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Correction of unexpected distributions of P values
from analysis of whole genome arrays by
rectifying violation of statistical assumptions
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Abstract

Background: Statistical analysis of genome-wide microarrays can result in many thousands of identical statistical
tests being performed as each probe is tested for an association with a phenotype of interest. If there were no
association between any of the probes and the phenotype, the distribution of P values obtained from statistical
tests would resemble a Uniform distribution. If a selection of probes were significantly associated with the
phenotype we would expect to observe P values for these probes of less than the designated significance level,
alpha, resulting in more P values of less than alpha than expected by chance.

Results: In data from a whole genome methylation promoter array we unexpectedly observed P value distributions
where there were fewer P values less than alpha than would be expected by chance. Our data suggest that a
possible reason for this is a violation of the statistical assumptions required for these tests arising from
heteroskedasticity. A simple but statistically sound remedy (a heteroskedasticity–consistent covariance matrix
estimator to calculate standard errors of regression coefficients that are robust to heteroskedasticity) rectified this
violation and resulted in meaningful P value distributions.

Conclusions: The statistical analysis of ‘omics data requires careful handling, especially in the choice of statistical
test. To obtain meaningful results it is essential that the assumptions behind these tests are carefully examined and
any violations rectified where possible, or a more appropriate statistical test chosen.

Keywords: P values, Distributions, Statistical analysis, Statistical assumptions, Whole genome methylation promoter
arrays, Epigenome

Background
In the last 10 years microarrays have become a funda-
mental tool in biological research laboratories through-
out the world. The recent growth in interest of applying
this technology to studying a different aspect of the
genome, namely the epigenome, requires that researchers
have a good understanding of the biological processes
underlying the new array technologies and their applica-
tions as well as the statistical issues involved when
analysing the resulting data. Whilst there are many publi-
cations exploring the biology of DNA methylation and the
epigenome, and a large number of articles describing the
development of approaches for studying DNA methylation,

there are few articles that address aspects of the analytic
issues involved in these new technologies.
In genome-wide epigenetic analyses a small number of

samples are typically submitted to a whole genome
methylation array due to cost and sample availability
constraints; these arrays can generate in excess of
500,000 data points (probes) for each sample. If the
samples are chosen to be extremes of available pheno-
type, statistical tests appropriate for two groups, such as
t-tests or Mann–Whitney U tests, can be used on the
methylation results for each probe. If the samples are
chosen across the full range of phenotype values,
techniques such as linear regression can be used to
test the association of phenotype with methylation
results. Both of these approaches lead to a large
number of statistical tests based on a small number
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of subjects and statistical techniques have been designed to
accommodate this [1,2].
If there were no association between any of the probes

measuring methylation of the various CpG sites in the
array and the phenotype, the distribution of P values
from the statistical tests used would approximate a
Uniform distribution. A Uniform distribution can be
visualised as a histogram where each bar is equal in
height, as each possible P value is equally likely to occur.
For example if you consider putting each P value
(with possible values ranging from 0 to 1) into bins
of width 0.05, as each P value is equally likely to
occur the same number of P values are likely to be
put into each bin and would therefore produce bars
of equal height when plotted on a histogram. If however
some probes are significantly associated with the phenotype
of interest we would expect an excess of P values less than
alpha (typically alpha is 0.05 or less) due to the association;
the P value distribution would no longer be a Uniform
distribution and a histogram would show longer bars
representing P values less than alpha resulting from an ex-
cess of probes significantly associated with the phenotype.
In exploratory analyses using a whole genome methy-

lation promoter array we observed a P value distribution
for some outcomes where fewer P values less than alpha
were observed than would be expected by chance. We
hypothesised that this could be due to some of the
assumptions of the statistical technique used being
violated and sought a solution to this problem. Our
solution is a new approach which differs from the published
literature [3] and is much easier to implement using
routines already contained in a variety of statistical
software packages including R [4].

Results and discussion
Methylation at the various CpG sites across the genome
was measured using the log of the ratio of methyl to
input signal (see Materials and methods), hereafter
referred to as the log ratio value. The association of log
ratio values for approximately 240,000 probes designed
to measure methylation of CpGs situated on the
promoter regions of genes on chromosomes 1 to 10, with a
continuous neuro-cognitive outcome were obtained using
linear regression controlling for gender. The distribution of
P values obtained for the regression coefficients is shown in
Figure 1; this shows that there are more P values ≤ 0.05
than would be expected by chance and thus suggests
that some probes are significantly associated with the
neuro-cognitive outcome.
A simulation exercise was undertaken by randomly

permuting the outcome values across all participants
with respect to the probe log ratio values for each
regression and recalculating the regression coefficients
and corresponding P values. Figure 2 shows the P value

distribution obtained; as expected there are no more P
values ≤ 0.05 than would be expected by chance, resulting
in a distribution similar to a Uniform distribution.
When the associations between the probe log ratio values

and a continuous body composition outcome were assessed
using linear regression, the distribution of P values shown
in Figure 3 was obtained; fewer P values ≤ 0.05 were
obtained than would be expected by chance. The distribu-
tion of P values in Figure 3 is unexpected; if there were no
association between any of the probes and the outcome,
each P value would be equally likely to occur and a distri-
bution similar to Figure 2 would be obtained. In the few
occasions in published literature that a distribution similar
to Figure 3 has been reported [3,5] this was thought to be
due to technical issues concerned with imperfect normal-
isation between plates or cross-hybridisation in the array.
Neither of these potential explanations is likely for our
results, as one outcome produced the expected distribution
of P values (see Figure 1) and a second outcome analysed
in relation to the same probe log ratio values produced
the unexpected P value distribution in Figure 3. The
distribution of P values obtained from regressions
based on chromosomes 11 to 22, X and Y with the
neuro-cognitive and body composition outcomes were
very similar to Figures 1 and 3 respectively. Therefore
in the interests of clarity and brevity we have only
reported on the analysis of chromosomes 1 to 10.
In response to an anonymous reviewer we considered

whether correlation of log ratio values between probes
located in the promoter region of the same gene could
be affecting the distribution of P values. The median
number of probes in the promoter region of the genes
was found to be 16, with a lower quartile of 10 and an
upper quartile of 23. The 237,152 probes are located in or
around 8,782 genes (around 4% the number of probes) on
chromosomes 1 to 10. We therefore took a random sample
of 4% of the P values for each outcome so that adjacent
probes in the same gene are unlikely to be selected. As we
observed a distribution of P values for these 4% datasets
similar to Figure 1 for the neuro-cognitive outcome and
similar to Figure 3 for the body composition outcome, we
conclude that correlation between probes located in the
same promoter region is unlikely to affect the shape of the
P value distribution.
We hypothesised that the reason that fewer P values ≤

0.05 were being obtained than would be expected by chance
could be due to violation of assumptions for the statistical
test or procedure used (in this case linear regression).
Therefore a thorough investigation was carried out to check
regression assumptions for a selection of probes. Scatter
plots were used to check the assumption of a linear
relationship between outcome and predictor variables. Plots
of the residuals from the regressions (the difference between
the value of the outcome as predicted by the regression
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equation and the actual outcome value) were checked for
obvious deviations from a Normal distribution using a
Probability-Probability (P-P) plot and for heteroskedasticity
(non-constant variance of residuals i.e. variance of residuals
increasing or decreasing with size of predicted value). For
the probes investigated there was no obvious non-linearity
between probe log ratio value and outcome, and the P-P
plots did not show extreme deviation from normality.
However when the residuals were plotted against predicted
values for a selection of probes several of the plots showed
evidence for heteroskedasticity; Figure 4 shows one of these
plots, in which the regression residuals increased with
increasing predicted values (the points on the plot spread
out in a fan shape), reflecting heteroskedasticity.
It was therefore decided to test the residuals from all

237,152 regressions with the body composition outcome for
heteroskedasticity using the Cook-Weisberg test, a standard
statistical test [6] implemented in a commercial statistical
software package [7] (Stata version 11.1, StataCorp, Texas,
USA). This showed that 90.8% (215419/237,152) of the
regressions for the body composition outcome possessed
significant heteroskedasticity. In comparison the 237,152
regressions with the neuro-cognitive outcome were also

tested for heteroskedasticity and only 1.4% (3393/237,152)
of these possessed significant heteroskedasticity. We there-
fore concluded that the source of the heteroskedasticity
must be due to differences in the measured phenotypes and
undertook investigations accordingly. The neuro-cognitive
phenotype was negatively skewed (skewness = −0.566; se
0.472) and the body composition phenotype was positively
skewed (skewness = 0.927; se 0.501). Although this is
not a significant difference it may still contribute to
heteroskedasticity in the regressions. A log transformation
of the body composition phenotype to counteract skewness
was not observed to rectify heteroskedasticity on the re-
sidual plots. A possibly more important difference between
the phenotypes is that the body composition phenotype
was found to contain an outlier (as defined by Tukey [8])
whereas the neuro-cognitive outcome does not contain any
outliers. The presence of outliers is known to cause
heteroskedasticity, especially when the sample size is
small [9] and therefore we believe that this is the most
likely source of the heteroskedasticity. We tested this by
removing the outlier, rerunning all 237,152 regressions
and retesting for heteroskedasticity. We observed that the
percentage of heteroskedastic regressions dropped from
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Figure 1 The distribution of P values for regression coefficients with a neuro-cognitive outcome. The association of 237,152 probe log
ratio values with a continuous neuro-cognitive outcome were obtained using linear regression controlling for gender. Figure 1 shows that there
are more P values≤ 0.05 than would be expected by chance and thus suggests that some probes are significantly associated with the
neuro-cognitive outcome.
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90.8% to 25.2% and therefore we conclude that this
outlier significantly contributed to heteroskedasticity in
the regressions. The validity of this outlier was carefully
checked and it was thought to be a genuinely large value
(i.e. not due to measurement or recording error). We
therefore did not consider it statistically appropriate to
exclude this outlier from the analysis.
Heteroskedasticity can be accommodated in a regression

model using a heteroskedasticity–consistent covariance
matrix estimator [10] to calculate standard errors of regres-
sion coefficients that are robust to heteroskedasticity. This
can be easily incorporated into the calculation of standard
errors of regression coefficients using commercial software
packages (again we used Stata version 11.1, but the
methods are available in most statistical software packages
including R and SPSS). P values for regression coefficients
are calculated using the estimates of regression coefficients
and associated standard errors. New P values were therefore
calculated in a heteroskedasticity-consistent (i.e. robust)
manner for the body composition outcome and the
distribution of these P values is shown in Figure 5.
The P value distribution in Figure 5 indicates that a

number of probes are associated with the outcome of
interest as there are more P values ≤ 0.05 than would be
expected by chance. Thus the robust estimator for the

standard error of the regression coefficients leads to an
acceptable distribution of P values and enables inference
about which probes are likely to be significantly associated
with the outcome of interest.
In order to aid interpretation of these significant

associations an anonymous reviewer helpfully suggested
that we calculate false discovery rates for our results.
We therefore calculated Q values and hence false
discovery rates using the Q-Value software of Dabney
and Storey [2]. For the neuro-cognitive phenotype pi 0
(the overall proportion of null hypotheses) = 0.978. P
values ≤ 0.01 had a false discovery rate of 45.3% and P
values of ≤ 0.001 had a false discovery rate of 26.5%. For the
body composition phenotype with P values calculated using
robust estimates, pi 0 = 0.941. P values ≤ 0.01 had a false
discovery rate of 42.1% and P values of ≤ 0.001 had a false
discovery rate of 24.6%. It was not appropriate to calculate
Q values using the classical regression P values for body
composition as the required assumption of ‘null’ probes
having a Uniform distribution was not met.
We were also curious as to what happened to the

original P values (1058 in number) that were ≤ 0.01,
represented by the first bar (far left) on Figure 3, after
they had been re-estimated using robust standard errors.
Figure 6 shows that the majority of these P values are
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Figure 2 The distribution of P values after a simulation exercise using permutation of outcome values. Figure 2 shows there are no more
P values≤ 0.05 than would be expected by chance, resulting in a distribution similar to a Uniform distribution.
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Figure 4 Regression residuals for a body composition outcome plotted against values predicted by the regression. Figure 4 shows the
regression residuals increasing with predicted value (the points on the plot spread out in a fan shape), indicating heteroskedasticity.
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Figure 3 The distribution of P values for regression coefficients with a body composition outcome. Figure 3 shows that fewer P values≤ 0.05
were obtained than would be expected by chance.
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Figure 5 The distribution of P values with a body composition outcome using robust standard errors. Figure 5 indicates that a number
of probes are associated with the outcome of interest as there are more P values≤ 0.05 than would be expected by chance.
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Figure 6 Comparison of P values ≤ 0.01 using classical linear regression recalculated using robust standard errors. Figure 6 shows that
the majority of these P values are still ≤ 0.01 after re-estimation.
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still ≤ 0.01 after re-estimation. It therefore follows that
the majority of significant P values calculated using
heteroskedasticity-consistent standard errors were not
observed to be associated when classical regression
estimates were used. This therefore reinforces the principle
that if statistical assumptions are not met significant
associations can be missed.

Conclusions
A literature search for non-uniform distributions of P
values shows few citations [3,5] and these both relate to
statistical tests applied to expression results generated
using Affymetrix microarrays. Huang et al. [5] compare
gene expression profiles of tumours in three groups of
mice using an Affymetrix Mouse Genechip array. When
an ANOVA was performed on the expression of around
23,000 genes, a distribution of P values similar to Figure 1
was obtained. However when a t-test was applied to 2 of
these groups, a distribution of P values similar to Figure 3
was obtained. The authors hypothesised that the reason for
such a non-uniform distribution was due to excess
biological similarity between some samples in the groups
used for the t-test. This excess biological similarity was
thought to be due to 2 pairs of samples being littermates of
the same age and a further 2 pairs of samples were assayed
at the same time. This resulted in the samples used for the
t-test not being statistically independent. As such samples
are not statistically independent this violates one of the
main assumptions required for the t-test, namely that of
independence i.e. observations between or within groups
are not paired, dependent, correlated, or associated in any
way [11]. Thus Huang et al. also observe that violation of
statistical assumptions can result in an unexpected distribu-
tion of P values similar to Figure 3.
Fodor et al. [3] using Human and Mouse Affymetrix

Genechip arrays, hypothesised that poorly characterised
variance and normalisation strategy for a microarray can
produce a non-uniform distribution of P values for null
genes (genes that are not differentially expressed between
groups). The authors proposed the use of a cyber t-test
which uses Bayesian statistics to weight the variance of
each individual gene with the variance of other genes on
the array with similar intensities and also the use of an
additional statistic-level normalisation to rectify the prob-
lem. They state that it is clear that one of the assumptions
of the standard t-test has been violated to lead to the
non-uniform distribution of P values. However if the
assumptions of the t-test have not been met, a much
simpler solution would be the use of non-parametric
tests, such as the Mann–Whitney U test, which do not
require an assumption of equal variance between genes.
Fodor et al. also suggested other technical reasons why a

P value distribution can be non-uniform such as cross-
hybridisation (probes hybridising to genes other than their

intended target). Dabney and Storey [12] come to a similar
conclusion when they attributed the non-uniform P value
distribution of a particular analysis to errors in experimen-
tal design. This was contested by the authors [13,14] who
suggested that a non-uniform distribution of P values
may be a common feature of data generated by micro-
array experiments. However in our data technical issues
to do with the array are not thought to be a problem as
we obtained a plausible distribution of P values for our
neuro-cognitive outcome.
The statistical analysis of ‘omics data requires careful

handling, especially in the choice of statistical test. It
is imperative that the assumptions behind these tests
are carefully examined and any violations rectified if
possible, or a more appropriate statistical test chosen
(such a non-parametric test) if meaningful results are
to be obtained.

Methods
Samples analysed were from umbilical cord DNA taken
from 24 participants in a cohort study. Cord DNA was
selected for analysis from participants with subsequent
neuro-cognitive and body composition outcomes. The
phenotype measures were double entered and verified by
experienced data entry staff and the data were subjected
to rigorous range and consistency checking by database
managers and senior statisticians. Follow up of the par-
ticipants and sample collection/analysis was carried out
under Institutional Review Board approval (Southampton
and SW Hampshire Local Research Ethics Committee)
with written informed consent obtained from parents or
guardians. Investigations were conducted according to the
principles expressed in the Declaration of Helsinki.
The DNA from each participant was sheared by sonic-

ation to produce fragments of between 200 and 500bp.
A proportion of this DNA (input DNA) was purified and
the remaining DNA incubated with His-tagged MBD2b
(methyl binding domain of MeCP2) protein to form a
complex which was then captured on nickel coated
magnetic beads. The beads were then washed to remove
unmethylated DNA fragments before DNA was eluted
from the beads using an elution buffer designed to
simultaneously elute methylated DNA while degrading
MBD2b protein as per manufacturer’s instructions. This
purified methylated DNA was then analysed using RT-PCR
with primers specific for the promoter region of a house-
keeping (and therefore unmethylated i.e. β-actin) gene and
the ICR region of the imprinted gene H19. Methylated and
input samples were labelled with the fluorescent dyes Cy3
and Cy5 respectively and then hybridised to the Agilent
human promoter whole genome array (G4489A). This
array contains probes (60mers) spaced every 100-300bp
across the promoter regions of 17,000 of the best
characterised transcripts (from -8kb to +2kb downstream
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of the transcription start site of each gene). The probes are
arranged on two plates, one accommodating chromosomes
1 to 10 and the other accommodating chromosomes
10/11 to 22 together with X and Y. Microarray hybrid-
isation was carried out by Oxford Gene Technology
(OGT, Oxford UK) in accordance with the company’s
quality control procedures using standard protocols for
labelling, hybridisation and washing. Microarray slides were
scanned at 5μM resolution using the extended dynamic
range (High 100%, Low 10%). The slides were then feature
extracted using Agilent feature extraction software 9.5.3.1.
All arrays were normalised per spot and per chip using an
intensity dependent normalisation (Lowess normalisation)
using Genespring (http://stat-www.berkeley.edu/users/
terry/zarray/Html/normspie.html). This is a within slide
normalisation that adjusts for intensity dependent variation
due to dye properties. The log ratio of methyl to input
signal was calculated for each probe by dividing the Cy5
processed signal by Cy3 processed signal.
The following QC measures were employed for the

probe log ratio values before analysis. The log ratio value
for a probe was set to missing for a participant if any of
the following quality control variables indicated a positive
result. If either the green or red channels were saturated,
were non uniform feature outliers, were background non
uniform outliers, were feature population outliers or if a
‘manual flag’ variable indicated that the spot did not pass a
visual check. At most 0.2% of the probe values for any
participant did not pass quality control.

Statistical methods
Statistical procedures were performed in Stata version
11.1, StataCorp, Texas, USA and SPSS version 19
(IBM, Armonk, New York).
Linear regression was performed using phenotype as the

dependent variable and each standardised probe log ratio
value as the predictor variable. Regression assumptions of
Normality were investigated using a P-P plot. This plots
the observed cumulative probability of the regression
standardised residuals against the expected cumulative
probability for a Normal distribution. If the regression resid-
uals are Normally distributed the points on this plot will fol-
low the line of equality, a straight line at a 45 degree angle
passing through the coordinates (0,0), (0.5,0.5) etc. Assump-
tions of constant variance of the regression residuals were
investigated using a plot of standardised regression residuals
versus predicted values. If this plot shows that the variance
of the regression residuals does not increase with the pre-
dicted value the assumption of homoskedasticity (constant
variance) has not been violated. However if the plot shows
the regression residuals increasing with predicted value
(as in Figure 4), this indicates heteroskedasticity.
Heteroskedasticity was tested with the Cook-Weisberg

test [6] using regression residuals implemented in Stata

version 11.1, this is a score test which tests the hypothesis
that the variance of the regression residuals is constant.
Regressions were then rerun using a heteroskedasticity–
consistent covariance matrix estimator proposed by
White [10], to recalculate the standard errors of regression
coefficients. Subsequently, new P values for the regression
coefficients were calculated using the original estimate of
the regression coefficient and the heteroskedasticity–
consistent standard errors for each probe.
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