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Abstract

Background: In all Metazoa, transcription is inactive during the first mitotic cycles after fertilisation. In Drosophila
melanogaster, Zygotic Genome Activation (ZGA) occurs in two waves, starting respectively at mitotic cycles 8
(approximately 60 genes) and 14 (over a thousand genes). The regulatory mechanisms underlying these drastic
transcriptional changes remain largely unknown.

Results: We developed an original gene clustering method based on discretized transition profiles, and applied it to
datasets from three landmark early embryonic transcriptome studies. We identified 417 genes significantly
up-regulated during ZGA. De novomotif discovery returned nine motifs over-represented in their non-coding
sequences (upstream, introns, UTR), three of which correspond to previously known transcription factors: Zelda,
Tramtrack and Trithorax-like (Trl). The nine discovered motifs were combined to scan ZGA-associated regions and
predict about 1300 putative cis-regulatory modules. The fact that Trl is known to act as chromatin remodelling factor
suggests that epigenetic regulation might play an important role in zygotic genome activation. We thus
systematically compared the locations of predicted CRMs with ChIP-seq profiles for various transcription factors, 38
epigenetic marks from ModENCODE, and DNAse1 accessibility profiles. This analysis highlighted a strong and specific
enrichment of predicted ZGA-associated CRMs for Zelda, CBP, Trl binding sites, as well as for histone marks associated
with active enhancers (H3K4me1) and for open chromatin regions.

Conclusion: Based on the results of our computational analyses, we suggest a temporal model explaining the onset
of zygotic genome activation by the combined action of transcription factors and epigenetic signals. Although this
study is mainly based on the analysis of publicly available transcriptome and ChiP-seq datasets, the resulting model
suggests novel mechanisms that underly the coordinated activation of several hundreds genes at a precise time point
during embryonic development.

Keywords: Drosophila Melanogaster, Zygotic Genome Activation, Transcriptional Regulation, Epigenetic Regulation,
Transcriptome, ChIP-seq

Background
During the earliest stages of development, metazoan
embryos undergo drastic morphological changes and
transcriptional reprogramming. Just after fertilisation,
while the zygotic genome is transcriptionally inac-
tive, developmental control is ensured by maternal
products (mRNAs and proteins) loaded in the egg
during oogenesis. After a species-dependent number
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of mitotic cycles, the zygotic genome is activated
and takes control of embryonic development, whereas
maternal mRNAs are actively degraded. Known as the
“maternal-to-zygotic transition” (MZT), this fundamen-
tal process is conserved between metazoans [1]. Zygotic
Genome Activation (ZGA) occurs in two successive
waves: a minor wave involving a few tens of genes,
followed by a major wave affecting several hundreds
of genes (Figure 1A).
After fertilisation, Drosophila melanogaster embryos

undergo a series of 13 fast mitotic divisions without
cytokinesis (thus forming a syncytium, i.e. a single cell
with multiple nuclei). The first seven mitotic cycles are
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Figure 1 Temporal organization of Zygotic Genome Activation and design of published high-throughput experiments used to extract
early induced gene clusters. (A) Schematic representation of mRNA concentration evolution during early drosophila embryogenesis. The
horizontal axis represents time, in minutes after fertilisation (upper scale) or mitotic cycles (lower scale). Red: maternal mRNAs; light blue: first wave
of zygotic transcription; dark blue: second wave of zygotic transcription. (B) Time points sampled in transcriptome microarray experiments
performed by Pilot et al. (2006). (C) Respective contribution of maternal and zygotic mRNAs. Arrows represent the action of early expressed TF on
secondary targets. (D) Time points of transcriptome microarray experiments published by Lu et al. (2009). D and H denote diploids and haploids; the
numbers indicate the mitotic cycle number; E and L stand for early and late. Developmental milestones are indicated for haploid mutant embryos;
notice the differences with wild-type timing in (A).

fast (8 min/cycle) and synchronous, while the zygotic
genome remains transcriptionally inactive. The 8th cycle
coincides with the migration of nuclei to the periph-
ery of the embryo (forming the syncytial blastoderm).
Concomitantly, a first wave of ZGA occurs, leading to
the expression of about 60 genes [2], including most of
the segmentation genes and the genes required for cel-
lularisation at cycle 14. From then on, the duration of
mitotic cycles progressively increases up to 20 min-
utes at cycle 13. The second wave of ZGA involves
over a thousand genes [2,3]. This massive transcriptional
activation coincides with a long pause (about 1 h) dur-
ing the interphase of the 14th cycle. During the first
thirteen cleavage divisions, the volume of the embryos

remains stable while the amount of DNA increases
exponentially.
Using haploid mutants (with a nucleo-cytoplasmic (NC)

ratio amounting to the half of the wild type one), Edgar
et al. [4] have shown that cellularisation was delayed
by one mitotic cycle (cycle 15 instead of 14) and pro-
posed that this phenomena was due to the titration
of maternal repressors by the increasing amount of
DNA. Pritchard et al. [5] highlighted that fushi-tarazu
repression was dependent on maternal repressor Tram-
track, itself dependent on the NC ratio. More recently
Lu et al. [6] have shown that a few zygotic genes are
activated depending on the NC ratio. However, a large
fraction of the ZGA wave appears to be independent
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from the NC ratio and rather depends on the mater-
nal clock model, which assumes that the triggering of
gene expression depends on the absolute time after fer-
tilisation. The two afore mentioned mechanisms are
not exclusive, and they may play complementary roles
in ZGA.
Recently, a combination of genetic and functional

genomic studies demonstrated a major implication of
the factor Zelda between one and three hours after fer-
tilisation [7]. Zelda has been shown to play a role of
general transcription amplifier collaborating with Dorsal
[8], STAT92E [9], and some other maternal morphogens
[10]. This factor binds the TAGteam motif (CAGGTAG),
which has been previously proposed to play a role in
the activation of pre-cellular blastoderm genes [2,11,12].
The TAGteam motif is overrepresented in peaks obtained
from ChIP-seq experiments targeting 21 transcription
factors involved in embryonic segmentation [13]. Apart
from Zelda, which has been recently shown to be involved
in the two waves of ZGA [7], all the other factors reported
so far are related with the minor wave. Thus, other fac-
tors remain to be identified in order to understand the
mechanisms underlying ZGA in Drosophila, including
epigenetic regulation.
The goal of our study is to explore the regulatory mech-

anisms involved in the activation of zygotic genes during
the MZT. For this, we started from three transcriptome
studies in early Drosophila embryos [2,3,6], selected clus-
ters of genes specifically activated during MZT, discov-
ered over-represented motifs in their regulatory region
and predicted cis-regulatory modules comprising combi-
nations of these motifs. Interestingly, this “factor-centric”
analysis suggests an important role for Trl, a chromatin-
remodelling factor, which led us to further investigate
the potential associations between ZGA-associated cis-
regulatory modules and various epigenetic marks.
It has been recently established by numerous studies

that various types of histone modifications affect tran-
scriptional activation, including methylation and acety-
lation of histone tails to cite a few [14-17]. Using
complementary computational tools, we therefore fur-
ther investigated the relationship between the presence
of binding sites for key transcriptional factors and the
presence of different in-vivo histone modifications and
DNA binding event, focusing on genomic loci associated
with ZGA genes. Our computational results prompt a
model that tentatively explains the onset of ZGA by a
combination of genetic and epigenetic factors.

Results and discussion
Selection of ZGA-responding genes
Transcriptome studies used in this analysis
In order to identify novel factors involved in ZGA, we
have used a series of computational analysis tools to revisit

three transcriptomic studies: (1) The first study aimed
at detecting genes involved in the process of cellularisa-
tion: Pilot et al. (2006) [3] extracted mRNAs at five time
points corresponding to fertilisation (T0), slow (T1) and
fast (T2) phases of cellularisation, early gastrulation (T3)
and late gastrulation (T4), respectively (Figure 1B); (2)
De Renzis et al. (2007) [2] compared the expression pro-
files of wild-type embryos to those of embryos deleted
for half-chromosomes, in order to analyse the respec-
tive contributions of maternal and zygotic mRNA during
early embryogenesis. They identified five main classes of
early expressed genes: (i) maternal and zygotic; (ii) mater-
nal degraded and zygotic; (iii) purely zygotic; (iv) early-
activated zygotic; (v) secondary targets (Figure 1C); (3) Lu
et al. (2009) [6] compared expression profiles in haploid
mutants versus wild type embryos in order to distinguish
genes regulated by the NC ratio from those controlled by
the maternal clock (Figure 1D).
Although these studies addressed distinct questions, the

three datasets can be re-analysed and combined to extract
genes with marked transcription variations in order to
identify specific ZGA regulatory features.

Discrete transition profiles as signatures of co-expressed
gene clusters
The main computational analysis tools used in this
work are encompassed in the flowchart presented in the
Additional file 1: Figure S1 and detailed in the Meth-
ods section. We first analysed the clusters of co-expressed
genes published by Pilot et al. [3] and clusters that
we generated ourselves with classical clustering meth-
ods (hierarchical and supervised clustering). Published
clusters grouped genes with heterogenous temporal pro-
files (Additional file 2: Figure S2A). After redoing the
clustering with optimized parameters, this heterogeneity
largely remained (Additional file 3: Figure S3). We there-
fore decided to apply a custom method (described below
and detailed in Methods section) on the temporal profiles
from the original studies [3,6]. Transcriptome temporal
profiles from [3,6] were converted into “transition val-
ues”, defined as the log-ratios between successive time
points, which reflect the classical biologist’s perception of
changes between developmental stages (Figure 2A). Using
a stringent statistical criterion (E-value of a chip-wise nor-
mal fit), transition values are converted into three possible
discrete classes: up-regulated (u), down-regulated (d) or
stable (s), respectively (Figure 2B). Each gene is thereby
characterized by a discrete transition profile denoted by a
string of the letters u, d and s. Thus, the expression pro-
files from Pilot [3], which contains five temporal points,
were converted into vectors of four transition values and
discretized into words of four letters (Figure 2C), which
can be easily interpreted as qualitative behaviours. For
example, the profile “usss” (read “up, stable, stable, stable”)
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Figure 2 Discretization of transition profiles. (A) Computation of transition values X1-X4 from successive time points T0-T4 (see Methods for
computation) of the dataset from Pilot (2004). The horizontal axis represents time in minutes. The green star indicates the beginning of
cellularisation. (B) Gene-wise distributions of z-scores (abscissa) computed for each transition. The ordinate represents gene numbers. Dashed lines
indicate significance thresholds (E − value < 0.01), separating down-regulated (d), stable (s) and up-regulated (u) transcripts. (C) Correspondence
between z-scores profiles and discrete profiles for three representative genes. (D) Computation of transition values applied separately for diploid (D,
orange) and haploid (H, brown) genotypes in the dataset from Lu et al. (2009). Stars indicate the beginning of cellularisation. (E-F) Combining
diploid and haploid transition profiles permits to select genes whose regulation depends on the NC ratio (usDusH , panel E) or on the maternal clock
(suDusH , panel F.

regroups genes whose RNA level increases at the transi-
tion between T0 (< 30 minutes after egg laying) and T1
(slow cellularisation phase), and then remains stable: this
typically corresponds to zygotically activated genes.
Since these profiles contain four transitions, each with

three possible values (u,d,s), a maximum of 34 = 81 dis-
tinct strings can be formed. However, only 46 of these
81 profiles are actually represented by at least one gene,
among which only 18 are covered by at least ten genes.
These 18 profiles and their biological interpretation are
listed in Table 1.
Regarding the analysis of the data of Lu et al. [6], the

transitions between consecutive time points were named
by appending the genetic background (denoted by D or H,

for diploid or haploid) to the reached time point, with a
suffix specifying an early or late stage (E or L respectively).
As shown in Figure 2D, transition profiles obtained from
Lu experiments in wild type and haploid embryos can be
combined in order to distinguish genes responding to the
nucleo-cytoplasmic (NC) ratio from those activated by a
“maternal clock”. Indeed, genes that depend on NC ratio
are expected to respond one mitotic cycle later in haploids
than in diploids, since the former embryos contain half
the amount of DNA. Thus, the profile “usDusH” (read “up,
then stable diploids, up, then stable haploids”) (Figure 2E)
regroups genes activated at transition to the early 14th
mitotic cycle in diploids (transition XD14E between time
points D13 and D14E), but one cycle later in haploids
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Table 1 Biological interpretation of the 34 clusters obtained from discrete transition profiles

Experiment Profiles Nucleo-cytoplasmic ratio NC Gene number Biological interpretation

Pilot ddss 35

Lu ddDddH NC 41 Maternal mRNA degraded during cellularisation

Lu ddDdsH Maternal clock 165

Pilot dsss 885

Lu dsDdsH NC 37 Maternal mRNA degraded during slow phase of cellularisation

Lu dsDssH Maternal clock 406

Pilot dssu 11 Maternal mRNA degraded during slow phase of cellularisation
and zygotic mRNAs transcription during late phase of gastrula-
tion

Lu dsDsuH Maternal clock 163

Pilot dsus 13 Maternal mRNA degraded during slow phase of cellularisation
and zygotic mRNAs transcription during early phase of gastrula-
tion

Pilot duss 66 Maternal mRNA degraded during slow phase of cellularisation
and zygotic mRNAs transcription during fast phase of cellularisa-
tion

Pilot sdds 23

Lu sdDsdH NC 91

Lu sdDddH Maternal clock 61 Maternal mRNA degraded from fast phase of cellularisation

Lu sdDdsH Maternal clock 97

Pilot sdss 415

Pilot ssdd 12

Lu ssDsdH Horloge maternelle 111 Maternal mRNA degraded from early phase of gastrulation

Pilot ssds 22

Pilot sssd 77 Maternal mRNA degraded from late phase of gastrulation

Pilot sssu 28 Zygotic mRNAs transcription during late phase of gastrulation

Pilot ssus 21
Zygotic mRNAs transcription during early phase of gastrulation

Lu ssDsuH Maternal clock 164

Pilot suss 75

Zygotic mRNAs transcription during fast phase of cellularisation
Pilot suus 11

Lu suDsuH NC 154

Lu suDuuH Maternal clock 47

Pilot udss* 23 Transient zygotic mRNAs transcription during cellularisation

Pilot ussd* 16

Pilot usss* 87

Pilot uuss* 23

Lu usDusH* NC 14 Zygotic mRNAs transcription during slow phase of cellularisation

Lu usDssH* Maternal clock 24

Lu uuDuuH* NC 60

Lu uuDusH* Maternal clock 27

Stars beside the discrete profiles indicate clusters merged into the ZGA cluster.
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(transition XH15E between time points H14 and H15E).
In contrast, genes whose activation fit the maternal clock
model vary at the same absolute time, irrespective of
the DNA amount. For example, genes having the profile
suDusH (Figure 2F) are activated at 165-190 minutes
after egg laying in diploids (time point D14L), and at
165-185 minutes in haploid (time point H15E). In total,
the 32 = 9 diploid profiles combined with the 32 haploid
profiles can form 81 possible transition profiles. However,
we obtained only 37 different transition profiles, 24 of
which contained at least ten genes. Furthermore, only
16 of them were classified as NC ratio or maternal clock
responding genes (Table 1). We left aside the nine remain-
ing clusters because we were not able to interpret the
discrete profiles, based on the rules defined in Figure 2E
and F.
At this stage, we considered each possible discrete pro-

file as the signature of a distinct gene co-expression

cluster (Figure 3). Interestingly, the most populated pro-
files (18 clusters from Pilot and 16 from Lu contain-
ing more than 10 genes) are consistent with ZGA-
related behaviours. For example, the clusters Pilot “dsss”
(885 genes), Lu “dsDssH” (406 genes) and Lu “dsDdsH”
(37 genes) correspond to maternal mRNAs degraded
during the slow phase of cellularisation, whereas the
cluster Pilot “udss” (23 genes) regroups genes show-
ing a transient activation during cellularisation. A
list of cluster biological interpretations is provided in
Table 1. Strikingly, no gene showed transient activation
(“udDudH”) or repression (“duDduH”) depending on the
NC ratio.

Grouping of co-expression clusters based on discovered
motifs
In addition to the 34 clusters obtained from the dis-
crete transition profiles described in previous section

Figure 3 Clusters from discrete transition profiles. Heat maps representing transcriptome data from Pilot et al. (A,B) and Lu et al. (C,D). Panels
(A,C) show gene-wise normalized time points (log-ratios of each time point relative to the gene-wise median), whereas (B,D) show the
corresponding transitions between successive time points. Color scheme: red: positive values, green negative values: black: null values.
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(Additional file 4: Table S1), we included six clusters
resulting from the previous published studies: five clusters
containing maternal and/or zygotic genes defined by De
Renzis and co-workers [2], and one cluster containing
genes activated dependently on the NC ratio, defined by
Lu and co-workers [6].
In order to detect similarities between clusters contain-

ing the same type of genes (i.e. maternal, early or late
zygotic genes, etc.) and to regroup themost relevant genes
for ZGA regulation analysis, we performed a prelimi-
nary discovery of over-represented heptanucleotides [18]
in the regulatory regions associated with each of the 40
clusters.
Motif discovery was performed separately in upstream

non-coding sequences, introns, 5’UTR and 3’UTR in
order to cover various types of regulation. The resulting
motifs are combined in a matrix containing significance
of under- and over-representation of each 7-letters word
(represented as lines of the matrix) in each cluster (repre-
sented as columns of the matrix). Here, the significance is
defined as minus the logarithm of the E-value. We applied
hierarchical clustering on the columns of this matrix, in
order to regroup co-expression clusters showing similar
predicted regulatory motifs. This motif-based clustering
revealed three types of clusters (Figure 4A): (i) ’zygotic’
clusters (e.g. Pilot “usss”, Lu “usDssH”, De Renzis early
and purely zygotic, etc.) made of genes activated at early
stages of ZGA (the first wave and beginning of the sec-
ond one; yellow); (ii) “maternal” clusters containing genes
whose mRNAs is degraded during early or late cellulari-
sation (blue); (iii) “maternal+zygotic” clusters containing
genes transcribed during oogenesis as well as during ZGA
(red). This motif-based grouping is consistent with the
overlap between clusters in terms of gene composition
(Additional file 5: Figure S4A).
The resulting classification tree shows that the

clusters containing only zygotically activated genes
appear to have a coherent regulation since they clus-
ter tightly, whereas maternal+zygotic clusters reveal
a more complex pattern of regulation. Indeed, some
motifs over-represented in first introns and 5’UTR of
maternal+zygotic clusters are also over-represented in
upstream sequences of zygotic clusters (yellow frame on
Figure 4A), whereas the motifs discovered in upstream
regions of the maternal+zygotic clusters are also found
in upstream sequences of maternal clusters (blue frame
on Figure 4A). Moreover, clusters containing genes acti-
vated during late cellularisation showed none or few
motifs and are present at unresolved branches of the
hierarchical tree.
We were mostly interested in zygotic activation;

the coherent clustering shown by purely zygotic clus-
ters, and the fact that we did not find any spe-
cific motif to NC dependent and independent genes

led us to merge the ten uXXX and zygotic clusters
(Pilot “usss”, “udss”, “uuss”,“ussd”, Lu “usDusH”, “usDssH”,
“uuDusH”, “uuDuuH”, De Renzis purely zygotic, early
zygotic) into a single cluster totalizing 417 genes, here-
after denoted as “ZGA cluster”, for further analysis
(Additional file 5: Figure S4B).
We evaluated the relevance of this newly defined ZGA

cluster and analysed the enrichment of these clusters
in gene ontology terms (GO biological process, molec-
ular function and cellular component), using the soft-
ware tool compare-classes of RSAT suite [19]. We found
184 significantly enriched terms (E-value < 0.01 with
a minimal E-value = 8e−31) in the ZGA cluster that
revealed a better enrichment than the purely zygotic
(90 terms, minimal E-value = 6e−22) and early zygotic
(6 terms, minimal E-value = 2e−3). Most of the enriched
terms are associated to morphological changes and
regulatory processes (Table 2 and Additional file 6:
Table S2) that are highly consistent with the developmen-
tal embryonic stages studied.

Zelda, Tramtrack and Trithorax-like bindingmotifs are
over-represented in ZGA genes
In order to understand the mechanisms underlying
ZGA regulation, we extended our cis-regulatory motif
analysis. The over-represented heptanucleotides found
previously were assembled to build position-specific
scoring matrices. Figure 4B presents a brief synthe-
sis of the resulting motifs, and their correspondence
with known motifs. The most significant motif cor-
responds to the known Zelda binding motif (signif-
icance = 35.54 in purely zygotic genes), detected in
upstream regions of the zygotic clusters and in the first
introns of the maternal+zygotic cluster. This result is
consistent with a recent publication [7], which indi-
cates that Zelda appears to be present in genes acti-
vated beyond pre-cellular blastoderm [2,11,12]. In the
newly defined ZGA cluster, Zelda motif significance
is even higher in upstream regions (significance 40.7),
while it is also over-represented in first introns and
5’UTRs (Figure 5). The other motifs are less signifi-
cant in zygotic clusters but have increased significance
in the ZGA cluster. Motif discovery also reported a
Trithorax-like (Trl) binding motif in upstream regions
of the ZGA cluster, as well as in the first introns and
5’UTR of maternal+zygotic clusters. Trl is a mater-
nal factor acting at different transcriptional levels: it is
involved in chromatin remodelling complexes, but also
regulates RNA PolII activity by direct interactions with
TAF30.
Remarkably, a motif corresponding to the Tramtrack

(TTK) binding motif was discovered with the de novo
approach. TTK is a maternal repressor, which is pro-
gressively titrated as the NC ratio increases during
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Figure 4 Motif-based clustering of co-expression clusters (A), and correspondences between discovered and knownmotifs (B). (A)
Bi-clustering of 7-letters words and gene clusters in function of the under- and over-representation significance of each word in each cluster.
Columns correspond to gene clusters, more precisely to the different types of non-coding regions associated to genes contained in clusters
(upstream: 5Kb upstream TSS, intron1: first intron, 5utr: 5’UTR, 3utr: 3’UTR). Colors highlight clusters containing genes having the same expression
pattern: yellow corresponds to genes significantly activated during the 1st and second wave of ZGA, blue corresponds to genes whose transcripts
are maternally provided and significantly degraded during ZGA, red correspond to clusters containing genes whose transcripts are provided
maternally as well as zygotically. Clusters with no assigned colors are not classified (unresolved branches) and correspond to non-coding sequences
with few significant words. Only clusters containing at least one significant word are shown. Rows correspond to significant 7-letters words in at
least one gene cluster. Red and green colors in the heatmap (cells) correspond to over- and under-represented words respectively. (B)Motifs
resulting from the assembly of clustered overlapping words. Colored squares surrounding groups of motifs correspond to squares in the heatmap
that surround words, which were assembled.



Darbo et al. BMC Genomics 2013, 14:226 Page 9 of 22
http://www.biomedcentral.com/1471-2164/14/226

Table 2 The 40most significant associations between the GO terms and genes of the ZGA cluster

GO identifier GO term definition Nb genes in Genes at GO class coverage e-value
GO class intersection by cluster

GO:0009653 BP: anatomical structure morphogenesis 1521 145 10% 8.00E-31

GO:0007275 BP: multicellular organismal development 2739 195 7% 9.50E-30

GO:0048513 BP: organ development 1239 128 10% 4.10E-29

GO:0065007 BP: biological regulation 2287 176 8% 1.20E-28

GO:0048856 BP: anatomical structure development 2734 192 7% 8.40E-28

GO:0032502 BP: developmental process 3056 202 7% 7.60E-27

GO:0009790 BP: embryo development 595 84 14% 1.20E-25

GO:0048731 BP: system development 2161 166 8% 1.60E-25

GO:0050789 BP: regulation of biological process 2075 162 8% 2.70E-25

GO:0045165 BP: cell fate commitment 222 50 23% 8.80E-23

GO:0007389 BP: pattern specification process 512 73 14% 8.90E-22

GO:0048699 BP: generation of neurons 599 79 13% 1.00E-21

GO:0050794 BP: regulation of cellular process 1910 148 8% 3.50E-21

GO:0001071 MF: nucleic acid binding transcription factor activity 301 53 18% 4.80E-21

GO:0003700 MF: sequence-specific DNA binding transcription fac-
tor activity

301 53 18% 4.80E-21

GO:0003002 BP: regionalization 479 69 14% 1.40E-20

GO:0048598 BP: embryonic morphogenesis 232 48 21% 5.50E-20

GO:0001709 BP: cell fate determination 123 36 29% 1.10E-19

GO:0006355 BP: regulation of transcription, DNA-dependent 517 68 13% 7.00E-18

GO:0048869 BP: cellular developmental process 1732 133 8% 2.70E-17

GO:0030154 BP: cell differentiation 1695 131 8% 4.00E-17

GO:0051252 BP: regulation of RNA metabolic process 586 71 12% 9.10E-17

GO:0009887 BP: organ morphogenesis 665 76 11% 9.90E-17

GO:0007369 BP: gastrulation 69 26 38% 1.30E-16

GO:0009888 BP: tissue development 532 67 13% 1.70E-16

GO:2000112 BP: regulation of cellular macromolecule biosynthetic
process

588 70 12% 5.00E-16

GO:0010556 BP: regulation of macromolecule biosynthetic process 588 70 12% 5.00E-16

GO:0019219 BP: regulation of nucleobase, nucleoside, nucleotide
and nucleic acid metabolic process

609 71 12% 8.50E-16

GO:0051171 BP: regulation of nitrogen compound metabolic pro-
cess

611 71 12% 1.00E-15

GO:0032501 BP: multicellular organismal process 3730 206 6% 1.50E-15

GO:0010468 BP: regulation of gene expression 725 77 11% 4.60E-15

GO:0048729 BP: tissue morphogenesis 305 48 16% 1.10E-14

GO:0031326 BP: regulation of cellular biosynthetic process 633 70 11% 3.20E-14

GO:0048569 BP: post-embryonic organ development 340 50 15% 3.70E-14

GO:0009889 BP: regulation of biosynthetic process 635 70 11% 3.80E-14

GO:0030182 BP: neuron differentiation 514 62 12% 5.60E-14

GO:0060255 BP: regulation of macromolecule metabolic process 838 81 10% 1.40E-13

GO:0060429 BP: epithelium development 291 45 15% 2.90E-13

GO:0009880 BP: embryonic pattern specification 231 40 17% 3.40E-13

GO:0031323 BP: regulation of cellular metabolic process 819 79 10% 4.70E-13

Hypergeometric E-value (expected number of false positives) was computed with the RSAT tool, compare-classes [19].
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Figure 5 Selection of the most representative motifs discovered in ZGA non-coding sequences. Each row represents one discovered motif,
represented by its logo. Correspondences with motifs bound by known factors are indicated on the left. For each sequence type (5 kb: 5 Kb
upstream TSS, 5’UTR, intron1: first intron), we indicated the significance (“Sig” column), the proportion of region containing at least one occurrence
of the motif (“%r / s” column).

early mitotic cycles, thereby releasing the expression of
zygotic genes [5]. Surprisingly, the TTK binding motif is
found over-represented in the sequences of pre-cellular
activated blastoderm genes and of the genes with the
discrete signature “Lu usDssH”, but not in the sequences of
genes known to depend on the NC ratio, which might be
explained by the intervention of some other factors in this
mechanism [5].
The TTK protein has been reported to physically inter-

act with TRL proteins and to repress TRL-mediated even-
skipped activation [20]. TTK could act either directly by
binding DNA and repressing the transcription of specific
target genes, or indirectly by repressing an activator such
as Trl. Interestingly, the TTK motif is significantly under-
represented (sig=5) in upstream sequences of mater-
nal+zygotic and maternal clusters. This is consistent with
a repressing activity of TTK. Indeed, the presence of TTK
binding sites would result in early inactivation in the

presence of maternally expressed Ttk. A motif matching
the binding motif of Caudal (a maternal factor involved in
segmentation) was further detected as over-represented
in purely zygotic genes, but not in the ZGA cluster.
Two motifs were discovered in zygotic clusters, as well

as in the ZGA cluster, which do not match any annotated
transcription factor binding motif (“AGATACA” and
“AaAAGGATCG”). However “AGATACA” was previously
reported to be involved in chromosome pairing between
regulatory regions associated with the mechanism of
transvection [21]. It thus seems particularly relevant that
the strongest over-representation of this motif was found
in 5’UTRs, as well as in upstream sequences. Finally, the
analysis of over-represented motifs in the ZGA cluster
revealed four more unknown motifs (not discovered in
separated zygotic clusters). Logos and significance of all
these motifs are displayed in Figure 5. As a control, we
performed motif discovery analyses on 410 randomly
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selected gene clusters (with 41 different sizes) which did
not return any of these motifs (cf. Additional file mate-
rial available on RSAT website at the address (http://rs
at.bigre.ulb.ac.be/rsat/data/published_data/Darbo_2013).
This confirms the biological relevance of the discovered
motifs.
Based on these results, and in order to predict puta-

tive cis-regulatory modules (CRMs), we scanned each
type of ZGA non-coding sequences with the nine discov-
ered motifs and predicted cis-regulatory modules (CRMs)
by detecting cis-regulatory elements enriched regions
(CRERs) using matrix-scan [22] around ZGA defined
genes. We detected 528 CRERs in upstream sequences,
313 in the 5’UTR, and 553 in first introns. Because we
retrieved non-coding sequences associated with all alter-
native transcripts, upstream sequences of the smaller
transcripts may overlap first introns or 5’UTR sequences.
Moreover, in some genes, the first intron is embedded
in 5’UTR. About 70% of the upstream sequences, 50% of
the first introns and 40% of the 5’UTR contain at least
one CRER (Additional file 7: Table S3). Thus, after hav-
ing merged the CRERs detected in the different types
of regulatory regions, we obtained a final set of 1394
non-overlapping CRERs, hereafter denoted as “predicted
CRMs”.
In addition to de novo motif discovery, we analysed the

enrichment of the ZGA cluster for known motifs, using
the program cisTargetX [23]. This tool reveals enriched
regulatory features (e.g. motifs or in-vivo datasets) in a
set of regions, and ranks these features using a Z-score
like enrichements score. Consistently, the results reveal a
high enrichment for Zelda (score 12.8) and TRL (score
3.5) binding motifs (Additional file 8: Figure S5). In this
analysis, bindingmotifs for Dorsal (DL), Krüpple (KR) and
Bicoid (BCD) were also reported as significantly enriched,
which is not unexpected, given the high level of correla-
tion between the binding of these TFs and Zelda. Indeed,
a first study of in-vivo binding of BCD, CAD and KR
showed that by far the most over-represented motif under
the binding peaks was CAGGTAG, hence the binding
motif for Zelda [24]. However, many of the CRER do not
contain any binding sites for these factors: of the 1394
predicted CRMs, only 765 (54%) contain a predicted bind-
ing site for BCD, KR, DL or CAD, using a threshold of
p = 0.0001 on the binding site. Hence, the observed
enrichment for these transcription factors is restricted
to a subset of predicted CRMs. This can be confirmed
using in-vivo datasets for these factors including Zelda; we
restricted our analysis to the CRER containing a predicted
Zelda binding site (780 CRER), of which 599 overlap
with an in-vivo Zelda binding event, using the ZLD-ChIP
datasets published in [7]. Of these Zelda-bound CRER,
423 (70%) do not have any overlap with any of the 21 TFs
published in [25]. Hence, Zelda bound in these CRER is

not acting as a precursor for segmentation TFs, which are
thus likely to be specifically involved in ZGA.

CRER composition gives insight into ZGAmechanisms
We analysed the motif composition of the defined CRERs,
to get insight into the respective contribution of each
motif to the ZGA mechanism. A first observation is that
roughly 75% of individual binding sites are contained
in CRERs, a percentage that is constant across regions
(upstream, intron and 5’ UTR), with the exception of
3’ UTR where this proportion is around 60%. This per-
centage varies depending on which motif is considered
(Additional file 9: Figure S6A). Given that the CRER
regions span between 15% and 30% of the regions analysed
for motifs, this proportion of motifs in CRER represent a
significant enrichment over random expectation, and sup-
ports the fact that most of the discovered motif instances
are indeed bona fide binding sites.
In order to unveil specific organisation patterns, we

used a randomization procedure which shuffles the motif
instances across CRERs, maintaining the total number of
instances of each motif across CRERs, and the number
of binding sites in each CRER. A first striking observa-
tion is the strong over-representation of homotypic CRER
configurations, which is particularly strong in upstream
regions (Additional file 9: Figure S6B). As homotypic clus-
ters are known to play an important role in the response to
morphogens during early embryogenesis, this is not unex-
pected, but further supports the validity of the CRERs.
The motifs showing the highest over-representations of
homotypic clusters are Zelda and the unknown motif
AGATACA. For Zelda, the prevalence of homotypic
clusters might be a way to respond to “temporal mor-
phogens”, as has been suggested previously [26], while
clusters of AGATACmotifs had been identified previously
and hypothesized to play a role in chromosome pairing
and DNA looping [21]. While heterotypic configurations
are globally under-represented, specific combinations are
nevertheless found more often than expected, and might
point at particular cooperative mechanisms (Additional
file 9: Figure S6C). For example, Zelda is found in het-
erotypic clusters together with either TTK-like motifs or
the previously mentioned AGATACA motif, suggesting a
mechanism by which distant enhancers bound by Zelda
might be brought into contact with promoter regions
with the help of mediator proteins binding AGATACA-
motifs [21].

Using in-vivo datasets to investigate epigenetic
mechanisms
The motif discovery analysis described in the previous
section, and in particular the presence of Trl-related
motifs, suggests a possible involvement of epigenetic
factors in the activation of zygotic gene expression. In

http://rsat.bigre.ulb.ac.be/rsat/data/published_data/Darbo_2013
http://rsat.bigre.ulb.ac.be/rsat/data/published_data/Darbo_2013
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order to complement the previous motif analysis, we
thus decided to make use of recently published in-vivo
datasets and to investigate epigenetic regulation by ana-
lyzing ChIP-seq and DNAse1 accessibility data, using read
densities as well as peaks locations.We focused on the fac-
tors CBP (0-4 h), Trl (0-8 h) and Zelda (extracted at 1 h, 2 h
and 3 h after fertilisation), modified histones (H3K4me1
0-4 h, H3K4me3, H3K9Ac, H3K27Ac, H3K27me3) and
open chromatin (DNAse1 accessibility, stage 5).

Differential motif analysis reveals ZGA specific associations
After having shown that ZGA CRERs reveal specific
associations between motifs, we wanted to investigate
whether these associations were general, or ZGA spe-
cific. In order to do so, we systematically performed
a differential motif analysis with the program peak-
motifs (RSAT) [27,28] between the ChIP peaks located in
non-coding regions associated (hereafter denoted “ZGA-
peaks”) and not associated (“non-ZGA peaks”) with genes
of the ZGA cluster (Additional file 10: Figure S7 and
Additional file 11: Figure S8).
The Zelda binding motif is over-represented in CBP,

TRL and DNAse1 ZGA-peaks vs. non-ZGA peaks, con-
firming the importance of this factor for the control of
zygotic genome activation (Additional file 10: Figure S7).
The unknown motif AGATACA appears also to be sys-
tematically enriched in ZGA vs. non-ZGA datasets, con-
firming its relevance to ZGA specific processes.
The differential analysis of Zelda-bound regions at dif-

ferent time points shows that the TRL-related motif and
AGATACA are highly differentially enriched, underlying
the ZGA-specific association between these three motifs.
As expected, and as a control of the differential analysis,
the Zelda motif does not appear, being present in ZGA as
well as non-ZGA peaks.
CBP does not establish direct interactions with DNA,

but interacts with a large diversity of DNA-binding tran-
scription factors. In a recent study, the importance of
Dorsal for the recruitment of CBP has been shown [29].
Interestingly, in this study, a strong correlation between
CBP and TRL binding had also been shown. Here, we do
not find Dorsal binding sites over-represented in ZGA vs.
non-ZGA CBP peaks. However, a strong enrichment in
Zelda binding motif might suggest that Zelda might take
over the role of Dorsal for CBP recruitment in the case of
ZGA. The TRLmotif is foundwhenmotif discovery is per-
formed independently on ZGA and non-ZGA CBP peaks
(data not shown), showing that CBP and TRL are indeed
associated, as noted previously [29]. The fact that the TRL
motif does not appear in the differential analysis is likely
due to the fact that CBP and TRL co-localize also outside
ZGA-specific regions. However, a much stronger overlap
between CBP and TRL peaks appears around ZGA-genes:
while 18% of TRL-peaks overlapp a CBP-peak between

0-4 h, the proportion reaches 46% when restricting the
analysis to peaks located around ZGA-genes.

High enrichment of CRMs formarks of transcriptional and
epigenetic regulation
The previous analysis indicates the prominent role played
by CBP, TRL and Zelda around ZGA-specific genes. We
then wanted to investigate in more details the importance
of these factors at the precise locations of our predicted
CRMs.
In order to detect specific associations, we analysed the

densities of reads from ChIP-seq experiments under the
1394 predicted CRMs regions. To evaluate the level of
enrichment, we ran the same analysis on a positive control
set (114 curated blastoderm-specific CRMs from RedFly)
and three types of negative sets: (i) regulatory regions of
the 417 ZGA genes scanned with randomized (column-
permuted) motifs, (ii) regulatory regions of 417 randomly
selected genes, and (iii) 317 CRMs not supposed to be
active in blastoderm, according to RedFly annotations.
For each of these datasets, we computed the density

of reads under CRMs for various marks of transcrip-
tional and epigenetic regulation: Zelda (global transcrip-
tion factor), CBP (non-DNA binding cofactor) and TRL
(chromatin remodelling factor), histone marks, and DNA
accessibility profiles, and compared it with the density of
reads under randomly selected regions of similar sizes and
types (upstream, intron, . . . ). We also computed a p-value
using the Wilcoxon rank test in order to evaluate the dif-
ference of enrichment between ZGA CRMs and controls
(Additional file 12: Table S4).
The results are displayed as ROC curves (Figure 6A),

indicating the proportion of CRMs reaching a given den-
sity score (ordinate) versus random regions reaching the
same score (abscissa). The area under the curve (AUC)
was computed to quantify the relative enrichment of
different datasets (Additional file 13: Figure S9A). The
strongest associations were obtained for CRMs predicted
from upstream sequences, as discussed in detail below.
However, similar associations were found with CRMs pre-
dicted from other sequence types (first introns, 5’UTR and
merged CRMs).
The ROC curves (Additional file 14: Figure S10) high-

light a strong enrichment of ZGA predicted CRMs
for Zelda (1 h, 2 h, 3 h), TRL (0-8 h), CBP (0-4 h) and
H3K4me1 (0-4 h) as well as DNAse1 hypersensitive
sites (stage 5) that together correspond to signatures of
active enhancer. This alone confirms the biological rele-
vance of our CRMs defined purely from sequence motifs
around ZGA specific genes. Similar levels of associa-
tion were found in blastoderm-specific CRMs for marks
of active enhancers. However, TRL was found enriched
for ZGA CRMs but not for blastoderm-specific CRMs
(wilcoxon p-value 8e−3). Blastoderm-specific CRMs were
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Figure 6 Combination of four chromatin mark. A. ROC curves of genome-wise location for ZGA predicted CRMs: Red: Trl 0-8 h; blue: CBP 0-4 h;
purple: H3K4Me1; green: DNAse1 accessibility stage 5. The black curve corresponds to the median rank as explained in Methods section. B. Pairwise
Spearman correlation of the four marks, computed on the regions of the ZGA predicted CRMs (blue), blastoderm CRMs from Redfly (red), central
nervous system CRMs from Redfly (green) or on random subsets of regions of identical size and genomic localization (grey). Error bars show the
standard deviation over 1000 subsamples. C. Example of the 5kb upstream the crocodile gene having high density of read for these four marks (1)
ZGA CRMs. (2) Zelda 3H peaks. (3) Predicted sites obtained from the scanning of non-coding sequences of ZGA genes with the 9 discovered
matrices. (4) Normalized read density produced during CBP ChIP-seq experiment. (5) Normalized read density produced during H3K4me1 ChIP-seq
experiment. (6) Normalized read density produced during Trl ChIP-seq experiment. (7) Representation of the 5’ part of crocodile. (8) Normalized read
density produced during DNAse1 accessibility experiment. (9) Drosophila species conservation.
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also enriched for two repressive marks (H3K9me3 and
H3K27me3). This might reflect the tight regulation of
the genes controlled by these CRMs, which are active
in few spatially located nuclei, but highly repressed
by Polycomb-group proteins in the major part of the
embryo, as indicated by a recent study by Negre
and co-workers [30]. Moreover these repressive marks
remain associated with blastoderm CRMs at later stages
(Additional file 15: Figure S11).
In contrast, during the time window corresponding to

zygotic genome activation (0-4 h), the predicted CRMs
of ZGA genes (red curves on Additional file 14: Figure
S10) show a significant enrichment for some marks
of transcriptional activity (H3K4me1, CBP) but not for
repressive marks (H3K27me3, H3K9me3), where the
red curve is intermingled with the negative controls
(green, purple and blue curves). This seems consistent
with a general activation of many genes in the whole
embryo.

Figure 7 shows the ROC curves for CRM occupancy
by CBP, DNAse1 and H3K27me3 at successive stages of
embryonic development. For both ZGA predicted and
blastoderm-specific curated CRMs, CBP occupancy and
DNAse1 accessibility are clearly restricted to very early
stage (0-4 h) corresponding to the two waves of ZGA (1 h
and 3 h, respectively), and rapidly decay at later stages.
The same trends are observed for Trl (see AUC dis-
tributions for all data sets in Additional file 13: Figure
S9B). In contrast, the strong enrichment of repressive
mark H3K27me3 in curated blastoderm-specific CRMs is
constant during all the studied period (0-16 h). On the
downside, comparing the right and left panels reveals that
enrichments curves are more pronounced for experimen-
tally validated blastoderm CRMs than for ZGA predicted
CRMs, which likely reflects the generation of false positive
among the latter.
Previous studies have shown that some of these marks

are correlated [31] and do not act independently from

Figure 7 Dynamics of CRM occupancy by epigenetic marks. ROC curves representing enrichment of CRMs predicted in ZGA-associated
regulatory regions (left panels) and curated blastoderm-specific CRMs (right panels) for CBP (A,B), DNAse1 accessibility (C,D) and H3K27me3 (E-F).
Red, orange, purple and blue denote different timing, from the earliest to the latest. Time windows for CBP and H3K27me3: 0-4 h, 4-8 h, 8-12 h,
12-16 h; for DNAse 1: developmental stages 5 (∼2 h30), 9 (∼4 h), 11 (∼6 h) and 14 (∼12 h).
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each other. Using a computational strategy developed
previously [32], we used a ranking approach to com-
pute the correlation between these marks for (i) random
non-coding regions of the genome matching positional
biases of ZGA CRMs, (ii) specifically for the ZGA pre-
dicted CRMs as well as for (iii) blastoderm CRMs from
Redfly and (iv) central nervous system CRMs from Redfly
(Figure 6B; Methods).
Most combinations show a global positive correlation,

even in randomly selected regions. Since random regions
have been sampled from locations characteristic of ZGA
CRER, this reflects a positional effect specific to upstream
or intronic regions. The combination CBP/H3K4me1
shows a higher correlation for all three classes of func-
tional elements compared to random regions, as expected
from previous studies [30].
However, some combinations show a much higher

degree of correlation for ZGA CRERs compared to
random regions or other CRMs, notably CBP/Trl and
H3K4me1/Trl. The fact that Trl is involved in these ZGA-
specific combinations is interesting, as Trl alone is not the
best discriminant between ZGA CRERs and other regions
(Figure 6A). While Trl and CBP are known to inter-
act [29,30], our results suggest that the synergy between
them is even higher on ZGA-specific CRMs and might
contribute to the activation of the zygotic genome.

Conclusion
From transcriptome data to CRMs prediction and
epigenetic context characterisation
The goal of our study was to investigate the mecha-
nism of zygotic genome activation. In order to do so,
we (i) re-analysed published datasets to carefully define
a list of ZGA-related genes, (ii) applied motif discovery
approaches to uncover potential regulators of this process,
and (iii) combined in-vivo datasets for various epigenetics
factors to understand the interplay between the different
regulators of the ZGA.
In particular, using published transcriptome data, we

proposed a novel method to cluster gene expression pro-
files in time-course experiments, which does not require
any parameter in order to define co-expression clus-
ters. Functional analysis (expression profiles, non-coding
sequence analyses, functional classes enrichment) of the
different clusters allowed us to delineate a compre-
hensive and coherent cluster of genes activated during
ZGA. The motifs discovered in the corresponding genes
led us to propose several factors and co-factors poten-
tially acting in trans, along with putative cis-regulatory
modules.
Analyses of specific associations of predicted CRMs

and epigenetic marks led us to propose a model com-
bining different factors (Zelda, TRL, CBP and other
unknown factors), which presumably bind accessible and

active chromatin regions. In particular, we highlighted to
importance of a DNA-motif, AGATACA, which is not
yet characterized, but might correspond to a structurally
important element or a DNA-binding motif.
From our results, we ranked the predicted CRMs com-

bining TRL, CBP, DNAse1 accessibility, and H3K4me1
data to select the most relevant ones, which can be
visualized in their genomic context using the UCSC
genome browser. For example, Figure 6C shows the region
upstream the TSS of the gene crocodile, a purely zygotic
gene, whose activation is dependent on the NC ratio and
which is involved in the specification of the most anterior
head segment.

Tentative regulatory model and prediction of novel CRMs
potentially involved in ZGA control
During the first hour of development, drosophila
zygotic genome is transcriptionally silent. As shown
in Figure 8A, based on the over-representation of
TRL and TTK binding motifs in ZGA non-coding
sequences, as well as on TRL binding profile and on
previous studies [20], we propose that, before ZGA,
TTK could exert a general inhibition on TRL medi-
ated transcription activation through protein-protein
interaction.
As TTK becomes titrated by the increasing NC ratio,

TRL could be released and become active. Moreover,
according to the recent RNA-seq data from Gelbart and
Emmert, the amount of Trl mRNA increases from 2h to
4h after egg fertilisation [33]. TTK could thus repress
TRL while its abundance is still low, suggesting a mutu-
ally enforced effect of TTK titration (NC ratio-dependent)
and TRL increase (NC ratio-independent). Binding of
TRL could in turn trigger the recruitment of chromatin
remodelling complexes. Consistently, we found a high
association between predicted CRMs in ZGA-associated
regulatory regions, ChIP-seq profiles of TRL binding, and
H3K4me1 occupancy.
TRL is not a ZGA-specific factor. What is its exact

role during ZGA? While the answer to this question
would require experimental validation, our study sug-
gests a mechanism analogous to what has been recently
described for dorso-ventral patterning [29], namely that
the specificity of TRL action during ZGA might be con-
veyed by Zelda. This transcription factor has been shown
to be primarily involved in the very early stages of embryo-
genesis, and we find ZGA-specific over-representation of
Zelda binding motifs in CBP bound regions around ZGA-
genes (Additional file 10: Figure S7). Our model thus
involves Zelda, TRL and possibility another factor bind-
ing AGATACA. Specific enrichment of the combination
of TRL, CBP, H3K4me1 and open chromatin suggests
that the global cofactor CBP could be recruited by these
factors at the location of the ZGA CRMs. Consistently,
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Figure 8 Integrative model for ZGA combining transcription and epigenetic factors. (A) Chromatin state and factor organisation before ZGA.
(B) Chromatin opening and transcriptional activation. Supporting evidences: letters (from a to j) indicate the clues brought by literature (blue), by
our bioinformatics treatments (red), or both (purple). (a) See Figure 4, Additional file 15: Figure S11B and [20]; (b) See [5]; (c) See Additional file 15:
Figure S11B; (d,e) See [16,17]; (f) See Figure 4, Additional file 10: Figure S7 and [7]; (g) See Figure 4, Additional file 15: Figure S11B; (h) See Additional
file 10: Figure S7, Figure 7 and [29].

both TRL and CBP contain a Q-rich protein-protein inter-
action domain [34-36], suggesting potential interactions
between these two proteins. The high over-representation
of TRL bindingmotif in CBP peaks reinforces this hypoth-
esis. In contrast, the absence of association with acetylated
histone 3 suggests that CBP might not act as an acetyl-
transferase here, but instead could act as a bridge between
the transcription factors and the basal machinery.

Methods
High-throughput data
Transcriptome and ChIP-seq data were retrieved from
GEO database (http://www.ncbi.nlm.nih.gov/geo/). Tran-
scriptome data: GEO Reference Series IDs GSE3955 [3],
GSE14287 [6]. ChIP-seq data: Zelda dataset (GSE30757),
other datasets belong to the GSE23537 super series from
ModENCODE project [30].
DNAse1 accessibility data were retrieved from Berkeley

Drosophila transcription Network Project (http://bdtnp.
lbl.gov/Fly-Net/browseAccess.jsp). As the reads from
these experiments were mapped on the dm2 assem-
bly, genomic coordinates were converted from dm2
to dm3 assembly with liftOver (http://genome.ucsc.
edu/cgi-bin/hgLiftOver).

Discrete transition profiles
The analysis of microarray data was done with the R
statistical package version 2.15.0 [37] and Bioconductor
libraries version 1.4.7 [38]. The original datasets extracted

from GEO were normalized with the RMA method [39].
RMA-normalized intensities were then converted into
discrete transition profiles. We denote as Ti,j the median
value of the 3 replicates for gene i at time point j. The
transition value Xi,j of gene i from time point j− 1 to time
point j is computed as follows (Figure 2A).

Xi,j = log2(
Ti,j

Ti,j−1
) (1)

Transition values are converted to Z-scores using robust
estimators to avoid the effects of outliers.

Zi,j = Xi,j − m̃j

ŝj
= Xi,j − m̃j

(IQR/1.349)j
(2)

where m̃ is the median, ŝj is the estimated standard devia-
tion that corresponds to the observed inter-quantile range
(IQR) of the transition values to time point j, standardized
by the IQR of a standard normal distribution (mean = 0,
s = 1) which equals 1.349. The P-values of Z-scores are
computed according to the standard normal distribution,
and converted to E-values.

Evali,j = Pvali,j ∗ G (3)

where G is the total number of genes. Z-scores are
discretized by applying a stringent threshold �0.01 corre-
sponding to an E-value of 0.01 (Figure 2B).

Di,j = u if Zi,j ≥ �0.01

Di,j = d if Zi,j ≥ �−0.01

Di,j = s otherwise (4)

http://www.ncbi.nlm.nih.gov/geo/
http://bdtnp.lbl.gov/Fly-Net/browseAccess.jsp
http://bdtnp.lbl.gov/Fly-Net/browseAccess.jsp
http://genome.ucsc.edu/cgi-bin/hgLiftOver
http://genome.ucsc.edu/cgi-bin/hgLiftOver
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Each gene is thus characterized by a discrete transition
profile described as a vector of letters u,d,s (Figure 2C).

Functional enrichment
Functional enrichment analyses were performed with
compare-classes (RSAT, http://rsat.ulb.ac.be/rsat/) [19].
Gene ontology (Revision 1.2125) and gene-GO asso-

ciations (version fb_2011_08) were retrieved from
Flybase (http://flybase.org/static_pages/downloads/bulk
data7.html) [40]. We discarded the association with low
evidence code: NAS (Non-traceable Author Statement),
NR (Non-Recorded) and ND (No biological Data avail-
able). Each ontology class (molecular function, biological
process, and cellular component) was analysed separately.
The significance of the enrichment is estimated with the
hypergeometric p-value, corrected for multi-testing by
computing an analysis-wise E-value:

Eval = Pval ∗ n (5)

where n is the total number of comparisons between a
GO class and a gene cluster. To avoid under-estimating
the significance, only genes with at least one annotation
in GO were considered for this analysis (the “population
size” parameter of compare-classes was set to the number
of Drosophila melanogaster genes annotated in GO, while
the non-annotated genes were discarded from the clusters
for this enrichment analysis step).

Analysis of regulatory sequences
The analysis of regulatory sequences relied on the
Regulatory Sequence Analysis Tools (RSAT, http://
rsat.ulb.ac.be/rsat/) [27,41] and CisTargetX (http://med.
kuleuven.be/cme-mg/lng/cisTargetX/) [23].

Sequence retrieval
We used the tool retrieve-ensembl-seq [42] to retrieve
non-coding sequences associated to each Drosophila
melanogaster gene (upstream, 5’UTR, 3’UTR, first
intron). Upstream non-coding sequences were extracted
up to the closest neighbor gene, with a maximal length of
5 kb. We activated the options to mask coding sequences
and repeats, as well as options to retrieve non-coding
sequences for all alternative transcripts and to merge
overlapping ones.

Motif discovery
To automatize motif discovery on the various non-coding
sequence types for the different clusters defined dur-
ing this study, we used the script gene-cluster-motifs,
a task manager available in the stand-alone version of
RSAT. Among the different motif discovery algorithms
supported by this task manager, we ran oligo-analysis [18]
and dyad-analysis [43].

These algorithms are based on words and dyads count-
ing respectively. The number of occurrences of each word
(dyad) is compared to the expected frequencies observed
in a reference sequence set. Specific background mod-
els were built for each sequence type (upstream, first
intron, 5’UTR, 3’UTR) by computing oligonucleotide and
dyad frequencies in the whole set of genomics sequences
of the same type. Significance of over-representation is
estimated using binomial distribution by computing a
nominal p-value.
Over-represented words (oligos) and spaced word pairs

(dyads) were assembled and converted to position-
specific scoring matrices with the tool matrix-from-
patterns (RSAT).
An important advantage of word-based approaches is

their scalability: the computing time increases linearly
with sequence size, in contast with machine-learning
approaches such as MEME or Gibbs motif sampler, whose
complexity is quadratic or worse (see [27] for a quantita-
tive evaluation of time efficiency).
Finally, discovered motifs were compared to motif

databases (JASPAR: http://jaspar.genereg.net/ [44], Fly-
FactorSurvey: http://pgfe.umassmed.edu/TFDBS/ [45])
with compare-matrices (RSAT).

Peak-motifs
Peaks from genome-wise location studies were analysed
with peak-motifs [27,28] (RSATools).
We ran all motif discovery algorithms available in

the web site (oligo-, position-, local-word- and dyad-
analysis). We searched for over-represented 6- and
7-mers(oligo-, position-, local-word-analysis) and for
pairs or trinucleotides spaced by 0 to 20 nucleotides
(dyad-analysis). Background was computed from input
sequences using a markov model of k − 2 with k
representing the oligomer length (oligo-, dyad-analysis).
We selected JASPAR Core Insects, DMMPMM and
iDMMPMM motif databases for comparison of discov-
ered motifs with known binding motifs.

Motif enrichment
CisTargetX was used with default parameters, excepting
the parameter “Z-score threshold”, for which we selected
the option “Determine threshold automatically” instead of
the 2.5 default value.

Cis-Regulatory element Enriched Regions (CRERs)
CRERs were predicted with matrix-scan (RSAT) [22]. To
compute CRERs significance, we kept sites with a maxi-
mal p-value of 10−4, and imposed a distance of at least six
nucleotides between consecutive sites to discard overlap-
ping sites that would bias the computed significance. The
CRERs length was allowed to vary from 30 and 800 bp.
Only CRERs with at least a significance of 2 were further

http://rsat.ulb.ac.be/rsat/
http://flybase.org/static_pages/downloads/bulkdata7.html
http://flybase.org/static_pages/downloads/bulkdata7.html
http://rsat.ulb.ac.be/rsat/
http://rsat.ulb.ac.be/rsat/
http://med.kuleuven.be/cme-mg/lng/cisTargetX/
http://med.kuleuven.be/cme-mg/lng/cisTargetX/
http://jaspar.genereg.net/
http://pgfe.umassmed.edu/TFDBS/
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analysed. The background models were computed from
input sequences using a Markov model of order 2.

Enrichment of CRMs in ChIP-seq reads
To compare predicted CRM and ChIP-seq profiles, we
defined a method to integrate the density of reads over a
given region. As a negative control, we measured the read
density under random selections of genomic regions of
the same sizes as the CRMs. The distributions of densities
were compared with ROC (receiver-operating character-
istic) curves. The random regions were generated from
upstream, first intron, and 5’UTR locations in accordance
to the analysed set of predicted CRMs.

Computation of the intensity under a region (Ir)
We used the WIG files available in GEO, which con-
tains the ChIP density values at regularly spaced positions
(one value every 10 or 100bp depending on the ChIP-seq
experiment). To measure the enrichment of a given region
of interest (e.g. predicted CRM) for a given ChIP-seq
annotation track, we interpolated densities between the
annotated positions, and sum their values over the whole
length of the region, to obtain a total read intensity of the
region (Ir). Additional file 16: Figure S12A presents the
principle and notations used in following formulas. Let
us consider a pair of consecutive annotated positions xi
and xi+1 (separated by 100bp for example) with densities
di and di+1, respectively. Under linear interpolation, the
sum of densities of all the nucleotide positions between
them equals the area of a trapezoid delimited by the den-
sity values at xi and xi+1. The integrated intensity (Hi,i+1)
between these two successive reads is thus computed as
follows.

Hi,i+1 =
(di + di+1

2

)
(xi+1 − xi) (6)

Since the start and end of the region of interest does
not always coincide with the precise positions of spaced
reads, we interpolate the density at the start position of
the region (ds).

ds = d0 + xs − x0
(x1 − x0)(d1 − d0)

(7)

where xs is the starting position of the region of interest.
In the same way, we estimate the read density (de) at the

end position (xe) of the region:

de = dn+1 + xe − xn
(xn+1 − xn)(dn+1 − dn)

(8)

where xn and xn+1 are the discrete read positions just
before and after xe, respectively, and dn and dn+1 the
corresponding read densities.

We then compute integrated densities Hs between the
region start (xs) and the first annotated read under the
region (x1)

Hs,1 =
(d1 + ds

2

)
(x1 − xs) (9)

as well as the integrated densityHe between the rightmost
annotated read under the region (xn) and the region
end (xe)

Hn,e =
(dn + de

2

)
(xe − xn) (10)

We can thus compute the integrated read density under
the whole region (HR):

HR = Hs +
n−1∑
i=1

Hi,i+1 + He (11)

The average region density (DR) is obtained y dividing
this integrated density by the region length (LR):

DR = HR
LR

(12)

Generation of random regions
For each CRM type (predicted or curated), we generated
ten replicates of random regions of the same lengths as the
original CRMs. For each sequence type (upstream, first
intron, 5’UTR, 3’UTR), the random regions were retrieved
from the whole set of sequences of the same type found
in the Drosophila genome. For curated CRMs, random
regions were retrieved from upstream sequences since
they are almost all present in upstream sequences.

ROC curves
The computation of ROC curves is based on region rank-
ing according to Ir as shown in Additional file 16: Figure
S12B. Values were then normalized along the x and y axis
in order to obtain comparable ROC curves between differ-
ent analyses, i.e. different tested regions (predicted CRMs
from ZGA or control non-coding sequences, curated
CRMs etc) or different genome-wide protein location
experiments. Area under curves (AUC) were computed
for the 1000 first ranks. Ranking of regions based on a
combination c of a set ω of different genome-wide protein
location experiments were computed as follows.

kc = m̃kω
(13)

where kc is the resulting rank of a given region of a
combination c of the experiments in set ω and m̃kω

is
the median of the ranks assigned to the region for all
experiments in ω.

Correlation betweenmarks
Following a previous publication [32], we used a complete
partition of the Drosophila non-coding genome repre-
senting about 136K regions, and scored these regions with
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themarks of interest (CBP, Trl, H3K4me1 andDNAse1HS
sites). All 136K regions were ranked according to these
four features. Next, we extracted the subset of regions
overlapping the ZGA CRERs, and computed the Spear-
man correlation between the ranks of these regions for
all pairs of features over 1000 subsamples of 80% of the
regions. For sake of comparison, we have extracted the
CRMs annotated with the terms Blastoderm (226 regions)
or Central nervous system (397 regions) from the Redfly
database and performed the same analysis. The barplots
on Figure 6B show the mean correlations over the 1000
subsamplings and the error bars indicate the standard
deviations. As a negative control, one thousand random
regions were sampled from the set of 136K regions, such
that the proportion of upstream and intronic regions
matches those of the ZGA CRERs. For each pair of fea-
tures, the mean and standard deviation of the correlation
were computed and plotted.

Additional file information
All data used in this study and the results are avail-
able on the supporting Web site (http://rsat.bigre.ulb.
ac.be/rsat/data/published_data/Darbo_2013).

Additional file

Additional file 1: Figure S1. Computational analysis flow chart.
Expression and chromatin modification data were retrieved from public
databases, and relevant pre-computed datasets were collected from the
literature (light yellow boxes). Modules (light red boxes) contain processes
(bold case), tools (red boxes) and output results (dark yellow boxes).
Asterisks denote custom treatments specifically developed for this analysis.
A grey square embeds the steps that have been processed twice (1st step
with all clusters: blue arrow, 2nd step with ZGA cluster: green arrow). CRMs:
Cis-Regulatory Modules; TSS: Transcription Start Site.

Additional file 2: Figure S2. Expression profile visualization of published
clusters [3] and clusters obtained from discrete transition profiles. A-B: Left
panels: heatmaps representing expression profiles from T0 to T4. Red,
green and black indicate expression over, under or equal to the median
value along the five time points. Middle left panel: temporal profiles. x-axis
indicates the time points, y-axis indicates the log2 signal value, the green
line corresponds to the mean signal value, the dashed purple line
corresponds to the standard deviation, each grey line represents a gene in
the cluster. Middle right panels: transition profiles. x-axis indicates the
transitions X1 to X4 between consecutive time points, y-axis indicates the
log ratio signal value, each blue circle represents a gene. A. Right panels:
Schematization of expression profiles of all clusters defined by Pilot et al.,
the numbers over the curves indicate the number of genes.The colors of
the curves correspond to the vertical line colors in the other panels. B.
Right panel: heatmap representing the transition profiles from X1 to X4.
Red, green and black indicate expression up-, down-regulation or stability
of expression during the variations.

Additional file 3: Figure S3. Expression profile visualization of clusters
obtained from Pilot at al. [3] data using classical clustering methods.
Heatmap representing expression profiles from T0 to T4. Red, green and
black indicate expression over, under or equal to the median value along
the five time points. A. Hierarchical clustering using dot product metrics
and complete linkage. B. One of the cluster obtained with K-means
partitioning (a priori 10 clusters) by 50 iteration. C. Hierarchical clustering
using euclidian distance and complete linkage. Middle panel: temporal
profiles. x-axis indicates the time points, y-axis indicates the log2 signal
value, the green line corresponds to the mean signal value,

the dashed purple line corresponds to the standard deviation, each grey
line represents a gene in the cluster. Right panel: transition profiles. x-axis
indicates the transitions X1 to X4 between consecutive time points, y-axis
indicates the log ratio signal value, each blue circle represents a gene.

Additional file 4: Table S1. Summary of clusters composition. Fist sheet
(Cross-table): Row names indicate FlyBase IDs of 3411 genes present in at
least 1 cluster and columns headers indicate 40 published and discrete
profile clustering method obtained clusters. The first word indicates the
first author of the study from which data were retrieved. [2,3,6]. Following
words indicate cluster names. The last column indicates the number of
clusters in which the genes is found. The second sheet (Gene - Cluster)
contains the same information as the first one but presented as an
association table where each row associates a gene with a cluster.
Additional file 5: Figure S4. (A) Gene content comparison between
clusters of co-expressed genes in function of their significant overlap.
Colors highlight clusters containing genes having the same expression
pattern: yellow denotes genes significantly activated during the 1st and
early second wave of ZGA; orange denotes genes lately activated (end of
cellularisation and gastrulation); blue and green denote genes whose
transcripts are maternally provided and significantly early and lately
degraded, respectively; finally, red denotes clusters containing genes
whose transcripts are provided both maternally and zygotically. Uncolored
clusters were extracted from the data of Lu et al. and do not correspond to
any known regulatory mechanisms (maternal clock, NC ratio). Lines in the
heatmap highlight the significant overlapping between gene clusters.
Color scale is represented by a diagonal black to purple gradient
corresponding to significance from 0 to 3 (and beyond). (B) Venn diagram
representing the overlapping between De Renzis et al. [2] early and purely
zygotic gene published clusters (green) and the merged set of genes
activated during ZGA derived from the discretization analysis (“uxxx” genes
in red). This grouping forms the “ZGA cluster” containing 417 genes.
Additional file 6: Table S2. Summary of enriched GO terms in clusters.
The first sheet lists the enrichment results obtained for ZGA cluster. The
second sheet corresponds to enrichment results obtained for all analysed
clusters. The third sheet contains the results for ZGA genes carrying at least
one CRER. Each table summarizes the number of tested genes in each
cluster for given GO classes (MF: molecular function, BP: biological process,
CC: cellular component) and the total number of genes contained in the
corresponding class; e-value corresponds to the p-value corrected for
multi-testing (see Methods), while significance is a log2 transformation of
the e-value.
Additional file 7: Table S3. Summary of information relative to
matrix-scan predicted CRERs. The first sheet summarizes the statistics of
the occurrences of CRERs (predicted CRMs) in non-coding regions of ZGA
genes. Each row corresponds to a CRER. The names of following sheets
indicate the type of the non-coding sequences analysed. The last sheet
(“CRERs coordinates”) contains coordinates of merged CRERs.

Additional file 8: Figure S5. (A) Summary of CisTargetX results. The blue
curves of the ROC graphs represent the ranking of ZGA genes (ordinate)
among all Drosophila melanogaster genes (abscissa) (see [23] for details).
The red curve represents the mean of the scores for all matrices of the
reference databases, and the green curve indicates a confidence interval (2
sd from the mean curve). The colors of the lines match that of the contours
of the corresponding binding motifs (the use of several motif databases
generates redundancy). The logo displayed corresponds to the motif with
the best enrichment score within the group of similar motifs. Under each
logo, the corresponding transcription factor is specified.

Additional file 9: Figure S6. Organization of CRERs. (A) Between 60% and
80% of the motif instances lie in CRERs, which represents a significant
enrichment over random expectation, given that the CRER span only 15 to
30% of the regions considered (dashed lines). (B) Homotypic CRERs are
found significantly more often than expected from a randomization
procedure preserving overall motif frequency and CRER motif density. This
enrichment is particularly pronounced in the upstream regions. Shown is
the p-value based on a Poisson distribution of expected number of
instances. (C) Significance of homo-/heterotypic configurations. The first
three patterns correspond to the known Zelda, TRL and TTK motifs. Zelda
(CAGGTA) and AGATACA motif show striking enrichment in homotypic
configurations, while heterotypic configurations containing Zelda together
with either TTK (CAGGACA) or AGATACA-motif are significantly

http://rsat.bigre.ulb.ac.be/rsat/data/published_data/Darbo_2013
http://rsat.bigre.ulb.ac.be/rsat/data/published_data/Darbo_2013
http://www.biomedcentral.com/content/supplementary/1471-2164-14-226-S1.pdf
http://www.biomedcentral.com/content/supplementary/1471-2164-14-226-S1.pdf
http://www.biomedcentral.com/content/supplementary/1471-2164-14-226-S2.pdf
http://www.biomedcentral.com/content/supplementary/1471-2164-14-226-S2.pdf
http://www.biomedcentral.com/content/supplementary/1471-2164-14-226-S3.pdf
http://www.biomedcentral.com/content/supplementary/1471-2164-14-226-S3.pdf
http://www.biomedcentral.com/content/supplementary/1471-2164-14-226-S4.xls
http://www.biomedcentral.com/content/supplementary/1471-2164-14-226-S4.pdf
http://www.biomedcentral.com/content/supplementary/1471-2164-14-226-S5.pdf
http://www.biomedcentral.com/content/supplementary/1471-2164-14-226-S5.pdf
http://www.biomedcentral.com/content/supplementary/1471-2164-14-226-S6.xls
http://www.biomedcentral.com/content/supplementary/1471-2164-14-226-S6.pdf
http://www.biomedcentral.com/content/supplementary/1471-2164-14-226-S7.xls
http://www.biomedcentral.com/content/supplementary/1471-2164-14-226-S8.pdf
http://www.biomedcentral.com/content/supplementary/1471-2164-14-226-S8.pdf
http://www.biomedcentral.com/content/supplementary/1471-2164-14-226-S9.pdf
http://www.biomedcentral.com/content/supplementary/1471-2164-14-226-S9.pdf


Darbo et al. BMC Genomics 2013, 14:226 Page 20 of 22
http://www.biomedcentral.com/1471-2164/14/226

more frequent than expected. Numbers indicate the significance, i.e.
−log10(Q − value).

Additional file 10: Figure S7. peak-motifs differential analyses between
ZGA and non-ZGA peaks for CBP, TRL, H3K4me1 and DNAse1 accessibility.
The circle inclusions indicates the subset of peaks overlapping coding
sequences of the ZGA genes (dark blue circle) relative to the total peak set
(green circle). Circle surfaces are proportional to the numbers of peaks
(indicated besides the circles using the same color code). This
representation makes clear that the large majority of peaks fall into non
coding regions. For each experiment, we indicate the number of
Drosophila genes and ZGA genes containing at least one peak, and the
binomial p-value of the enrichment of peaks in ZGA non-coding regions
according to the expected frequency of peaks per nucleotide (all
Drosophila non-coding sequences). The last column summarizes the results
(logo of over-represented motifs, their significance and the percentage of
peaks carrying at least on motif occurrence) of the differential analysis
performed with peak-motifs between ZGA versus non ZGA peaks.

Additional file 11: Figure S8. peak-motifs differential analyses between
ZGA and non-ZGA peaks for Zelda. Confer to Additional file 10: Figure S7
legend.

Additional file 12: Table S4. Results of the Wilcoxon rank-sum test
computed for the 38 ChIP-seq/DNAse1 experiments and the five types of
CRMs. Each row corresponds to an experiment and each column to a type
of CRMs (ZGA, Redfly blastoderm, Redfly non blastoderm, permuted
matrices, random genes).

Additional file 13: Figure S9. AUC measuring the capability of various
epigenetic marks to discriminate ZGA regions and CRM from random
selections. Distribution of AUC values (ordinate) obtained from 38 genome-
wise location experiments (abscissa) and predicted CRMs from different
type of ZGA non-coding sequences (A) or predicted CRMs in ZGA upstream
sequences, blastoderm CRMs from RedFly and negative controls (B).

Additional file 14: Figure S10. ROC curves showing the enrichment in
reads for various types of genomic regions (predicted CRMs, annotated
CRMs, random controls). The ordinate and abscissa represent respectively
the fractions of test regions (Sensitivity) and random regions (False Positive
Rate) passing a given threshold of density. The kind and time window of
each dataset is specified in the right corner. Different line colors denote
different types of test regions. Black: 114 CRMs annotated in RedFly
database as enhancing expression in the blastoderm embryo; purple: 317
CRMs supposed to be silent in early embryo, according to RedFly
annotations; red: 528 CRMs predicted by scanning the 5kb upstream
regions of the ZGA genes with nine discovered motifs; blue: 164 CRERs
predicted by scanning the 5kb upstream regions of 417 random genes
with the same matrices; green: 151 CRERs predicted by scanning the 5kb
upstream regions of the ZGA genes with nine randomly column-permuted
matrices.

Additional file 15: Figure S11. ROC curves representing enrichment of
CRMs for repressive marks and evolution along the development. A-C:
Black: 114 CRMs annotated in RedFly database as enhancing expression in
the blastoderm embryo; purple: 317 CRMs supposed to be silent in early
embryo, according to RedFly annotations; red: 528 CRMs predicted by
scanning the 5kb upstream regions of the ZGA genes with nine discovered
motifs; blue: 164 CRERs predicted by scanning the 5kb upstream regions of
417 random genes with the same matrices; green: 151 CRERs predicted by
scanning the 5kb upstream regions of the ZGA genes with nine randomly
column-permuted matrices. D-F: Red, orange, purple and blue denote
different timing from the earliest to the latest.

Additional file 16: Figure S12. Principle of the analysis of region
enrichment in reads. (A) Illustration of values used for the computation of
the intensity under a given region Ir as defined in Methods section. The
histogram represents the read density tracks. Green read density tracks
represent negative values (the lowest is indicated in the margin in green),
while red read density tracks represent positives ones (the highest is
indicated in the margin in red). The black curve represents the linear
extrapolation of read density under the region. (B) The table lists the
genomic positions (chromosome, start, end), Ir , the type (random or
regions to test) and the corresponding rank for each region considered.
The ROC curve (right) displays the cumulative numbers of random
(abscissa) and test (ordinate) regions found according to their ranking.
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