair analysis into the MapReduce pipeline.
Combining state-of-the-art error correction and our edge
analysis is another subject worthy of investigation. We
believe that CloudBrush will achieve a better contig N50
with fewer misjoin errors if these former two issues are
resolved. Adapting the pipeline toward third generation
sequencing technologies is also an important direction of
investigation.

Methods
We previously described a string-graph base assembly
algorithm using MapReduce called CloudBrush [15]. The
framework of MapReduce can easily be implemented as a
modular pipeline, allowing it to be easily extended when
improved algorithms have been developed. In this study,
we have expanded on CloudBrush by revising its pipeline

Table 6 Evaluation of R. sphaeroides (genome size 4,603,060 bp)

Assembler Num N50 (kb) N50
corr. (kb)

Indel
> 5 bp

Misjoins Precision Recall # of valid
contig

(> 200 bp)

of invalid
contig

(> 200 bp)

ABySS 1915 5.9 4.2 34 21 79.78% 86.13% 1744 171

ALLPATHS-LG 204 42.5 34.4 37 6 81.49% 81.22% 183 21

Bambus2 177 93.2 12.8 363 5 48.65% 46.21% 129 48

CABOG 322 20.2 17.9 24 10 92.55% 85.21% 310 12

MSR-CA 395 22.1 19.1 32 10 93.35% 90.55% 363 32

SGA 3066 4.5 2.9 4 4 97.23% 94.56% 2758 308

SOAPdenovo 204 131.7 14.3 406 8 70.86% 70.75% 134 70

Velvet 583 15.7 14.5 27 8 94.41% 92.37% 545 38

CloudBrush 661 12.8 12.7 10 2 96.21% 95.85% 567 94

0

20000

40000

60000

80000

100000

120000

140000

160000

180000

20 nodes 50 nodes 80 nodes

R
un

tim
e (

s)

Graph
Construction
Graph
Simplification
Total Time

Figure 10 Runtime analysis of Dataset D3 (C. elegans) by CloudBrush.

Chang et al. BMC Genomics 2012, 13(Suppl 7):S28
http://www.biomedcentral.com/1471-2164/13/S7/S28

Page 13 of 17

and adding an EA algorithm. We introduced the princi-
ple of the graph processing in MapReduce and the pipe-
line of CloudBrush. It is noteworthy that the code is
written in Java and readers may refer to [15] for further
details concerning the implementation of the procedures
in the MapReduce framework.

Distributed graph processing in MapReduce
Genome assembly has been modelled as a graph-theoretic
problem. Graph models of particular interests include de
Bruijn and string graphs in either directed or bidirected
forms. Here we use bidirected string graph to model the
genome assembly problem.
In a bidirected string graph, nodes represent reads and

edges represent the overlaps between reads. To model the
double-stranded nature of DNA, a read can be interpreted
in either forward or reverse-complement directions. For

each edge that represents an ordered pair of nodes with
overlapping reads, four possible types exist, according to
the directions of the two reads: forward-forward, reverse-
reverse, forward-reverse, and reverse-forward. The type
attribute is incorporated into each edge of the bidirected
string graph. It is noteworthy that traversing the bidirected
string graph should follow a consistent rule, i.e., the direc-
tions of in-links and out-links of the same node should be
consistent. In other words, the read of a specific node can
only be interpreted in a unique direction in one path of
traversal.
The MapReduce framework [16,17] use key-value pairs

as the only data type to distribute the computations. To
manipulate a bidirected string graph in MapReduce, we
use a node adjacency list to represent the graph, which
stores node id (i.e., the identifier of a node) as the key, and
node data structure as the value. Node data structure

Graph Simplifiction

Graph Construction

Generate Non-Contained Reads

Match Prefix

Transitive Reduction

Verify Overlap

Path Compression

Tips Removal

Bubbles Removal

Edge Adjustment

Edge Adjustment

Low coverage
node removal

Figure 11 Workflow of CloudBrush assembler with Edge Adjustment.

Chang et al. BMC Genomics 2012, 13(Suppl 7):S28
http://www.biomedcentral.com/1471-2164/13/S7/S28

Page 14 of 17

contains features of the node as well as a list of its out-
going edges and their features. The node adjacency list is a
compact representation and allows easy traversal along the
outgoing links. In MapReduce, a basic unit of computa-
tions is usually localized to a node’s internal state and its
neighbors in the graph. The results of computations on a
node are emitted as values, each keyed with the identifica-
tion of a neighbor node. Conceptually, we can think of
this process as “passing” the results of computation along
out-links. In the reducer, the algorithm receives all partial
results having the same destination node id, and performs
the computation. Subsequently, the data structure corre-
sponding to each node is updated and written back to dis-
tributed file systems.

CloudBrush: string graph assembly using MapReduce
Since Edge Adjustment can effectively and efficiently man-
age the complex graph structures (see Tables 1 and 2), we
remove the path search and SNEA operation modules,
which were used to manage braid structures and were the
scalability bottleneck in the previous version. Thus, the
new pipeline of CloudBrush is summarized as follows:
First, we constructed the string graph in four steps: retain-
ing non-redundant reads as vertices, finding overlaps
between reads, performing edge adjustment, and removing
redundant transitive edges. Second, we simplified the
string graph by compressing non-branching paths, remov-
ing tips and bubbles using algorithms similar to those
used by Contrail [10], and reusing Edge Adjustment as an

1: class Mapper
2: method Map (nid n, node N)
3: Emit (nid n, NODE_MSG N) // Pass along graph structure
4: for all nodeid m N.AdjacencyList do
5: Emit (nid m, NBR_MSG N) // Emit information to neighbor
6: end for

1: class Reducer
2: method Reduce(nid m, [MSG1 N1, MSG2 N2, …])
3: M
4: for all MSGi Ni [MSG1 N1, MSG2 N2, …] do
5: if IsNode(MSGi) then
6: M Ni // Recover graph structure
7: else if IsForwardNeighbor(MSGi)
8: add Ni to Forward Position Weight Matrix (FPWM)
9: else if IsReverseNeighbor(MSGi)
10: add Ni to Reverse Position Weight Matrix (RPWM)
11: end if
12: end for
13: FCS ComputeConsensusSequence(FPWM)
14: if FCS != then
15: for all forward neighbors u M.AdjacencyList do
16: if !consistent(u.sequence, FCS) then
17: remove u from M.AdjacencyList
18: end if
19: end for
20: end if
21: RCS ComputeConsensusSequence(RPWM)
22: if RCS != then
23: for all reverse neighbors w M.AdjacencyList do
24: if !consistent(w.sequence, RCS) then
25: remove w from M.AdjacencyList
26: end if
27: end for
28: end if
29: Emit(nid m, node M)

Figure 12 The pseudo code of the EA algorithm in MapReduce version.

Chang et al. BMC Genomics 2012, 13(Suppl 7):S28
http://www.biomedcentral.com/1471-2164/13/S7/S28

Page 15 of 17

option to simplify the graph further. Figure 11 displays the
workflow of CloudBrush.

Graph construction in MapReduce
1. Retaining non-redundant reads as vertices
A sequence read may have several redundant copies in the
dataset by oversampling in Solexa or SOLiD sequencing.
The first step in graph construction is to merge redundant
copies of the same read into a single node. We implemen-
ted a distributed prefix tree in MapReduce to extend Ede-
na’s prefix-tree approach [12].
2. Finding pairwise overlaps between reads
Read-read overlaps are basic clues in connecting reads to
contigs; however, finding overlaps between reads is often
the most computationally intensive step in string graph-
based assemblies. To find all the pairs of read-read over-
laps, we adopted a prefix-and-extend strategy to speed up
construction of the string graph [15]. The strategy con-
sists of two phases, the prefix phase and the extend phase.
In the prefix phase, a pair of reads is reported if the prefix
of one of the reads exactly matches a substring of the
other read at the given seed length. The pair is then said
to have a “brush.” In the extend phase, pairs of reads hav-
ing a brush are further validated starting from the brush.
If the exact match extends to one end of the second read,
then an edge containing the two nodes of the two reads is
created.
3. Edge Adjustment
After finding overlaps as edges, we used the EA algo-
rithm on the graph structure. To perform the EA algo-
rithm in the MapReduce framework, we passed the
neighbors’ edges for each node ri such that ri knows all
of the neighboring nodes in the reducer. Once a node
possesses all of the neighbors’ information, the EA algo-
rithm can easily compute the consensus sequence from
the neighbors’ content and perform the edge adjustment
as described in Results sections. Figure 12 shows the
pseudo code of the Edge Adjustment algorithm in
MapReduce version. It is noteworthy that, in MapRe-
duce framework, each node computes its own consensus
sequence in parallel.
4. Reducing transitive edges
After the EA algorithm, the graph still has superfluous
edges due to oversampling in sequencing. Consider two
paths of consecutively overlapping nodes ra®rb®rc and
ra®rc; ra®rc is transitive because it spells the same
sequence as ra®rb®rc, but ignores the middle node rb.
To perform the transitive reduction in the MapReduce

framework, we passed the neighbors’ edges for each
node ri such that ri knows all the neighboring nodes in
the reducer. Different from de Bruijn graphs, the overlap
size information is attached to the edge of our bidir-
ected string graph. Therefore, we can sort neighbors by
overlap size and remove transitive edges in order.

Graph simplification in MapReduce
After constructing the string graph, we used several tech-
niques to simplify the graph, including path compression,
tip and bubble removal, and low coverage node removal.
Path compression is used to merge a chain of nodes, each
having one in-link and one out-link along a specific strand
direction into a single node. After path compression, tips
and bubbles are easily recognized locally. Our MapReduce
implementation of path compression, tip and bubble
removal, and low coverage node removal are similar to
that of Contrail [10], except that we add an additional field
of overlap size for the data structure of message passing
between nodes tailed for the string graphs. Additionally,
we provide an option to reuse the EA algorithm in graph
simplification. In this study, we only performed the EA
algorithm on nodes whose neighbors were dead ends of
the graph; more broadly, the EA algorithm can be per-
formed iteratively until no dead-end neighbors can be
removed.

Acknowledgements
The authors wish to thank Chunghwa Telecom Co. and National
Communication Project of Taiwan for providing the cloud computing resources
and the technical supports they provided. They wish to thank Jazz Yao-Tsung
Wang at the National Center for High-Performance Computing for his help
with the efficient deployment of Hadoop clusters. YJC, CCC, and JMH were
partially supported by National Science Council grant NSC 99-2321-B-001-025-.
This article has been published as part of BMC Genomics Volume 13
Supplement 7, 2012: Eleventh International Conference on Bioinformatics
(InCoB2012): Computational Biology. The full contents of the supplement are
available online at http://www.biomedcentral.com/bmcgenomics/
supplements/13/S7.

Author details
1Institute of Information Science, Academia Sinica, Taipei, Taiwan, ROC.
2Department of Computer Science and Information Engineering, National
Taiwan University, Taipei, Taiwan, ROC.

Authors’ contributions
YJC and CCC were equal contributors in developing the whole idea and
writing the manuscript. CLC and JMH were leaders of the team and
participated in the design of the study and revising the manuscript. All
authors read and approved the final manuscript.

Competing interests
The authors declare that they have no competing interests.

Published: 13 December 2012

References
1. Stein LD: The case for cloud computing in genome informatics. Genome

Biology 2010, 11:207.
2. Miller JR, Koren S, Sutton G: Assembly algorithms for next-generation

sequencing data. Genomics 2010, 95:315-327.
3. Pevzner P, Tang H, Waterman M: Fragment assembly with double-

barreled data. Proceedings of the National Academy of Sciences 2001,
98(17):9748-9753.

4. Zerbino D, Birney E: Velvet: Algorithms for De Novo Short Read Assembly
Using De Bruijn Graphs. Genome Research 2008.

5. Chaisson MJ, Pevzner PA: Short read fragment assembly of bacterial
genomes. Genome Research 2008, 18:324.

6. Gnerre S, MacCallum I, Przybylski D, Ribeiro FJ, Burton JN, Walker BJ,
Sharpe T, Hall G, Shea TP, Sykes S, Berlin AM, Aird D, Costello M, Daza R,
Williams L, Nicol R, Gnirke A, Nusbaum C, Lander ES, Jaffe DB: High-Quality

Chang et al. BMC Genomics 2012, 13(Suppl 7):S28
http://www.biomedcentral.com/1471-2164/13/S7/S28

Page 16 of 17

http://www.biomedcentral.com/bmcgenomics/supplements/13/S7
http://www.biomedcentral.com/bmcgenomics/supplements/13/S7
http://www.ncbi.nlm.nih.gov/pubmed/20441614?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20211242?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20211242?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18083777?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18083777?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21187386?dopt=Abstract

Draft Assemblies of Mammalian Genomes from Massively Parallel
Sequence Data. PNAS 2011, 108:1513-1518.

7. Simpson JT, Wong K, Jackman SD, Schein JE, Jones SJM, Birol İ: ABySS: A
parallel assembler for short read sequence data. Genome Research 2009,
19:1117.

8. Li R, Zhu H, Ruan J, Qian W, Fang X, Shi Z, Li Y, Li S, Shan G, Kristiansen K,
Li S, Yang H, Wang J, Wang J: De novo assembly of human genomes
with massively parallel short read sequencing. Genome Research 2010,
20:265-272.

9. Peng Y, Leung H, Yiu S, Chin F: IDBA-A Practical Iterative de Bruijn Graph
De Novo Assembler. Research in Computational Molecular Biology (RECOMB
2010) 2010, 426-440.

10. Schatz M, Sommer D, Kelley D, Pop M: Contrail: Assembly of Large
Genomes using Cloud Computing. [http://contrail-bio.sf.net/].

11. Myers E: The fragment assembly string graph. Bioinformatics 2005, 21:
ii79-ii85.

12. Hernandez D, Francois P, Farinelli L, Osteras M, Schrenzel J: De novo
bacterial genome sequencing: Millions of very short reads assembled on
a desktop computer. Genome Research 2008, 18:802-809.

13. Jackson B, Schnable P, Aluru S: Parallel short sequence assembly of
transcriptomes. BMC Bioinformatics 2009, 10:S14.

14. Simpson JT, Durbin R: Efficient De Novo Assembly of Large Genomes
Using Compressed Data Structures. Genome Res 2012, 22:549-556.

15. Chang Y-J, Chen C-C, Chen C-L, Ho J-M: De Novo Assembly of High-
Throughput Sequencing Data with Cloud Computing and New
Operations on String Graphs. Proceedings of IEEE International Conference
on Cloud Computing (CLOUD 2012) Hawaii, USA; 2012.

16. Dean J, Ghemawat S: MapReduce: Simplified data processing on large
clusters. Communications of the ACM 2008, 51:107-113.

17. White T: Hadoop: The Definitive Guide. O’Reilly Media 2009.
18. Salzberg SL, Phillippy AM, Zimin A, Puiu D, Magoc T, Koren S, Treangen TJ,

Schatz MC, Delcher AL, Roberts M, Marçais G, Pop M, Yorke JA: GAGE: A
Critical Evaluation of Genome Assemblies and Assembly Algorithms.
Genome Res 2012, 22:557-567.

19. Hicloud computer-as-a-service (CaaS). [http://hicloud.hinet.net/].
20. Chen C-C, Lin W-D, Chang Y-J, Chen C-L, Ho J-M: Enhancing De Novo

Transcriptome Assembly by Incorporating Multiple Overlap Sizes. ISRN
Bioinformatics 2012, 2012:1-9.

21. Zhang Z, Schwartz S, Wagner L, Miller W: A greedy algorithm for aligning
DNA sequences. Journal of Computational Biology 2000, 7:203-214.

22. Koren S, Treangen TJ, Pop M: Bambus 2: scaffolding metagenomes.
Bioinformatics 2011, 27:2964-2971.

23. Schatz MC, Delcher AL, Salzberg SL: Assembly of large genomes using
second-generation sequencing. Genome Research 2010.

doi:10.1186/1471-2164-13-S7-S28
Cite this article as: Chang et al.: A de novo next generation genomic
sequence assembler based on string graph and MapReduce cloud
computing framework. BMC Genomics 2012 13(Suppl 7):S28.

Submit your next manuscript to BioMed Central
and take full advantage of:

• Convenient online submission

• Thorough peer review

• No space constraints or color figure charges

• Immediate publication on acceptance

• Inclusion in PubMed, CAS, Scopus and Google Scholar

• Research which is freely available for redistribution

Submit your manuscript at
www.biomedcentral.com/submit

Chang et al. BMC Genomics 2012, 13(Suppl 7):S28
http://www.biomedcentral.com/1471-2164/13/S7/S28

Page 17 of 17

http://www.ncbi.nlm.nih.gov/pubmed/21187386?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21187386?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19251739?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19251739?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20019144?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20019144?dopt=Abstract
http://contrail-bio.sf.net/
http://www.ncbi.nlm.nih.gov/pubmed/16204131?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18332092?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18332092?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18332092?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19828074?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19828074?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/22156294?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/22156294?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/23175732?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/22147368?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/22147368?dopt=Abstract
http://hicloud.hinet.net/
http://www.ncbi.nlm.nih.gov/pubmed/10890397?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10890397?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21926123?dopt=Abstract

	Abstract
	Background
	Results

	Background
	Results
	Structural defects in string graphs
	Edge Adjustment with the neighbors’ contents
	Analysis of edge adjustment
	Evaluation of assembly accuracy
	Comparison with other tools using GAGE benchmarks
	Run time analysis

	Discussion and conclusions
	Methods
	Distributed graph processing in MapReduce
	CloudBrush: string graph assembly using MapReduce
	Graph construction in MapReduce
	1. Retaining non-redundant reads as vertices
	2. Finding pairwise overlaps between reads
	3. Edge Adjustment
	4. Reducing transitive edges

	Graph simplification in MapReduce

	Acknowledgements
	Author details
	Authors' contributions
	Competing interests
	References

