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Abstract

Background: Human blood develops from self-renewing hematopoietic stem cells to terminal lineages and
necessitates regulator and effector gene expression changes; each cell type specifically expresses a subset of genes
to carry out a specific function. Gene expression changes coincide with histone modification, histone variant
deposition, and recruitment of transcription-related enzymes to specific genetic loci. Transcriptional regulation has
been mostly studied using in vitro systems while epigenetic changes occurring during in vivo development remain
poorly understood.

Results: By integrating previously published and novel global expression profiles from human CD34+/CD133+
hematopoietic stem and progenitor cells (HSPCs), in vivo differentiated human CD4+ T-cells and CD19+ B-cells, and
in vitro differentiated CD36+ erythrocyte precursors, we identified hundreds of transcripts specifically expressed in
each cell type. To relate concurrent epigenomic changes to expression, we examined genome-wide distributions of
H3K4me1, H3K4me3, H3K27me1, H3K27me3, histone variant H2A.Z, ATP-dependent chromatin remodeler BRG1, and
RNA Polymerase Il in these cell types, as well as embryonic stem cells. These datasets revealed that numerous
differentiation genes are primed for subsequent downstream expression by BRG1 and Polll binding in HSPCs, as
well as the bivalent H3K4me3 and H3K27me3 modifications in the HSPCs prior to their expression in downstream,
differentiated cell types; much HSPC bivalency is retained from embryonic stem cells. After differentiation, bivalency
resolves to active chromatin configuration in the specific lineage, while it remains in parallel differentiated lineages.
Polll and BRGT1 are lost in closer lineages; bivalency resolves to silent monovalency in more distant lineages.
Correlation of expression with epigenomic changes predicts tens of thousands of potential common and tissue-
specific enhancers, which may contribute to expression patterns and differentiation pathways.

Conclusions: Several crucial lineage factors are bivalently prepared for their eventual expression or repression.
Bivalency is not only resolved during differentiation but is also established in a step-wise manner in differentiated
cell types. We note a progressive, specific silencing of alternate lineage genes in certain cell types coinciding with
H3K27me3 enrichment, though expression silencing is maintained in its absence. Globally, the expression of type-
specific genes across many cell types correlates strongly with their epigenetic profiles. These epigenomic data
appear useful for further understanding mechanisms of differentiation and function of human blood lineages.
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Background
As every cell type within one organism presumably con-
tains the same genes, differential usage of the genome
likely modulates functional differences between cell
types. Human blood cells derive from self-renewing
hematopoietic stem and progenitor cells (HSPCs) [1].
Differentiating HSPCs undergo progressive loss of differ-
entiation capability in response to environmental condi-
tions, resulting in terminally differentiated blood cells
(Figure 1A). Red blood cells derive from HSPCs via a
common myeloid progenitor (CMP) and have a nucle-
ated erythrocyte precursor (pRBC) [2-6]. T and B lym-
phocytes are related immune cell types, both arising
through a common lymphoid progenitor (CLP) [7].
Gene expression is dynamically regulated during differ-
entiation, concurrent with epigenetic changes, including
both ATP-dependent and post-translational chromatin
modification. BRG1-mediated chromatin remodelling con-
tributes to differentiation of both ES cells and HSPCs
[8-12]. A variety of histone modifications associates with
gene expression. Methylation of H3 lysine 4, catalysed by
the MLL family of enzymes [13-15], positively associates
with transcription [16-21], whereas trimethylation of H3
lysine 27, mediated by the PRC2 complexes, is associated
with silencing [21-25]. Histone variant H2A.Z localizes to
active genes and destabilizes nucleosomes [26,27], enhan-
cing access to the DNA and facilitating transcription [28].
Integrating datasets has shown that multiple chromatin
states associate with expression status [29,30], and indi-
cated that histone modification patterns may be associated
with cell type definition. In particular, coexistence of active
and repressive marks at regulatory regions is linked to
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preparation of differentiation genes [18,31-37]. After dif-
ferentiation, this bivalency may resolve to allow either acti-
vation or repression.

As many previous results were obtained using cell
lines cultured in vitro, they may not reflect dynamic
changes of histone modifications occurring during differ-
entiation in vivo. Particularly, although it has been sug-
gested that differentiation genes are bivalently modified
in ES cells, it is unclear how bivalency resolves during
differentiation in vivo. We therefore took advantage of
the well-characterized human hematopoietic system and
tested the relationship of tissue-specific gene expression
to epigenomic changes, and identified common and
tissue-specific regulatory elements that may confer
tissue-specific transcriptional regulation. Our data indi-
cate that key differentiation genes are primed in progeni-
tor cells by bivalent modification and RNA Polll
binding, some even in embryonic stem cells, prior
to their expression in the downstream differentiated
lineages. Bivalent modification is retained in closely re-
lated parallel cell types but is resolved to silent chroma-
tin structure in more remote lineages. Using these
epigenomic data, we have identified thousands of com-
mon and tissue-specific putative enhancers that might
have critical roles in controlling the cell fate decisions
during hematopoietic differentiation.

Results

Characterization of cell type-specific expression in HSPCs,
erythrocyte precursors, B, and T-cells

HSPCs differentiate to generate erythrocytes, B-cells and
T-cells. We first sought to characterize cell type-specific
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Figure 1 Many transcripts show cell type-specific expression in hematopoietic subsets. (A) All blood cells derive from hematopoietic stem
and progenitor cells (HSPCs) through common progenitors, including the common lymphoid and common myeloid progenitors (CLP, CMP).

T and B-cells arise from CLPs, whereas red blood cell precursors (pRBCs) differentiate from CMPs. (B) Pairwise comparison of expression profiles
from four cell types results in many differentially expressed transcripts but relatively few transcripts with cell type-specific expression. Total: the
number of differentially expressed genes between two cell types. The numbers of cell type-specific genes are indicated below the panel.
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(TS) gene expression therein. We calculated gene ex-
pression profiles using RNA-Seq [32,38] to identify pair-
wise differential expression (Figure 1B). E.g., 794 genes
were more highly expressed in HSPCs than in B-cells
and 1,622 were more highly expressed in B-cells than in
HSPCs. Since B-cells derive from HSPCs, this indicates
that 794 and 1,622 genes are repressed and activated, re-
spectively, during differentiation.

To identify TS genes, i.e. those expressed in only one
cell type, we intersected those highly expressed in each
of the pair-wise comparisons (Figure 1B). Indeed, their
overall expression was significantly higher in their spe-
cific cell type (Additional file 1: Figure SIA-S1D). These
gene lists included the markers used for isolating or de-
fining the populations. E.g, CD133 and CD34 were
HSPC-specific; CD4 was T-cell-specific; CD19 was B-cell
-specific; and CD36 was pRBC-specific.

In addition to cell surface markers, key transcription
regulators were also TS (Additional file 1: Table S1).
Among these genes were PAXS5, the master regulator of
B-cell development; GATA3, an important regulator of
T-cell differentiation; FOXP3, a regulator of regulatory
T-cells; and GATAI, a master regulator of RBC develop-
ment. That these genes of known type-specific import-
ance were called type-specific shows that our tests
extract high-confidence type-specific transcripts.

KEGG pathway analyses of TS genes showed associations
with expected functions. The B-cell receptor signaling and
IgA production pathways were enriched in B-cell-specific
genes (Additional file 1: Figure S2C); T-cell-specific genes
were similarly overrepresented in the T-cell receptor
pathway, as well as in immunodeficiency and cell adhe-
sion molecules (Additional file 1: Figure S2B). Although
erythrocyte transcripts, including many versions of
hemoglobin, were specifically expressed in pRBCs, these
genes were enriched in KEGG pathways of more general
biochemical function (Additional file 1: Figure S2D).

Chromatin environment at transcription start sites

To investigate relationships between gene expression and
chromatin environment in progenitor and differentiated
cells, we profiled genome-wide distributions of several his-
tone modifications (H3K4mel, H3K4me3, H3K27mel, and
H3K27me3), histone variant H2A.Z, chromatin remodeler
BRG1, and RNA Polll using ChIP-Seq (see methods). We
then plotted tag densities surrounding transcription
start sites (TSSs) of HSPC-specific genes (Figure 2A -2E).
As expected for expressed genes, Polll was highly
enriched in these promoters in HSPCs (Figure 2B) while
no appreciable binding of Polll to these promoters
occurred in pRBCs (Figure 2C), B-cells (Figure 2D) and
T-cells (Figure 2E). Similarly, BRG1 was enriched in
these promoters only in HSPCs. H3K4me3 and H2A.Z
were enriched in promoters of HSPC-specific genes not
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only in HSPCs but also in T- and B-cells, but and less so
in pRBCs. While nominal promoter H3K27me3 signals
were detected in HSPCs, they were highly enriched in
the other three cell types, confirming that gaining
H3K27me3 at these HSPC-specific genes during differ-
entiation is associated with silencing (compare Figure 2B
to 2C, D and E). To investigate priming of HSPC-
specific genes, we investigated their histone modifica-
tion status in embryonic stem cells (ESCs) (Figure 2A)
using published datasets [39]. In ESCs, these promoters
were enriched in H3K4me3, indicating preparation for
their expression in HSPCs. However, the promoters
were also marked with H3K27me3, which was lost at
the HSPC stage, indicating further that their expression
is associated with loss of H3K27me3.

To expand these observations to further differentiated
cells, we profiled chromatin proteins at B-cell-specific
genes (Figure 2F-]). We note that, although these genes
were not yet expressed in HSPCs, they had been associ-
ated with high levels of H3K4me3, H2A.Z and BRG1
(Figure 2G), and with high levels of H3K4me3 in ESCs
(Figure 2F), suggesting that priming of these genes oc-
curred before their expression in the differentiated cells.
Binding of Polll was also detected on 17% of these genes
in HSPCs, suggesting some were poised for expres-
sion. T-cells and B-cells descend from similar progeni-
tors. B-cell-specific genes retained substantial signals
of H3K4me3, H2A.Z and BRGLI in T-cells (Figure 2J),
suggesting that these genes may have not been fully
silenced and may retain expression potential.

The above analyses of cell type-specific genes indicate
that, while H3K4me3 signals are generally correlated with
gene expression though are sometimes present even in
non-expressing cells, changes in H3K27me3 are more
closely related to inactive expression states in different cell
types. To extend this observation, we sorted all genes into
200 groups according to their RPKM in HSPCs and aver-
aged ChIP-Seq read densities of these two modifications
across a 6kb region surrounding TSSs (Figure 3A and 3D).
Indeed, average profiles of H3K4me3 at genes highly
expressed in HPSCs were consistent across all cell types,
which may be related to the H3K4me3 signals at house-
keeping genes, and levels of H3K4me3 positively associ-
ated with transcription (Figure 3A). DNA sequence
analysis indicated that promoters associated with constitu-
tive H3K4me3 were enriched in CpG islands (Figure 3B).
Of 17,261 promoters consistently enriched in H3K4me3
in the four cell types, 93% also contained a UCSC-defined
CpG island [40]; merely 37% of promoters with no or in-
consistent H3K4me3 enrichment contained a CpG island.
The correlation between H3K4me3 and CpG islands was
observed previously [31], however the additional correl-
ation with H3K4me3 consistency was not. We also noted
that all cell types showed enrichment of H3K4me3
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upstream and downstream of a depletion at the TSS, and
that H3K4me3 extended further downstream of the TSS
than upstream. This pattern was similar to Polll at the
same TSS groups, sorted and calculated in the same
manner (Figure 3C). Despite fewer Polll-bound than
H3K4me3-associated promoters, the majority of TSS
groups showed some presence of Polll positively correlating
with expression. H3K27me3 signals were mainly enriched
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in gene groups with low expression and occupied much of
the interrogated region, contrasting with H3K4me3 and
PollI (Figure 3D).

The widespread signals of H3K27me3 suggest that it oc-
cupies broad domains, consistent with previous reports
[32,41]. To examine the size of H3K27me3 domains during
differentiation, we compared the sizes of islands across the
four cell types. The distribution of H3K27me3 island sizes
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Figure 2 Chromatin profiles around TSSs of type-specific genes show extensive priming in progenitor cells during differentiation.
(A) = (E) Histone modification, BRG1 binding and RNA Polymerase Il binding profiles around TSSs of HSPC-specific genes are displayed for (A) ESC, (B)
HSPC, (C) pRBC, (D) B-cell, and (E) T-cell. (F) — (J) Histone modification, BRG1 binding and RNA Polymerase I binding profiles around TSSs of B-cell
-specific genes are displayed for (F) ESC, (G) HSPC, (H) pRBC, (I) B-cell, and (J) T-cell.
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Figure 3 (See legend on next page.)
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Figure 3 H3K4me3 profiles are consistent but H3K27me3-enriched regions change drastically during differentiation. (A) Heatmaps of
H3K4me3 around TSSs sorted into 200 groups by HSPC expression show stable marking of the most highly expressed genes across all cell types
and a depletion directly at the TSS. (B) Promoters consistently marked by H3K4me3 in the four hematopoietic cell types contain a CpG island
more often than those that are inconsistently or not marked by H3K4me3. (C) RNA Polll heatmaps around TSSs sorted into 200 groups by HSPC
expression show Polll binding at the most highly expressed genes directly at the TSS. (D) H3K27me3 heatmaps around TSSs sorted into 200
groups by HSPC expression show enrichment in the lowest expressed genes. (E) The distributions of the sizes of H3K27me3-enriched regions in
ESC (black dotted), HSPC (grey), pRBC (red), T-cell (green), and B-cell (blue) show that H3K27me3-enriched regions grow in size in differentiated
cell types in comparison with ESCs and HSPCs. (F) Percentages of the genome falling in SICER islands calculated for H3K27me3. (G) Most of the
H3K27me3-enriched regions are cell type-specific. Regions of H3K27me3 enrichment were unified across all five cell types, broken evenly into < 2kbp
fragments, clustered by their H3K27me3 read counts, and displayed as a heatmap.

peaked at around 1.5kb in ESCs, 4.2kb in HSPCs, and in-
creased substantially in pRBC, T and B-cells (Figure 3E),
demonstrating that differentiation results in larger regions
of H3K27me3 enrichment. We also found that H3K27me3
marks larger genomic regions in downstream cell types
(Figure 3F).

To further investigate changes and growth of H3K27me3-
modified regions during differentiation, we performed a
clustering analysis of regions enriched in H3K27me3 in
these cell types (Figure 3G). We evenly split each united re-
gion into < 2kbp sections, creating 222,914 regions enriched
in H3K27me3 in at least one cell type. We found that most
of the H3K27me3-enriched regions changed during dif-
ferentiation, underscoring the variability of H3K27me3
targeting. In fact, most regions enriched in H3K27me3 in
downstream cell types were not enriched in HSPCs, and
there was no cluster enriched in H3K27me3 in all five cell
types. There were many regions that specifically gained
H3K27me3 in either the T, B, or pRBC stages, but relatively
few that became enriched in all three. After assigning re-
gions to their nearest gene within 20kb, we noted that re-
gions enriched in H3K27me3 in a single cell type coincided
with genes with non-hematopoietic function (DATA NOT
SHOWN). Genes nearest to H3K27me3-enriched regions
in pRBCs alone were enriched in cytokine-cytokine recep-
tor interaction genes (DATA NOT SHOWN), indicating
repression of immunological pathways in this myeloid
lineage. Several type-specific genes coincided with regions
enriched in H3K27me3 in one cell type, as highlighted in
Figure 3G, indicating silencing of signature gene expres-
sion. Curiously, 80% of genes associated with the cluster of
regions enriched solely in HSPCs (upper leftmost cluster)
remained silent in downstream cell types, even in the ab-
sence of H3K27me3. This indicates that, while H3K27me3
enrichment is indicative of repression, its absence is not
necessarily indicative of activation as subsequent factors
may maintain silencing and/or activation factors may not
be present.

The dynamic regulation of H3K27me3 during differenti-
ation is exemplified at the HOXA and HOXB developmen-
tal gene loci, which show initial enrichment followed by
substantial loss then reconstitution at select genes, corre-
sponding with their expression [31,32] (Additional file 1:

Figure S3). This supports widespread H3K27me3 signals
together with loss of active histone modifications stabiliz-
ing a silent chromatin conformation after differentiation.

Bivalent marking of promoters in HSPC and resolutions
upon differentiation
The above indicates that genes specifically expressed in
downstream cell types are associated with active chro-
matin marks, e.g. H3K4me3, in upstream cell types, al-
though they are not expressed and may be previously
marked with silencing H3K27me3. The coexistence of
H3K4me3 and H3K27me3, termed bivalent modifica-
tion, was discovered in ES and T-cells and proposed as a
preparation for genes to be expressed in response to en-
vironmental cues [18,31-34]. We sought to understand
differentiation-coupled bivalency resolution by constructing
a heatmap of promoter bivalency status (Figure 4A). Most
of the 5,345 promoters showing bivalency in any of our five
cell types were bivalent in ESCs and most of these lost
bivalency in downstream cell types. Stem cells had more bi-
valent genes than the more committed cell types, but sev-
eral genes developed bivalency in downstream cell types.
To find examples of genes showing bivalency and
resolution, we investigated the bivalent promoters in our
cell types (Additional file 1: Figure S4). A minor fraction
of these was bound by Polll. The Venn diagram shows
different partitioning of bivalent promoters in various
cell types (Additional file 1: Figure S4). Several import-
ant genes with TS function were bivalently marked in
progenitor or parallel non-expressing cells. The zinc fin-
ger transcription factor GATA3 is essential for develop-
ment of T-cells [42]. Our data indicate that, although
the Gata3 promoter was associated with H3K27me3 in
HSPCs and ESCs, consistent with its silent state, it also
was marked by H3K4me3, suggesting that the gene is
primed for expression in progenitor cells (Figure 4C,
Additional file 1: Figure S5). When expressed in T-cells,
H3K27me3 disappeared from the GATA3 gene, accom-
panied by appearance of Polll. We note that both the
H3K4me3 and H3K27me3 signals remained in B-cells
(Figure 4C in blue), while the H3K4me3 signal largely
disappeared in pRBCs (Figure 4C in red).
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Figure 4 Bivalent priming of TSSs is prevalent and its resolution varies during differentiation. (A) Resolution and formation of bivalency
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Columns/genes were grouped by their bivalency across cell types. (B) Bottom panels represent genes bivalently marked outside the HSPC stage.
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only H3K27me3 is found. In T-cells (green), GATA3 is bound by Polll and is transcribed. (D) The B-cell master regulator PAXS is bivalently marked in
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B-cells (blue), PAX5 is enriched in H3K4me3, bound by Polll, and uniquely expressed. (E) Genes specifically expressed in downstream lineages are
bivalently prepared in HSPC and ESC.
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Similarly, the gene for paired box transcription factor
PAXS, the master regulator of B-cells, was associated with
H3K4me3 and Polll, but not H3K27me3 in B-cells
(Figure 4D, Additional file 1: Figure S5). Our data indicate
that the PAXS5 promoter is bivalent and bound by Polll in
HSPCs, and bivalent in ESCs, suggesting that the gene has
been prepared for expression (Figure 4D in grey). Interest-
ingly, PAXS5 was still bivalent in T-cells, although the Polll
signal disappeared (Figure 4D in green). In contrast, PAXS
contained only H3K27me3 in pRBCs, indicating that the
gene is fully silenced therein (Figure 4D in red).

In addition to the regulators discussed above, several
other factors were bivalent in different combinations of
the cell types (Additional file 1: Figure S4). CD8A, a defin-
ing marker of CD8+ T-cells, was bivalent in all except the
CD4+ T-cells, where it was monovalently active, indicating
a potential for plasticity among T-cell subsets. Another
factor, TCF7, which is essential for T-cell development as
well as regulation of the self-renewal/differentiation switch
[43], was bivalent in HSPCs and ESCs, as was cardiac
development regulator GATAS. In addition to cell type-
related genes, several chromatin genes were bivalent. Not-
ably, all genes highlighted in Additional file 1: Figure S4,
except the histone genes and HDACS, were also bivalent
in ESCs.

Globally, we found 2,811 promoters bivalent in HSPCs
and calculated their bivalency status in each differenti-
ated cell type (Figure 4B). Curiously, 20-40% of these
promoters remained bivalent in differentiated cells, some
of which may be important for further differentiation as
previously seen for T helper cells [44]. Generally, more
HSPC bivalent promoters lost H3K27me3 than lost
H3K4me3, except in pRBCs. We also investigated pro-
moters that became bivalent in downstream cell types
and analyzed their status in HSPCs. Strikingly few pro-
moters had had neither mark in HSPCs. We noted that
pRBCs, which differ from the other cell types as they
were differentiated ex vivo from HSPCs [32], showed
slight differences in ratios of bivalent HSPC promoter
resolutions—many more lost H3K4me3 than remained
bivalent, and fewer newly bivalent promoters had had
H3K27me3 enrichment in HSPCs. This may reflect the
degree of commitment of the cell type, as B and T-cells
differentiate further. Although many bivalent promoters
lost H3K27me3 enrichment in downstream cell types,
most did not gain appreciable expression as a result
(DATA NOT SHOWN). This further indicates a role for
other factors maintaining silencing in the absence of
H3K27me3. Many more genes were bivalently marked in
ESCs than HSPCs. Nearly 40% of promoters bivalent in
HSPCs were also bivalent in ESCs. Surprisingly few pro-
moters bivalent in HSPCs were marked exclusively by
H3K27me3 in ESCs, further indicating that genes are
primed for expression notably early in development.
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We also examined bivalent priming of TS genes
(Figure 4E). These results indicate that many genes
expressed in downstream cell types are primed for
expression in progenitor cells. Several TS genes with
transcription factor activity were bivalent in HSPCs
(Additional file 1: Figure S6), underscoring the import-
ance of bivalency in controlling expression of lineage
regulators. However, priming of these genes with Polll
was not extensive in HSPCs. Several of these genes had
multiple isoforms, which showed differences in bivalency
at their discrete promoters, while all isoforms were type-
specific by their expression. This suggests a role for
chromatin in mediating isoform-specific expression.

Prediction and analysis of distal regulatory elements from
chromatin profiles

Distal regulatory elements play critical roles in lineage
fate decisions and may contain cell type-specific chro-
matin modification patterns [29,45,46]. Chromatin mod-
ifications and binding of chromatin-modifying enzymes
indicate the presence of potential regulatory elements
[47,48]. Enrichment of H3K27ac and binding of p300
are detected at active enhancers [45,46,49]. In order to
completely survey both active and poised enhancers, we
used enrichment of H2A.Z and/or H3K4mel to predict
genomic regions outside of a promoter (see methods) as
potential enhancers, since previous studies reported that
enhancers are associated with H3K4mel[50] and the his-
tone variant H2A.Z [27,51]. Among enriched sites in
each cell type (Figure 5A second column), we identified
11,283 regions enriched in these marks across all four
cell types (core potential enhancers or CPEs). We also
found regions enriched in these marks in only one cell type
(cell-specific potential enhancers or CSPEs) (Figure 5A
third column). Among the regions enriched in the marks
were several from the hemoglobin beta chain gene
locus, which have been reported as functional en-
hancers (Additional file 1: Table 2). Other known en-
hancers predicted by our method included the first
intron of the RUNXI gene, which contains a functional
enhancer, a PAX5 enhancer, and the PLAT enhancer.
These results indicate that our method is successful in
finding regions with enhancer activity.

To examine chromatin modifications at these predicted
enhancers, we plotted ChIP-Seq reads at the 11,283 CPEs
(Figure 5B-E). CPEs were consistently enriched in our de-
fining marks (H2A.Z and H3K4mel) and active marks
(H3K4me3, Polll, BRG1), but were depleted of
H3K27me3. In contrast to CPEs, HSPC CSPEs exhibited
enhancer-like chromatin only in HSPCs (Figure 6A). In
other cell types, HSPC CSPEs lost active H2A.Z and
H3K4mel marks, and gained H3K27me3. Curiously,
H3K27mel, whose function is poorly understood, was
present at HSPC CSPEs in all cell types (Figure 6B, C, D).
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Similarly, B-cell CSPEs showed elevated active marks in
B-cells (Figure 6G), and lost active marks but gained the
repressive H3K27me3 mark in other cell types (Figure 6E,
E, H). We note that B-cell CSPEs were already associated
with elevated levels of BRG1 binding in HSPCs (Figure 6E),
suggesting that chromatin remodeling by BRG1 may be
required for subsequent establishment of B-cell-specific
enhancers, consistent with previous observations in
erythrocyte differentiation [8]. The presence of poorly
understood H3K27mel is puzzling, as previous analyses
have shown that H3K27mel in gene bodies positively cor-
relates with expression [16], and that it may show some
enrichment in enhancers [52]. That these TS elements
contain repressive marks in the other cell types is logical,
since, combined with the lack of active marks, this could
result in silencing of target genes.

To investigate how predicted enhancers correlate with
the expression of nearby genes, we compared the counts
of CSPEs associated with TS genes and versus CSPEs
associated with all genes with RPKM greater than 0
(Figure 7A). We found that type-specific expression
tended to associate with more CSPEs, indicating that
these CSPEs tend to be expression activators.

To associate histone marks at CSPEs with expression, we
compared the distributions of pRBC expression of genes
associated with pRBC-specific CSPEs enriched in different
marks (Figure 7B). Genes associated with a CSPE were
more highly expressed than all genes (p<2.2 x 1079,
further indicating that these elements positively correlate
with expression. Genes associated with a Polll-bound
CSPE tended to show higher expression (vs. all genes
p<22 x 107, vs. CSPE-containing genes p < 2.2 x 10
(Figure 7B). PollI at these potential enhancers may result
from direct binding of Polll to enhancers or indirectly
from enhancer-promoter interactions. Several histone
modifications at CSPEs were tested for their impact on
expression of their nearest genes (for full discussion, see
Additional file 1), showing strong evidence that chroma-
tin environments of these elements correlates strongly
with expression.

Discussion

Epigenomic changes during development are crucial factors
that explain type-specific function [16,18,31,32,42,45,46,50,53].
Here we compared expression and epigenomic differ-
ences among human hematopoietic progenitors and
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downstream lineages. Our results indicate that genes
activated in downstream lineages are marked by bi-
valent histone modifications and some are also bound
by RNA Polll in progenitor cells. Bivalent modifications
resolve in specific lineages but may remain in parallel
differentiated lineages, depending on the relative dis-
tance of the cell types. We also predict enhancer-like el-
ements that may contribute to the observed tissue-
specific expression.

Co-existence of active and inactive chromatin modifica-
tions at promoters has been detected in various cell types
[18,31-33,54]. Genes with such bivalency preferentially
show tissue-specific expression in downstream cell types
[55]. These promoters generally resolve to monovalency
during differentiation [31]; most retain H3K4me3 in their
specific cell type and retain H3K27me3 in alternate cell
fates [31,55]. Although fewer bivalent genes have been
observed in differentiated cell types than in stem cells,
it is unclear how bivalency resolves during differenti-
ation of progenitor cells to their direct downstream lin-
eages in vivo. Our analysis of hematopoietic stem and
progenitor cells (HSPCs) and in vitro differentiated

erythrocyte precursors (pRBCs), in vivo differentiated
CD4+ T-cells, and CD19+ B-cells in the blood compart-
ment indicated that many genes critical for HSPC dif-
ferentiation are primed by bivalent modification and
may also be bound by Polll in HSPCs prior to differenti-
ation. E.g., the T-cell regulator GATA3 and the B-cell
master regulator PAX5 were both bivalent in HSPCs;
they became uniquely expressed and resolved to mo-
novalently active in T and B-cells, respectively. Polll
bound PAXS in HSPCs. Bivalency is not limited to pro-
moters; we noted several enhancer-like regions showing
the presence of both active and repressive marks in spe-
cific cell types (DATA NOT SHOWN). As suggested by
previous publications, bivalency primes these critical
genes for expression during differentiation [18,31]. Ob-
viously, bivalent genes are heterogeneous in both his-
tone modification enrichments and expression behavior.
They can be separated into different groups based on
the ratio between H3K4me3 and H3K27me3 enrich-
ment, and the enormous variation in this ratio trans-
lates into important differences in gene expression
behavior [18,56,57].
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Curiously, GATA3 remained bivalent in B-cells and
PAXS5 remained bivalent in T-cells, indicating that these
closely related lymphocyte types might possess some po-
tential for plasticity between them. This is consistent
with a previous report that bivalent modification of key
regulators in T helper cells are linked to their plasticity
[58]. Although PAXS is bivalent in both the progenitor
HSPCs and T-cells, the chromatin remodeling factor
BRG1 and Polll are associated with the promoter in
HSPCs but not in T-cells, suggesting that changes in
chromatin and expression potential have occurred after
differentiation to T-cells. In contrast, both the GATA3
and PAXS5 genes lost H3K4me3 in pRBCs, silencing
them in this distantly related cell type, indicating little
likelihood of direct transdifferentiation between these
lymphoid and myeloid cell types. Indeed, conversion of
Pax5-deleted B-cells into T-cells has been performed, al-
beit through de-differentiation into progenitor cell types
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[59]. Factors implicated in chromatin structure and modifi-
cation, C/EBPa and C/EBPp, can transdifferentiate B-cells
into macrophage-like cells [60,61]. GATA3 itself was
shown to mediate histone modifications at great distances
from its binding sites in mouse [44]. Together, these re-
sults indicate substantial opportunities for epigenetic-
mediated transdifferentiation of blood lineages, which is
furthered by our analysis of incomplete silencing of TS
factors in parallel cell types

Establishment of novel bivalency in partially differenti-
ated progenitors is an underaddressed trait of develop-
ment. Several genes that were not bivalent in HSPCs
became bivalent downstream. Strikingly few genes had
neither mark in HSPCs and subsequently become bi-
valent. Bivalency seems to thus be both established and
resolved in a stepwise manner, as relatively few genes
lose both active and repressive marks between differenti-
ation stages (Figure 4B). For example, while H3K27me3
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at the HOX loci changes drastically from ESC to HSPC
and beyond (Additional file 1: Figure S3), most of the
genes in these clusters retained H3K4me3 in the pro-
moter regions (DATA NOT SHOWN). This may be
explained as H3K27me3 targeting genes for selective re-
pression initially, while H3K4me3 changes are secondary
or occur on final commitment. In fact, we see that many
more changes in H3K4me3 occur between HSPCs and
the strongly committed pRBCs, while most other notable
changes between cell types are H3K27me3-related. The
stability of promoter H3K4me3 may be related to the
presence of CpG islands within the promoter. This es-
tablishment of bivalency in non stem-like populations
may require further attention to fully investigate its im-
portance. We acknowledge that there are other silencing
mechanisms such as H3K9me3 or DNA methylation in
the cells, which may or may not overlap with the
H3K27me3 pathway. More analyses of these different
chromatin modifications are required for a more complete
understanding of gene priming, repression and activation
during differentiation of these cells.

ChIP-Seq is performed on a population of cells, and
homogeneity of this population is crucial to analyses that
describe subsets [16]. Although the cells used in this study
were defined and purity-assessed by the cell surface
markers, bivalent modification detection may have re-
sulted from cellular heterogeneity [62]. We have previ-
ously shown [18] via sequential ChIP that both H3K4me3
and H3K27me3 can exist at the same promoter, but
whether or not these marks exist on the same histone, or
are functional in a single-nucleosome context is still
unknown.

Conclusion

In this study we identified tissue-specific genes in the hu-
man blood compartment and compared gene expression
status with chromatin modification patterns. Based on the
gene expression and chromatin modification patterns, we
have predicted tens of thousands of potential core regula-
tory elements shared by all cell types and potential tissue-
specific regulatory elements and show that a combination
of both H3K4mel and H2A.Z is a better predictor of
enhancer activity than either alone. We have shown that
bivalent chromatin modification in the well-characterized
human hematopoietic system is not only resolved but also
established during differentiation in a generally stepwise
manner. While much of H3K4me3 enrichment is stable
across cell types, H3K27me3 varies more frequently and
grows to cover more of the genome during differentiation.
These epigenomic data and identification of potential
regulatory elements will be useful for further understand-
ing the mechanisms governing decision making and differ-
entiation of hematopoietic cell types.
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Methods

Data sources

Data for CD34+/CD133+ hematopoietic stem and pro-
genitor cells, CD36+ red blood cell precursors, and
CD4+ T cells were downloaded from the NCBI Short
Read Archive. A full summary of data sources is available
as Additional file 1: Table 3. Counts of uniquely mapped
reads in library, non-redundant reads, and reads falling in
statistically enriched islands are Additional file 1: Table 4.
New data can be downloaded via NCBI GEO using acces-
sion GSE39229.

Naive B cells were purified from human blood using
human Naive B cell isolation kit II kits (Miltenyi, #130-
091-150). The cells were digested with MNase to gener-
ate mainly mononucleosomes with minor fraction of
dinucleosomes for histone modification mapping. For
mapping enzyme target sites, the cells were crosslinked
with formaldehyde treatment and chromatin fragmented
to 200 to 500 bp by sonication. Chromatin from 5 x 10°
cells was used for each ChIP experiment.

ChIP-Seq and analysis

ChIP-Seq was performed as previously described [16].
[llumina reads were mapped to the hgl8 genome using
Bowtie [63], allowing only one position per read (-m 1),
and filtered to allow only one read per position. Y
chromosome reads were disregarded.

We used MACS version 1.4.0 RC 2 [64] with input
control libraries from corresponding cell types, a p-value
threshold of 1 x 10% and —-g hs to detect high-
confidence Pol II-binding sites. Genes were considered
Pol II-bound if they contained a peak between 5 kbp up-
stream of the TSS to 3 kbp downstream of the TES.

Regions enriched in Brgl or modified or variant histones
were detected using SICER version 1.03 [65]. The percent
of hgl8 uniquely mappable by 25 bp reads (68%) was re-
trieved from [66]. We used a window size of 200 for Brgl,
H2A.Z, H3K4mel, and H3K4me3. Window sizes for
H3K27mel and H3K27me3 were predicted using an
unpublished version of SICER [IN PREPARATION vs
In Preparation]. We used gap sizes of 0 windows for
H3K27mel and H3K27me3, 1 window for H3K4mel and
H3K4me3, 2 windows for H2A.Z, and 3 windows for Brgl.
Fragment size was 150, and the FDR cutoff for statistical
enrichment was 1 x 10”. Due to the potentially large size
of windows, we nibbled the edges of outermost windows of
each island to maximize the difference in read density be-
tween the remaining portion and the removed portion of
the outermost windows. This feature will be implemented
in the next version of SICER [IN PREPARATION vs In
Preparation]. UCSC browser tracks were created using
200 bp window sizes, a +/- 75 bp shift by strand, and were
normalized to the 107 reads in the library.
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Reads used for alignments with respect to TSSs and en-
hancers were required to come from statistically enriched
islands. For enhancers, reads were shifted +/- 75 strand-
dependent bps, sorted by their starts into 50 equally sized
bins, counted, and normalized by bin size, TSS number,
and sequencing read count. For TSS profiles, reads were
aligned relative to RefSeq TSSs separated by strand,
counted in 10 bp bins, inverted for negative strand genes,
summed, smoothed over 4 windows on either side, and
normalized by sequencing read count. Both sets of profiles
were plotted using GNUPLOT [67]. We used MeV [68,69]
to display heatmaps in Figure 3 A, C, and D, without cor-
rection of zeroes.

Figure 3B area-proportional Venn diagrams were created
using the VennDiagram package in R [70]. CpG islands
were downloaded from the UCSC Genome Browser [71]

Figure 3F shows a heatmap of H3K27me3 reads.
Islands of H3K27me3 from all five cell types were
united, and fragmented equally into <2 kbp fragments.
Read counts of H3K27me3 in these fragments were nor-
malized by sequencing library size, clustered using k
means (k=20) clustering, and displayed in a heatmap
using R, sorted by cluster sum of H3K27me3 reads [70].

Promoters were considered to be bivalent if they had
a region statistically enriched in both H3K4me3 and
H3K27me3 within 500 bp of the TSS. Enhancers were
considered bivalent if they had any H3K27me3 enrich-
ment in their locus. Type-specific transcription factors
bivalently prepared in HSPCs were predicted using
GeneCards version 3 [72] to extract Gene Ontology terms
[73], and required to have the term “transcription factor.”

We predicted enhancers by taking the union of H2A.Z-
and H3K4mel-enriched islands using SICER. Enhancers,
and H3K27me3 regions in Figure 3F were associated with
transcripts if they were located between 20 kbp upstream of
the TSS and 0.5 kbp upstream of the TSS, or between TES
and 20 kbp downstream of the TES. P-values in Figure 7A
were calculated using a two-tailed Kolmogorof-Smirnoff
test in R version 2.6.2 [70]. The highest 5% of RPKM values
were removed from distribution analysis in Figure 7B.

RNA-Seq and analysis

RNA-Seq was performed as previously described [8].
[lumina reads were aligned to the hgl8 genome using
TopHat [74] with standard parameters. Mapped reads were
then converted to BED format using SAMtools [75]. UCSC
browser tracks [71] were created from BED reads using no
shift and a window size of 20bp. We calculated RPKM
values for all RefSeq transcripts not on the Y chromosome
using a previously described method [8]. Y chromsome
reads were disregarded as some subjects were female. Pair-
wise differential expression was calculated using EdgeR [76]
with log(fold-change) >5 and FDR<1 x 10 thresholds.
We found type-specific genes by taking the intersection of
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the three lists of significantly more highly expressed genes
from the three pairwise comparisons per cell type. KEGG
pathway analysis was performed using DAVID [77] KEGG
pathway enrichment with standard settings.

Additional file

Additional file 1. Methods. Figure S1A-S1D: Expression of type-
specific genes in four cell types - related to Figure 1. Figure S2A-S2D.
Type-specific genes are enriched in functional pathways - related to
Figure 1. Figure S3A-S3B. Enrichment of H3K27me3 at HOXA and HOXB
loci — related to Figure 3. Figure S4. Bivalency of promoters across
multiple cell types with examples - related to Figure 3. Figure S5A-B.
Density of chromatin proteins at Gata3 and Pax5 genes - related to
Figure 4.

Figure S6. Resolution and preparation of transcription factor genes
bivalent in HSPC - related to Figure 3. Table S1. Excel document of lists
of type-specific genes. Table S2. Known enhancers and their
enrichments in H3K4me1 and/or H2A.Z in four cell types. Table S3. Files
used in analysis and their sources. Table S4. Mapped sequencing reads,
unique reads, and unique reads in enriched islands. Discussion of
Figure 7B.
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