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Abstract

Background: While genome-wide association studies identified some promising candidates for schizophrenia, the
majority of risk genes remained unknown. We were interested in testing whether integration gene expression and
other functional information could facilitate the identification of susceptibility genes and related biological pathways.

Results: We conducted high throughput sequencing analyses to evaluate mRNA expression in blood samples isolated
from 3 schizophrenia patients and 3 healthy controls. We also conducted pooled sequencing of 10 schizophrenic
patients and matched controls. Differentially expressed genes were identified by t-test. In the individually sequenced
dataset, we identified 198 genes differentially expressed between cases and controls, of them 19 had been verified by
the pooled sequencing dataset and 21 reached nominal significance in gene-based association analyses of a genome
wide association dataset. Pathway analysis of these differentially expressed genes revealed that they were highly
enriched in the immune related pathways. Two genes, S100A8 and TYROBP, had consistent changes in expression in
both individual and pooled sequencing datasets and were nominally significant in gene-based association analysis.

Conclusions: Integration of gene expression and pathway analyses with genome-wide association may be an
efficient approach to identify risk genes for schizophrenia.

Background
Schizophrenia is characterized by delusions, hallucinations,
and deficits in cognitive function. Over the years, epide-
miologic studies have accumulated significant evidence
that many genetic factors play important roles in both
symptomatology and etiology. Recent genetic studies,
including genome-wide association (GWA) studies, have
identified several promising candidate genes and loci. One
of the most consistent findings in GWA studies is the
major histocompatibility (MHC) region in 6p [1-3]. This
finding strongly implicates the immune system as being
involved in the development of schizophrenia. Other find-
ings include candidate genes functioning in cell adhesion

[4-6], migration [4,7] and apoptosis [8,9]. Except the find-
ings from rare copy number variations [10-13], the effects
of individual genes overall are modest or weak. These
results suggest that many genes with moderate or small
effects may be involved in schizophrenia [14]. It is difficult
to identify these genes without increased sample sizes and
better analysis of phenotype. Integration of other func-
tional studies or utilization of high throughput technolo-
gies may increase the power to detect other schizophrenia
candidate genes.
Whole genome mRNA sequencing (RNA-Seq, or tran-

scriptome sequencing) allows for the comprehensive sur-
vey of all the mRNAs in a sample. This platform is the
fruit of recently developed high-throughput DNA sequen-
cing technology [15,16], and has produced exciting results
in the study of various diseases [17-19]. In this experiment,
we applied the RNA-Seq technology to study schizophre-
nia. Specifically, we aimed to understand the dysregulation
in schizophrenia at higher levels of biological structure
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and to integrate gene expression data to facilitate the iden-
tification of promising candidate genes. To accomplish
these goals, we sequenced the blood mRNAs isolated from
3 schizophrenic patients and 3 matched healthy controls.
We verified the differentially expressed genes (DEGs) in 2
independent pooled samples. We further examined the
association of the discovered DEGs using GWA data from
the molecular genetics of schizophrenia (MGS) study.
Two differentially expressed genes, S100A8 and TYROBP,
reached nominal significance in gene-based association
analysis.

Materials and methods
Subjects, sample preparation and sequencing
Schizophrenia patients were recruited from the pool of
diagnosed schizophrenia patients of the inpatient unit of
the VA Medical Center of Western New York (WNY) and
from the Buffalo Psychiatric Center inpatient unit. All
enrolled patients met the DSM-IV criteria for schizophre-
nia based on the examination of psychiatric case records
and clinical interviews by at least two experienced psychia-
trists. The healthy individuals were recruited though VA
employees and advertisements in the local media. Indivi-
duals with a family history of schizophrenia or other
major psychiatric disorders were excluded. A total of 26
subjects were included in this study. All subjects gave
informed consent to participate in the study. The protocol
and consent form were approved by the institutional
review boards at the VA WNY Health Care System and
New York State Office Mental Health.
Blood samples were collected with a 10 ml Vacutainer,

Acid Citrate Dextrose (ACD) tube. Lymphocytes were
prepared using isolymph (a diagnostic reagent used to
separate lymphocytes from blood). Each 100 ml of iso-
lymph contains 5.7 grams of Ficoll 400 and 9.0 grams of
Diatrizoate Sodium) in a density gradient [20]. Ten ml of
whole blood was diluted with equal volume RPMI and
mixed by pipetting. Three milliliter of isolymph was
transferred to a 15 ml Falcon conical bottom tube and
4 ml of diluted blood was carefully layered on top of the
isolymph. The samples were centrifuged at 1640 rpm for
30 minutes. Lymphocytes were collected at the interface
between the two layers by a sterile 1 ml pipette. The lym-
phocytes were mixed with 3 volumes of RPMI and centri-
fuged at 1400 rpm for 10 minutes. The supernatant was
then removed. The lymphocytes were re-suspended in
Cold Freeze Medium (60% RPMI 1640, 10% DMSO, 30%
heat inactivated FCS) at a lymphocytes density of 6-12 ×
106 cells/ml. The lymphocytes were distributed to NUNC
plastic cryopreservation vials for long term storage. The
vials were first placed in the cryo freezing container and
stored at -80°C for at least 4 hours and then transferred
to liquid nitrogen for final storage.

RNA was prepared from the frozen lymphocytes. Total
RNA was extracted using the Mico-to-Midi Total RNA
Purification System (Invitrogen, Carlsbad, CA) according
to the manufacturer’s instructions. The total RNA concen-
tration and purity were determined spectrophotometrically
at 260 nm and 280 nm in the Functional Genomics Shared
Resource (FGSR) in Vanderbilt University.
MRNA capture, cDNA conversion, sizing, and library

construction were performed using kits from the Illumina
Company and by following the manufacture’s recom-
mended procedures. For RNA-Seq application, individual
libraries were constructed for 3 schizophrenia patients, 3
controls, and 2 pools (10 subjects/pool) of schizophrenia
patients and controls. Each library was loaded into a single
lane of the Illumina Genome Analyzer II flow cell. For 3
cases and 3 controls, we performed paired-end sequencing
while for pooled samples, we performed single-end
sequencing. Image analysis and base-calling were per-
formed by the Genome Analyzer Pipeline version 2.0 with
default parameters [21]. Library construction and RNA
sequencing was performed in the Genome Technology
Core (GTC) in Vanderbilt University.

Data process and analysis
After obtaining the short reads, we performed a series of
quality checks, including quality score evaluation using
program HTSeq [22] and marking duplicate reads by
using software SAMTools [23]. All reads were indepen-
dently aligned to a single reference file consisting of all
human transcripts and the human genome in the UCSC
genome assembly hg18 (NCBI build 36.1) by using
TopHat (Version 1.0.10) [24]. The aligned sequences were
evaluated with SAMTools for capture efficiency in order
to ensure no artificial fragment representation (as assessed
by fragment position distribution). We ran TopHat in the
‘paired-end mode’ with the minimum distance between
paired-end reads of 120 bp, a maximum distance of
500,000 bp, and default settings of other parameters (e.g.,
no more than two mismatches between read and reference
were allowed in the first 28 bp (5’ end) of the read).
To obtain an accurate measure of transcript abun-

dance, we only used the reads that were uniquely mapped
to the human genome. Since the sequence reads were
paired-end, we quantified expression levels of all tran-
scripts in each subject according to the fragments per
kilobase of exon per million fragments mapped (FPKM),
which was calculated by the software Cufflinks [25].
FPKM is a similar measurement to RPKM, which mea-
sures gene expression in Reads Per exon Kilobase per
Million mapped reads (RPKM). RPKM has been used to
normalize measurement of exon read density and allows
transcript levels to be compared both within and between
samples [25,26].
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Considering that RNA-Seq mainly estimates exon
expression and that most genes have multiple transcripts,
it is necessary to determine how to estimate gene expres-
sion level based on transcript expression data. In our
study, we employed a simple strategy: we first identified
the differentially expressed transcripts (DETs) and then
considered the unique genes of these transcripts as differ-
entially expressed genes (DEGs) for further functional
analysis.
To improve the reliability and comparability of differ-

ential expression analysis, we only examined the expres-
sion difference of those transcripts with FPKM value > 5
in all individually sequenced patients and controls [25].
Using these transcripts, we performed Fisher’s exact test
to identify transcripts with significantly differential
expression between patients and controls [27-29]. For
each transcript, we constructed a 2 × 2 contingency
table, which included four FPKM values: n, N-n, r, R-r
where n is the sum of FPKM values of a given transcript
in 3 cases, N is the sum of FPKM values of all tran-
scripts in cases, r is the sum of FPKM values of the
given transcript in 3 controls, and R is the sum of the
FPKM values of all transcripts in controls. To determine
the expression change direction, we used “greater” or
“less” parameters in the one-tailed Fisher’s exact test to
find the up-regulated transcripts or down-regulated
transcripts respectively. Next, we controlled the type 1
errors by Bonferroni correction for the number of tests
performed. A transcript was considered differentially
expressed if the Bonferroni adjusted P-value was less
than 0.05.
For data generated from pooled samples, we performed

the same data processing and analysis as the individually
sequenced samples except for using single-end mode to
perform mapping of the reference sequence.

Functional analysis
To assess the function of the DEGs that we identified, we
conducted pathway enrichment tests for the DEGs using
the online tool WebGestalt (version 2) [30]. We used all
pathways in the Kyoto Encyclopedia of Genes and
Genomes (KEGG) database. We selected those pathways
having adjusted P-values of less than 0.01 calculated by
the hypergeometric test followed by the Benjamini-Hoch-
berg method [31], which was implemented in WebGestalt.
To make the analysis biologically meaningful, we consid-
ered only those KEGG pathways containing 5 or more
DEG genes.
To further systematically determine canonical signaling

pathways and molecular networks that the DEGs might
involve, we performed the pathway/network enrichment
analysis using the Ingenuity Pathway Analysis (IPA) tool
from the Ingenuity Systems [32]. For canonical signaling
pathway analysis, given a list of genes, a right-tailed

Fisher’s exact test was performed for the enrichment of
these genes in its hand-curated canonical pathway data-
base. Here, the P-value calculated for a pathway measures
the probability of being randomly selected from all of the
curated pathways. To control the error rate in the analy-
sis, IPA also provided a corrected P-values to identify the
most significant results in IPA’s canonical pathways
based on the Benjamini-Hochberg method [31]. This tool
allowed us to identify the signaling pathways in which
the DEGs were enriched. In our study, we used a cut-off
of the corrected P-value less than 0.05 (or score > 1.30,
here score = -log P) to define the significant pathways.
For network enrichment, the DEGs were overlaid onto a
global molecular network (GMN) developed based on
the Ingenuity Pathways Knowledge Base, in which func-
tional relationships such as activation, chemical-protein
interaction, expression, inhibition and regulation of bind-
ing were manually curated. Subnetworks of genes were
then extracted from the GMN based on their connectiv-
ity using the algorithm developed by IPA [33]. For each
subnetwork, a likelihood score, which measures the prob-
ability of the DEGs being found in the same subnetwork
by chance, was transformed from the P- values calculated
by Fisher’s exact test. Additionally, the IPA assigned the
top 3 biological functions for each network it identified.

Gene-based genome-wide association analysis
The RNA-Seq application produced a list of differen-
tially expressed genes in schizophrenia. We examined
whether genetic variants in these DEGs harbored asso-
ciation signals. We conducted a gene-based GWA analy-
sis using the MGS dataset for schizophrenia. We
obtained this dataset from dbGaP under the protocol of
“Genetic study of schizophrenia, nicotine dependence
and other comorbid psychiatric disorders” by X.C. For
each gene, its association P-value with schizophrenia
was estimated using the VEGAS (Versatile Gene-based
Association Study) software package [34].

Results
An overview of RNA-Seq data
In this study, we conducted genome-wide RNA sequen-
cing for 6 individual samples and 2 pooled samples. The
data from individually sequenced subjects was used for
the initial identification of DEGs, while the pooled data
was used to validate these DEGs.
For the 6 individually sequenced samples, after filtering

by quality score, we generated an average of 8.7 million
pairs of 43-bp paired-end reads per sample. The quality
scores of the reads were satisfactory (Figure S1), of which
90.3% of the called bases had a Phred score ≥ 30. Table 1
shows the mapping statistics of the fragments. For each
subject, an average of approximately 85.1% of the reads
could be mapped to the human reference genome.
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Among the mapped sequences, ~48.6% of the read pairs
were uniquely mapped to the human genome as properly
aligned fragments. This is similar to the output of other
RNA-Seq sequencing studies [35,36].
These reads were used to estimate transcript expres-

sion of all 6 samples. Table 2 shows the transcripts
detected by RNA-Seq in subjects and mapped genes
with FPKM values and coverage. Of the 33,599 tran-
scripts and 32,797 genes annotated in the UCSC hg18,
we detected 18,226 (54.2%) transcripts (FPKM > 0),
which mapped to 14,929 (45.5%) unique genes. Among
these transcripts, on average, 7223 (41.7%) had their
FPKM values higher than 5.
For the pooled samples, we generated a total of 26.2

million reads for the cases, of which 92.05% were
mapped to the human reference genome, and 28.4 mil-
lion reads for the controls, of which 91.29% were

mapped. The resulting expression on transcription level
and gene level were summarized in Table 2.

Identification of differentially expressed genes
To identify the DEGs between the cases and controls, we
used only those transcripts with FPKM values > 5.0 in all
the 6 subjects. With this criterion, 4715 transcripts were
included for differential expression analysis. Using Fisher’s
exact test, a total of 206 transcripts reached significance
after Bonferroni correction (Table S1). Among these tran-
scripts, 123 (mapped to 118 unique genes) were signifi-
cantly down-regulated and 83 (mapped to 80 unique
genes) were significantly up-regulated. In addition to tran-
scripts expressed in both cases and controls, there were
transcripts detected only in the cases or controls. Based on
the FPKM distribution (Figure S2), transcripts exclusively
expressed in either cases or controls with FPKM > 2.0

Table 1 Statistics of the number of fragments sequenced, aligned and mapped using TopHat

Sample Sequenced
fragmentsa

All mapped
fragments (%)

Uniquely mapped
fragments (%)b

Singleton
fragments (%)c

Spliced
fragments (%)d

Multi-loci mapped
fragments (%)

Control

1295-
ZZ-4

10,114,082 84.5 45.2 24.9 3.8 26.1

1295-
ZZ-9

6,152,569 82.0 46.1 24.5 3.3 26.2

1295-
ZZ-13

9,263,358 86.5 50.6 25.0 3.2 21.2

Case

1295-
ZZ-21

9,287,780 85.8 50.7 25.1 3.3 20.9

1295-
ZZ-32

8,911,007 85.4 48.5 26.3 4.0 21.2

1295-
ZZ-36

8,211,577 86.6 50.7 23.3 3.2 22.8

aEach fragment has two short sequence reads.
bFor uniquely mapped fragments, both of the two reads could be uniquely mapped to a unique location in the reference genome.
cFor singleton fragments, only one of the two reads could be mapped to the reference genome.
dFor spliced fragments, at least one of the two reads could be mapped across a splicing junction.

Table 2 Statistics of the number of transcripts and genes detected

Sample Number of transcripts Number of genes FPKMa (mean ± sd) Coverageb (mean ± sd) Number of genes with FPKM > 5

Control

1295-ZZ-4 18,675 15,176 15.28 ± 85.28 8.54 ± 45.80 7876

1295-ZZ-9 17,134 14,330 14.36 ± 67.49 4.66 ± 21.03 6832

1295-ZZ-13 18,638 15,205 13.52 ± 68.07 7.06 ± 34.89 7507

Case

1295-ZZ-21 18,274 14,883 14.86 ± 84.98 7.72 ± 43.89 6903

1295-ZZ-32 18,796 15,315 14.59 ± 167.18 7.14 ± 74.54 7359

1295-ZZ-36 17,837 14,668 11.84 ± 55.17 5.41 ± 24.17 6863

Pooled control 22,463 17,880 10.65 ± 70.63 18.04 ± 119.42 6134

Pooled case 22,256 17,620 11.67 ± 79.45 21.16 ± 143.79 6267
aFor individually sequenced dataset, we used FPKM (Fragments Per Kilobase of exon per Million fragments mapped) to estimate transcript expression.
bThe coverage was calculated based on the unit of transcript.
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were included in the pathway and functional analyses.
There were 12 transcripts exclusively expressed in cases
(mapped to 12 unique genes) and 8 transcripts exclusively
expressed in controls (mapped to 8 unique genes) (Table
S2). Thus, we obtained a total of 218 genes differentially
expressed among the 6 sequenced subjects.

Validation and functional enrichment analysis of the DEGs
To validate the DEGs discovered from the individually
sequenced dataset, we conducted similar differential
expression analyses for the pooled dataset (see Materials
and methods). There were 155 transcripts reaching nom-
inal significance, of which 84 were up-regulated (mapped
to 78 genes) and 72 were down-regulated (mapped to 68
unique genes). Of the 218 DEGs identified from the indi-
vidually sequenced dataset, 9 were up-regulated (GNAS,
GNLY, HBA1, HBB, NCRNA00188, NEAT1, NFKB2,
S100A8, and SNHG5) and 10 were down-regulated genes
(CD74, CXCR4, LGALS2, LYZ, PF4, PIK3IP1, RBM38,
RPL30, SCO2, and TYROBP) that were found differen-
tially expressed between cases and controls in the pooled
dataset (with the same direction of gene expression
change).
We conducted KEGG pathway profiling of these 218

DEGs. The results are shown in Table 3. Of the pathways
enriched in these 218 genes, the most noticeable ones are
involved in the immune and inflammation systems (anti-
gen processing, cell adhesion molecules, hematopoietic
cell lineage, systemic lupus erythematosus, chemokine
signaling pathway, intestinal immune network for IgA
production, toll-like receptor signaling pathway, T cell

receptor signaling pathway, B cell receptor signaling
pathway, Cytokine-cytokine receptor interaction, etc).
Interestingly, the cell adhesion molecules pathway
(CAMs, KEGG pathway ID hsa04514, adjusted P value =
5.78 × 10-9, Table 3) was the only pathway that was
found to be significantly associated with both schizophre-
nia and bipolar disorder in a recent pathway analysis of
schizophrenia and bipolar disorder GWAS datasets [37].
It was also highlighted in our recent pathway analysis
using a generalized additive model for correction of gene
length biases and other two methods (ALIGATOR and
hypergeometric test) (unpublished data). Upon our
further examination, we found 10 DEG genes in the
CAMs pathway. Among the 10 genes, 8 were down-regu-
lated (CD4, HLA-DPA1, HLA-DRA, HLA-DRB1, ITGB2,
PECAM1, SELL and VCAN) and two were up-regulated
(CD8A and ITGB7). Among the 8 down-regulated genes,
three (HLA-DPA1, HLA-DRA and HLA-DRB1) were in
the MHC region (chr6:20,000,000-40,000,000) (Table S3).
For the 19 genes differentially expressed in both data-

sets, four are involved in immune systems (CXCR4,
NFKB2, PF4, and TYROBP). In our KEGG pathway
enrichment analysis, we found several pathways overre-
presented in these genes including “Chemokine signaling
pathway” and “Cytokine-cytokine receptor interaction,”
both of which were found significantly overrepresented
in the 218 genes (Table 3). We further examined the
pathways that were significantly overrepresented in these
genes using IPA tools. The most significant pathways
were “MIF-mediated glucocorticoid regulation,” “MIF
regulation of innate immunity,” “TREM1 signaling,” and

Table 3 KEGG pathways significantly enriched in the 218 differentially expressed genes

KEGG pathway Number of genes (%) Nominal P-valuea Adjusted P-valueb

Antigen processing and presentation 14 (6.42) 9.27 × 10-18 1.58 × 10-16

Lysosome 11 (5.05) 1.07 × 10-11 9.09 × 10-11

Cell adhesion molecules (CAMs) 10 (4.59) 9.31 × 10-10 5.28 × 10-9

Hematopoietic cell lineage 8 (3.67) 9.68 × 10-9 4.11 × 10-8

MAPK signaling pathway 11 (5.05) 7.17 × 10-8 2.44 × 10-7

Chemokine signaling pathway 9 (4.13) 3.31 × 10-7 8.86 × 10-7

Systemic lupus erythematosus 8 (3.67) 3.65 × 10-7 8.86 × 10-7

Intestinal immune network for IgA production 5 (2.29) 3.89 × 10-6 8.27 × 10-6

Toll-like receptor signaling pathway 6 (2.75) 8.76 × 10-6 1.65 × 10-5

T cell receptor signaling pathway 6 (2.75) 1.29 × 10-5 2.19 × 10-5

Epithelial cell signaling in Helicobacter pylori infection 5 (2.29) 1.79 × 10-5 2.77 × 10-5

Leukocyte transendothelial migration 6 (2.75) 2.13 × 10-5 3.02 × 10-5

B cell receptor signaling pathway 5 (2.29) 2.88 × 10-5 3.77 × 10-5

Ribosome 5 (2.29) 6.23 × 10-5 7.56 × 10-5

Cytokine-cytokine receptor interaction 6 (2.75) 0.0017 0.0019

Metabolic pathways 13 (5.96) 0.0023 0.0024

Pathways in cancer 6 (2.75) 0.0049 0.0049
aNominal P-value was calculated by hypergeometric test.
bAdjusted P-values was corrected of nominal P-values by Benjamini-Hochberg multiple testing correction.
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“Induction of apoptosis by HIV1”. MIF (macrophage
migration inhibitory factor) is a unique counter-regulator
of immunosuppressive and anti-inflammatory activities
of glucocorticoids. Consistent with the results of 218
genes, all of these pathways are related to immune and
inflammation systems. Furthermore, we conducted net-
work analysis using IPA. Figure 1 shows the top network
overrepresented in these genes, in which the top three
functions are “Molecular transport,” “Cellular move-
ment,” and “Hematological system development and
function.” Note that several genes in Figure 1 are poten-
tially interesting like CD74, S100A8, Akt, IL12, TYROBP,
HBB and HBA1. Among them, CD74 encodes a Type II
transmembrane protein, which is a binding protein for
MIF and an essential protein for MIF-induced activation
of extracellular signal-regulated kinase-1/2MAP kinase
cascade, cell proliferation and apoptosis [38].

Gene-based association analyses of DEGs
One of the objectives of our RNA-Seq experiments was to
test whether differentially expressed genes were enriched
for association signals in GWA studies. Towards this goal,
we conducted gene-based GWA analysis using the MGS
dataset and the VEGAS method [34].This analysis pro-
duced a P value for each gene by considering gene’s link-
age disequilibrium information from the HapMap
populations. We matched the 218 DEGs with those genes

from the association analysis. Of the 218 genes, 21 had
their P values less than 0.05 (Table 4). This was 2-fold
enrichment than the expected (P = 0.0025). Five genes
(SELL [39], HLA-DRB1 [40], CEBPD [41], HSPA5 [42],
and NRGN [3]) from the matched list had been previously
studied for schizophrenia with positive association signals,
the rest of the genes were involved in immune responses
or other neuronal diseases. Two genes, S100A8 and TYR-
OBP, were differentially expressed in both the individual
and pooled sequencing datasets.

Discussion
Recent studies have shown that most genetic factors pre-
disposing to schizophrenia have only a modest effect.
GWA studies alone seem insufficient to identify the
majority of these genetic factors. Expression level is an
index of function of genes and may be useful for identify-
ing risk genes for schizophrenia at the transciptomic level.
In this study, we took advantage of recently available next
generation sequencing technologies (i.e., RNA-Seq) to
sequence poly-A tailed mRNAs from blood samples of 6
individuals and 2 pools of schizophrenia patients and con-
trols. In the 6 individually sequenced samples, we found
218 genes showing differentially expression between cases
and controls. Among these genes, 19 were nominally sig-
nificant at the expression level in the 2 pooled samples. In
our IPA analysis, we found that MIF regulation of innate

Figure 1 The top network overrepresented by the 19 concordantly differentially expressed genes. The functions of this network include
“molecular transport,” “cellular movement,” and “hematological system development and function“. Nodes in red indicate up-regulation in the cases
and nodes in green indicate down-regulation.
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immunity and TREM1 signaling were highly enriched in
these 19 genes. Furthermore, of the 218 DEGs, 21 reached
nominal significance in gene-based association analysis of
the MGSGWAS dataset. Nineteen of these 21 genes are
directly involved in immune response/diseases, or have
been studied for candidates for schizophrenia and other
neuronal diseases. Two genes, S100A8 and TYROBP,
showed the same direction of expression changes in the
individual and pooled sequencing datasets, and they also
reached nominal significance in gene-based association
analysis.
S100A8, also called MRP-8, encodes a calcium binding

protein involved in inflammatory responses. It has been
implicated in rheumatoid arthritis [43], systemic lupus
erythematosus [44] and cancers [45,46]. Intriguingly, rheu-
matoid arthritis may be correlated with schizophrenia
[47,48]. TYROBP, also known as DAP12, encodes an
immunoreceptor adaptor protein that plays a key role in
osteoclast differentiation and maturation [49,50]. Muta-
tions in this gene lead to the Nasu-Hakola disease [51-54],
a rare autosomal recessive disorder characterized by bone
cyst and presenile dementia. In addition to their functions
in the immune system, both genes are expressed in
human brain. S100A8 shows elevated expression in cere-
bral ischemia [55] and posttraumatic brain injuries [56]. In

a mouse model study, S100A8 expression increases signifi-
cantly after chronic treatment with the antipsychotic drug
olanzapine, which is used primarily to treat schizophrenia
and bipolar disorder patients. TYROBP is implicated in the
developmental neuronal death in hippocampus [57],
impaired glutamatergic synaptic functions [58] and brain
myelination [59]. All of these factors have been suspected
to be involved in schizophrenia. TYROBP knockout mouse
studies reveal deficits in cognitive functions and prepulse
inhibition [49], symptoms that have been manifested in
many schizophrenia patients. However, neither gene has
been studied directly for schizophrenia. They may be
novel candidates for the disease.
Glatt et al [60] applied microarray techniques to com-

pare gene expression of peripheral blood cells (PBCs) and
the dorsolateral prefrontal cortex (DLPFC) of the brain to
identify risk factors for schizophrenia. They detected 123
differentially expressed genes in the blood samples.
Among our 218 DEGs, 13 genes had the same direction of
expression changes as reported by Glatt et al. Specifically,
eight genes were down-regulated (CD74, FCN1, FGR,
HLA-DPA1, HLA-DRB1, IL10RA, PSAP, and ZFP36L2)
and five were up-regulated (GOS2, HBA1, HBA2, HBB,
and IL8). The overlap of 13 genes with same direction of
expression change is unlikely by chance considering they
were selected from a genome-wide gene pool (P-value =
5.36 × 10-6). Interestingly, among the eight down-regu-
lated genes, CD74 was consistently found down- regulated
in three gene expression data sets (our individual sample,
our pooled sample, and PBC sample in the Glatt et al
study). Gene CD74 encodes a protein in MHC and is
located in a region implicated by genome-wide linkage
meta-analyses [61,62]. Additionally, the MHC locus on
chromosome 6p was the most consistent finding from
GWA studies [1-3]. Another gene, HLA-DRB1, also
located in the MHC locus, was found to be differentially
expressed in three data sets (the individual RNA-Seq data-
set in this study, the PBC and DLPFC datasets in the Glatt
et al study). HLA-DRB1 has been reported for positive
association with schizophrenia [63,64]. We also found that
SNPs influencing the expression of HLA-DRB1 (expression
quantitative trait loci - eQTLs) were significantly asso-
ciated with schizophrenia in the CATIE and MGS datasets
(unpublished data). This result provides empirical evi-
dence that a combination of GWA data and eQTL analysis
may be effective to identify risk genes.

Conclusion
This exploratory study aims at evaluating how RNA-Seq
can be used to facilitate the identification of risk genes for
complex diseases such as schizophrenia. Limitations
include 1) the small number of subjects sequenced in this
study and 2) only one pair of pooled samples was available
to confirm the DEGs discovered in the individually

Table 4 Association of differentially expressed genes
with schizophrenia

Gene
symbol

Association P-
valuea

Gene function

LYN 0.0025 Schizophrenia candidate

HLA-DRB1 0.0065 Schizophrenia candidate

SAMHD1 0.0112 Aicardi-Goutières syndrome

SELL 0.0114 Schizophrenia candidate

S100A8 0.0140 Immune response/disease

CEBPD 0.0179 Schizophrenia candidate

ALDOA 0.0215 Creutzfeldt-Jakob disease
candidate

CTSS 0.0223 Immune response/disease

NRGN 0.0263 Schizophrenia candidate

HLA-DRA 0.0267 Schizophrenia candidate

C1orf38 0.0269 Breast cancer

TRIM8 0.0272 Ubiquitylation

NKG7 0.0283 Immune response/diseases

MCL1 0.0302 Immune response/disease

FCN1 0.0363 Rheumatoid arthritis candidate

TYROBP 0.0367 Immune response/diseases

DDIT4 0.0410 Parkinson’s disease candidate

FCGR3B 0.0434 Immune response/disease

LTA4H 0.0454 Myocardial infarction candidate

ITM2B 0.0480 Alzheimer’s disease candidate

HSPA5 0.0493 Schizophrenia candidate
aThe association was examined using the MGS GWAS dataset (see Methods)
by the VEGAS method.
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sequenced dataset. Note that many RNA-Seq studies pub-
lished in the past three years were based on a small num-
ber of samples (n ≤ 3) [65]. Due to these limitations, many
genes potentially involved in schizophrenia could not be
detected in the individually sequenced dataset and none of
the genes in the pooled sample dataset reached signifi-
cance after Bonferroni or false discovery rate correction.
For these reasons, we selected to use those genes that
reached nominal significance (one tailed test P < 0.1 for
genes showing the same direction of expression changes)
to verify the DEGs from the individually sequenced data-
set. This may lead to the inclusion of some false positives
in the 19 genes. At this time, we are unable to distinguish
the true positives from the false ones. Since we observed
19 overlapping genes for the 218 DEGs, exceeding the
expected number by chance, collectively, a majority of
these 19 genes are unlikely to be false positives. The path-
ways and processes identified based on these 19 genes are
likely reliable, and should provide important insights on
the genes whose expression might be involved in the
development of schizophrenia. Based on the same ratio-
nale, the list of genes identified by gene-based analysis
may have false positives, but most of the genes could be
considered promising candidates for schizophrenia. These
promising candidates warrant further validation.
In summary, by combining high throughput RNA

sequencing and GWA data, we have identified a list of
candidate genes for schizophrenia despite our small
sample size. These genes are enriched in the pathways
and processes of the immune system. Our study demon-
strates that integration of GWAS and gene expression
can provide valuable information to prioritize candidates
for future studies.

Additional material

Additional file 1: This file includes the following figures and tables.
Figure S1 - Median Phred score vs. base position (cycle). Figure S2 -
Distribution of the average FPKM values in the controls and cases. FPKM
represents for fragments per kilobase of exon per million fragments
mapped. Table S1 - Differentially expressed genes between schizophrenia
patients and controls. Table S2 - Genes exclusively expressed in cases or
controls. Table S3 - CAMs genes located in the MHC regions
(chr6:20,000,000-40,000,000).

Acknowledgements
The RNA quality check, library construction, and RNA sequencing were
performed in the Functional Genomics Shared Resource and Genome
Technology Core (now both were merged to Genome Sciences Resource) in
Vanderbilt University. We thank the patients and volunteers involved in this
study. The study is supported in part by the National Institutes of Health
grant R01LM011177, a research grant from the Stanley Foundation, an
Independent Investigator Award to XC, the 2009 NARSAD Maltz Investigator
Award to ZZ, and the 2010 NARSAD Young Investigator Award to JS. The
funders had no role in study design, data collection and analysis, decision to
publish, or preparation of the manuscript. The principal investigators for the
MGS were Pablo Gejman and Douglas Levinson. MGS study was supported

by funding from the National Institute of Mental Health and the National
Alliance for Research on Schizophrenia and Depression. Genotyping of part
of the sample was supported by GAIN and the Paul Michael Donovan
Charitable Foundation. Genotyping was carried out by the Center for
Genotyping and Analysis at the Broad Institute of Harvard and MIT with
support from the National Center for Research Resources.
This article has been published as part of BMC Genomics Volume 13
Supplement 8, 2012: Proceedings of The International Conference on
Intelligent Biology and Medicine (ICIBM): Genomics. The full contents of the
supplement are available online at http://www.biomedcentral.com/
bmcgenomics/supplements/13/S8.

Author details
1Department of psychiatry, School of Medicine, University at Buffalo, SUNY,
Buffalo, NY 14260, USA. 2VA Western New York HealthCare System, Buffalo,
NY 14215, USA. 3Buffalo Psychiatric Center, Buffalo, NY 14213, USA.
4Department of Biomedical Informatics, Vanderbilt University School of
Medicine, Nashville, TN 37232, USA. 5Department of Psychiatry, Vanderbilt
University School of Medicine, Nashville, TN 37212, USA. 6Virginia Institute for
Psychiatric and Behavioral Genetics, Virginia Commonwealth University,
Richmond, VA 23298, USA. 7Department of Biostatistics, Vanderbilt University
School of Medicine, Nashville, TN 37232, USA. 8Department of Cancer
Biology, Vanderbilt University Medical Center, Nashville, TN 37232, USA.
9Department of Human and Molecular Genetics, Virginia Commonwealth
University, Richmond, VA 23298, USA.

Authors’ contributions
JX, AL, MH SLD collected samples for the study. JS, JC, LW and SAB
conducted data analysis. XC and ZZ conceived and designed the study and
managed RNA-Seq experiments. JX, JS, ZZ and XC wrote the manuscript.

Competing interests
The authors declare that they have no competing interests.

Published: 17 December 2012

References
1. Purcell SM, Wray NR, Stone JL, Visscher PM, O’Donovan MC, Sullivan PF,

et al: Common polygenic variation contributes to risk of schizophrenia
and bipolar disorder. Nature 2009, 460:748-752.

2. Shi J, Levinson DF, Duan J, Sanders AR, Zheng Y, Pe’er I, et al: Common
variants on chromosome 6p22.1 are associated with schizophrenia.
Nature 2009, 460:753-757.

3. Stefansson H, Ophoff RA, Steinberg S, Andreassen OA, Cichon S, Rujescu D,
et al: Common variants conferring risk of schizophrenia. Nature 2009,
460:744-747.

4. Kahler AK, Djurovic S, Kulle B, Jonsson EG, Agartz I, Hall H, et al: Association
analysis of schizophrenia on 18 genes involved in neuronal migration:
MDGA1 as a new susceptibility gene. Am J Med Genet B Neuropsychiatr
Genet 2008, 147B:1089-1100.

5. Sullivan PF, Keefe RS, Lange LA, Lange EM, Stroup TS, Lieberman J, et al: NCAM1
and neurocognition in schizophrenia. Biol Psychiatry 2007, 61:902-910.

6. Chen X, Wang X, Hossain S, O’Neill FA, Walsh D, Pless L, et al: Haplotypes
spanning SPEC2, PDZ-G EF2 and ACSL6 genes are associated with
schizophrenia. Hum Mol Genet 2006, 15:3329-3342.

7. Drerup CM, Wiora HM, Topczewski J, Morris JA: Disc1 regulates foxd3 and
sox10 expression, affecting neural crest migration and differentiation.
Development 2009, 136:2623-2632.

8. Chen X, Sun C, Chen Q, O’Neill FA, Walsh D, Fanous AH, et al: Apoptotic
engulfment pathway and schizophrenia. PLoS ONE 2009, 4:e6875.

9. Jia P, Wang L, Meltzer HY, Zhao Z: Common variants conferring risk of
schizophrenia: a pathway analysis of GWAS data. Schizophr Res 2010,
122:38-42.

10. Mulle JG, Dodd AF, McGrath JA, Wolyniec PS, Mitchell AA, Shetty AC, et al:
Microdeletions of 3q29 confer high risk for schizophrenia. Am J Hum
Genet 2010, 87:229-236.

11. Need AC, Attix DK, McEvoy JM, Cirulli ET, Linney KL, Hunt P, et al: A
genome-wide study of common SNPs and CNVs in cognitive
performance in the CANTAB. Hum Mol Genet 2009, 18:4650-4661.

12. Tam GW, Redon R, Carter NP, Grant SG: The role of DNA copy number
variation in schizophrenia. Biol Psychiatry 2009, 66:1005-1012.

Xu et al. BMC Genomics 2012, 13(Suppl 8):S2
http://www.biomedcentral.com/1471-2164/13/S8/S2

Page 8 of 10

http://www.biomedcentral.com/content/supplementary/1471-2164-13-S8-S2-S1.pdf
http://www.biomedcentral.com/bmcgenomics/supplements/13/S8
http://www.biomedcentral.com/bmcgenomics/supplements/13/S8
http://www.ncbi.nlm.nih.gov/pubmed/19571811?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19571811?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19571809?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19571809?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19571808?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18384059?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18384059?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18384059?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17161382?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17161382?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17030554?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17030554?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17030554?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19570850?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19570850?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19721717?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19721717?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20659789?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20659789?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20691406?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19734545?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19734545?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19734545?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19748074?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19748074?dopt=Abstract


13. Grozeva D, Kirov G, Ivanov D, Jones IR, Jones L, Green EK, et al: Rare copy
number variants: a point of rarity in genetic risk for bipolar disorder and
schizophrenia. Arch Gen Psychiatry 2010, 67:318-327.

14. Sun J, Jia P, Fanous AH, van den OE, Chen X, Riley BP, et al: Schizophrenia
gene networks and pathways and their applications for novel candidate
gene selection. PLoS ONE 2010, 5:e11351.

15. Bentley DR: Whole-genome re-sequencing. Curr Opin Genet Dev 2006,
16:545-552.

16. Heap GA, Yang JH, Downes K, Healy BC, Hunt KA, Bockett N, et al:
Genome-wide analysis of allelic expression imbalance in human primary
cells by high-throughput transcriptome resequencing. Hum Mol Genet
2010, 19:122-134.

17. Ceol CJ, Houvras Y, Jane-Valbuena J, Bilodeau S, Orlando DA, Battisti V, et al:
The histone methyltransferase SETDB1 is recurrently amplified in
melanoma and accelerates its onset. Nature 2011, 471:513-517.

18. Steidl C, Shah SP, Woolcock BW, Rui L, Kawahara M, Farinha P, et al: MHC
class II transactivator CIITA is a recurrent gene fusion partner in
lymphoid cancers. Nature 2011, 471:377-381.

19. Briggs TA, Rice GI, Daly S, Urquhart J, Gornall H, Bader-Meunier B, et al:
Tartrate-resistant acid phosphatase deficiency causes a bone dysplasia
with autoimmunity and a type I interferon expression signature. Nat
Genet 2011, 43:127-131.

20. Nixon-Fulton JL, Bergstresser PR, Tigelaar RE: Thy-1+ epidermal cells
proliferate in response to concanavalin A and interleukin 2. J Immunol
1986, 136:2776-2786.

21. Bentley DR, Balasubramanian S, Swerdlow HP, Smith GP, Milton J,
Brown CG, et al: Accurate whole human genome sequencing using
reversible terminator chemistry. Nature 2008, 456:53-59.

22. Simon Anders. HTseq Program. 2012 [http://www-huber.embl.de/users/
anders/HTSeq/].

23. Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, et al: The
sequence alignment/Map format and SAMtools. Bioinformatics 2009,
25:2078-2079.

24. Trapnell C, Pachter L, Salzberg SL: TopHat: discovering splice junctions
with RNA-Seq. Bioinformatics 2009, 25:1105-1111.

25. Trapnell C, Williams BA, Pertea G, Mortazavi A, Kwan G, van Baren MJ, et al:
Transcript assembly and quantification by RNA-Seq reveals unannotated
transcripts and isoform switching during cell differentiation. Nat
Biotechnol 2010, 28:511-515.

26. Mortazavi A, Williams BA, McCue K, Schaeffer L, Wold B: Mapping and
quantifying mammalian transcriptomes by RNA-Seq. Nat Methods 2008,
5:621-628.

27. Bullard JH, Purdom E, Hansen KD, Dudoit S: Evaluation of statistical
methods for normalization and differential expression in mRNA-Seq
experiments. BMC Bioinformatics 2010, 11:94.

28. Auer PL, Doerge RW: Statistical design and analysis of RNA sequencing
data. Genetics 2010, 185:405-416.

29. Brooks AN, Yang L, Duff MO, Hansen KD, Park JW, Dudoit S, et al:
Conservation of an RNA regulatory map between Drosophila and
mammals. Genome Res 2011, 21:193-202.

30. Zhang B, Kirov S, Snoddy J: WebGestalt: an integrated system for
exploring gene sets in various biological contexts. Nucleic Acids Res 2005,
33:W741-W748.

31. Controlling the false discovery rate: a practical and powerful approach
to multiple testing. In J R Statist Soc B Benjamini Y, Hochberg Y 1995,
57:289-300.

32. Ingenuity systems. Ingenuity pathway analysis. 2012 [http://www.
ingenuity.com/].

33. Calvano SE, Xiao W, Richards DR, Felciano RM, Baker HV, Cho RJ, et al: A
network-based analysis of systemic inflammation in humans. Nature
2005, 437:1032-1037.

34. Liu JZ, McRae AF, Nyholt DR, Medland SE, Wray NR, Brown KM, et al: A
versatile gene-based test for genome-wide association studies. Am J
Hum Genet 2010, 87:139-145.

35. Marioni JC, Mason CE, Mane SM, Stephens M, Gilad Y: RNA-seq: an
assessment of technical reproducibility and comparison with gene
expression arrays. Genome Res 2008, 18:1509-1517.

36. Wang ET, Sandberg R, Luo S, Khrebtukova I, Zhang L, Mayr C, et al:
Alternative isoform regulation in human tissue transcriptomes. Nature
2008, 456:470-476.

37. O’Dushlaine C, Kenny E, Heron E, Donohoe G, Gill M, Morris D, et al:
Molecular pathways involved in neuronal cell adhesion and membrane
scaffolding contribute to schizophrenia and bipolar disorder
susceptibility. Mol Psychiatry 2010.

38. Leng L, Metz CN, Fang Y, Xu J, Donnelly S, Baugh J, et al: MIF signal
transduction initiated by binding to CD74. J Exp Med 2003,
197:1467-1476.

39. Iwata Y, Suzuki K, Nakamura K, Matsuzaki H, Sekine Y, Tsuchiya KJ, et al:
Increased levels of serum soluble L-selectin in unmedicated patients
with schizophrenia. Schizophr Res 2007, 89:154-160.

40. Palmer CG, Hsieh HJ, Reed EF, Lonnqvist J, Peltonen L, Woodward JA, et al:
HLA-B maternal-fetal genotype matching increases risk of schizophrenia.
Am J Hum Genet 2006, 79:710-715.

41. Lee CH, Liu CM, Wen CC, Chang SM, Hwu HG: Genetic copy number variants
in sib pairs both affected with schizophrenia. J Biomed Sci 2010, 17:2.

42. Sun J, Wan C, Jia P, Fanous AH, Kendler KS, Riley BP, et al: Application of
systems biology approach identifies and validates GRB2 as a risk gene
for schizophrenia in the Irish Case Control Study of Schizophrenia
(ICCSS) sample. Schizophr Res 2011, 125:201-208.

43. Baillet A, Trocme C, Berthier S, Arlotto M, Grange L, Chenau J, et al:
Synovial fluid proteomic fingerprint: S100A8, S100A9 and S100A12
proteins discriminate rheumatoid arthritis from other inflammatory joint
diseases. Rheumatology (Oxford) 2010, 49:671-682.

44. Soyfoo MS, Roth J, Vogl T, Pochet R, Decaux G: Phagocyte-specific
S100A8/A9 protein levels during disease exacerbations and infections in
systemic lupus erythematosus. J Rheumatol 2009, 36:2190-2194.

45. Ehrchen JM, Sunderkotter C, Foell D, Vogl T, Roth J: The endogenous Toll-
like receptor 4 agonist S100A8/S100A9 (calprotectin) as innate amplifier
of infection, autoimmunity, and cancer. J Leukoc Biol 2009, 86:557-566.

46. Gebhardt C, Nemeth J, Angel P, Hess J: S100A8 and S100A9 in
inflammation and cancer. Biochem Pharmacol 2006, 72:1622-1631.

47. Gorwood P, Pouchot J, Vinceneux P, Puechal X, Flipo RM, De Bandt M, et al:
Rheumatoid arthritis and schizophrenia: a negative association at a
dimensional level. Schizophr Res 2004, 66:21-29.

48. Torrey EF, Yolken RH: The schizophrenia-rheumatoid arthritis connection:
infectious, immune, or both? Brain Behav Immun 2001, 15:401-410.

49. Kaifu T, Nakahara J, Inui M, Mishima K, Momiyama T, Kaji M, et al:
Osteopetrosis and thalamic hypomyelinosis with synaptic degeneration
in DAP12-deficient mice. J Clin Invest 2003, 111:323-332.

50. Nataf S, Anginot A, Vuaillat C, Malaval L, Fodil N, Chereul E, et al: Brain and
bone damage in KARAP/DAP12 loss-of-function mice correlate with
alterations in microglia and osteoclast lineages. Am J Pathol 2005,
166:275-286.

51. Kaneko M, Sano K, Nakayama J, Amano N: Nasu-Hakola disease: The first
case reported by Nasu and review. Neuropathology 2010.

52. Satoh JI, Tabunoki H, Ishida T, Yagishita S, Jinnai K, Futamura N, et al:
Immunohistochemical characterization of microglia in Nasu-Hakola
disease brains. Neuropathology 2011, 31:363-375.

53. Klunemann HH, Ridha BH, Magy L, Wherrett JR, Hemelsoet DM, Keen RW,
et al: The genetic causes of basal ganglia calcification, dementia, and
bone cysts: DAP12 and TREM2. Neurology 2005, 64:1502-1507.

54. Paloneva J, Kestila M, Wu J, Salminen A, Bohling T, Ruotsalainen V, et al:
Loss-of-function mutations in TYROBP (DAP12) result in a presenile
dementia with bone cysts. Nat Genet 2000, 25:357-361.

55. Ziegler G, Prinz V, Albrecht MW, Harhausen D, Khojasteh U, Nacken W, et al:
Mrp-8 and -14 mediate CNS injury in focal cerebral ischemia. Biochim
Biophys Acta 2009, 1792:1198-1204.

56. Engel S, Schluesener H, Mittelbronn M, Seid K, Adjodah D, Wehner HD,
et al: Dynamics of microglial activation after human traumatic brain
injury are revealed by delayed expression of macrophage-related
proteins MRP8 and MRP14. Acta Neuropathol 2000, 100:313-322.

57. Wakselman S, Bechade C, Roumier A, Bernard D, Triller A, Bessis A:
Developmental neuronal death in hippocampus requires the microglial
CD11b integrin and DAP12 immunoreceptor. J Neurosci 2008,
28:8138-8143.

58. Roumier A, Bechade C, Poncer JC, Smalla KH, Tomasello E, Vivier E, et al:
Impaired synaptic function in the microglial KARAP/DAP12-deficient
mouse. J Neurosci 2004, 24:11421-11428.

59. Colonna M: DAP12 signaling: from immune cells to bone modeling and
brain myelination. J Clin Invest 2003, 111:313-314.

Xu et al. BMC Genomics 2012, 13(Suppl 8):S2
http://www.biomedcentral.com/1471-2164/13/S8/S2

Page 9 of 10

http://www.ncbi.nlm.nih.gov/pubmed/20368508?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20368508?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20368508?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20613869?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20613869?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20613869?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17055251?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19825846?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19825846?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21430779?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21430779?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21368758?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21368758?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21368758?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21217755?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21217755?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/2870120?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/2870120?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18987734?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18987734?dopt=Abstract
http://www-huber.embl.de/users/anders/HTSeq/
http://www-huber.embl.de/users/anders/HTSeq/
http://www.ncbi.nlm.nih.gov/pubmed/19505943?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19505943?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19289445?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19289445?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20436464?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20436464?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18516045?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18516045?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20167110?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20167110?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20167110?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20439781?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20439781?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20921232?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20921232?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15980575?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15980575?dopt=Abstract
http://www.ingenuity.com/
http://www.ingenuity.com/
http://www.ncbi.nlm.nih.gov/pubmed/16136080?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16136080?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20598278?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20598278?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18550803?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18550803?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18550803?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18978772?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12782713?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12782713?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17049815?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17049815?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16960807?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20064257?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20064257?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21195589?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21195589?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21195589?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21195589?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19755614?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19755614?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19755614?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19451397?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19451397?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19451397?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16846592?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16846592?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/14693349?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/14693349?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11782106?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11782106?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12569157?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12569157?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15632019?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15632019?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15632019?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21118401?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21118401?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15883308?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15883308?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10888890?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10888890?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19835955?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10965802?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10965802?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10965802?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18685038?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18685038?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15601948?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15601948?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12569153?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12569153?dopt=Abstract


60. Glatt SJ, Everall IP, Kremen WS, Corbeil J, Sasik R, Khanlou N, et al:
Comparative gene expression analysis of blood and brain provides
concurrent validation of SELENBP1 up-regulation in schizophrenia. Proc
Natl Acad Sci USA 2005, 102:15533-15538.

61. Lewis CM, Levinson DF, Wise LH, DeLisi LE, Straub RE, Hovatta I, et al:
Genome scan meta-analysis of schizophrenia and bipolar disorder, part
II: Schizophrenia. Am J Hum Genet 2003, 73:34-48.

62. Ng MY, Levinson DF, Faraone SV, Suarez BK, DeLisi LE, Arinami T, et al:
Meta-analysis of 32 genome-wide linkage studies of schizophrenia. Mol
Psychiatry 2009, 14:774-785.

63. Schwab SG, Hallmayer J, Freimann J, Lerer B, Albus M, Borrmann-
Hassenbach M, et al: Investigation of linkage and association/linkage
disequilibrium of HLA A-, DQA1-, DQB1-, and DRB1-alleles in 69 sib-pair-
and 89 trio-families with schizophrenia. Am J Med Genet 2002,
114:315-320.

64. Wright P, Donaldson PT, Underhill JA, Choudhuri K, Doherty DG, Murray RM:
Genetic association of the HLA DRB1 gene locus on chromosome
6p21.3 with schizophrenia. Am J Psychiatry 1996, 153:1530-1533.

65. Hansen KD, Wu Z, Irizarry RA, Leek JT: Sequencing technology does not
eliminate biological variability. Nat Biotechnol 2011, 29:572-573.

doi:10.1186/1471-2164-13-S8-S2
Cite this article as: Xu et al.: RNA-Seq analysis implicates dysregulation
of the immune system in schizophrenia. BMC Genomics 2012 13(Suppl 8):
S2.

Submit your next manuscript to BioMed Central
and take full advantage of: 

• Convenient online submission

• Thorough peer review

• No space constraints or color figure charges

• Immediate publication on acceptance

• Inclusion in PubMed, CAS, Scopus and Google Scholar

• Research which is freely available for redistribution

Submit your manuscript at 
www.biomedcentral.com/submit

Xu et al. BMC Genomics 2012, 13(Suppl 8):S2
http://www.biomedcentral.com/1471-2164/13/S8/S2

Page 10 of 10

http://www.ncbi.nlm.nih.gov/pubmed/16223876?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16223876?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12802786?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12802786?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19349958?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11920855?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11920855?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11920855?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/8942447?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/8942447?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21747377?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21747377?dopt=Abstract

	Abstract
	Background
	Results
	Conclusions

	Background
	Materials and methods
	Subjects, sample preparation and sequencing
	Data process and analysis
	Functional analysis
	Gene-based genome-wide association analysis

	Results
	An overview of RNA-Seq data
	Identification of differentially expressed genes
	Validation and functional enrichment analysis of the DEGs
	Gene-based association analyses of DEGs

	Discussion
	Conclusion
	Acknowledgements
	Author details
	Authors' contributions
	Competing interests
	References

