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Abstract

Background: Microarray technology is widely utilized for monitoring the expression changes of thousands of genes
simultaneously. However, the requirement of relatively large amount of RNA for labeling and hybridization makes it
difficult to perform microarray experiments with limited biological materials, thus leads to the development of many
methods for preparing and amplifying mRNA. It is addressed that amplification methods usually bring bias, which
may strongly hamper the following interpretation of the results. A big challenge is how to correct for the bias before
further analysis.

Results: In this article, we observed the bias in rice gene expression microarray data generated with the Affymetrix
one-cycle, two-cycle RNA labeling protocols, followed by validation with Real Time PCR. Based on these data, we
proposed a statistical framework to model the processes of mRNA two-cycle linear amplification, and established a
linear model for probe level correction. Maximum Likelihood Estimation (MLE) was applied to perform robust
estimation of the Retaining Rate for each probe. After bias correction, some known pre-processing methods, such as
PDNN, could be combined to finish preprocessing. Then, we evaluated our model and the results suggest that our
model can effectively increase the quality of the microarray raw data: (i) Decrease the Coefficient of Variation for PM
intensities of probe sets; (ii) Distinguish the microarray samples of five stages for rice stamen development more
clearly; (iii) Improve the correlation coefficients among stamen microarray samples. We also discussed the necessity of
model adjustment by comparing with another simple adjustment method.

Conclusion: We conclude that the adjustment model is necessary and could effectively increase the quality of
estimation for gene expression from the microarray raw data.
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Background
Gene expression microarrays are widely utilized for tran-
scriptome analysis of biological samples from different
treatments or different phenotypic groups. However, due
to the difficulty of extracting sufficient amount of start-
ing mRNA or total RNA from biological materials, such as
rice stamen, it is usually impossible to detect the amounts
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and sequences of mRNA directly. Therefore, amplifica-
tion of mRNA sample is necessary before performing
microarray experiment to detect the fluorescence sig-
nals of mRNA [1-4]. RNA linear amplification technology,
based on T7 RNA polymerase and in vitro transcrip-
tion (IVT) (Affymetrix, Santa Clara, CA, USA), gradually
becomes a mostly used protocol for target preparation
in microarray experiments [5], mainly for three reasons.
First, it reduces the required amount of starting materi-
als to 1∼100 ng of total RNA. Second, the bias from the
amplification is smaller than typical PCR for DNA. Third,
it only requires mRNA or total RNA, rather than DNA,
hence leads to a wider application [6].

© 2013 Wang et al.; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and
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However, two-cycle amplification produces larger bias
associated with higher amplification efficiency [7,8]. In
order to monitor the bias associated with RNA amplifica-
tion, we generated two types of rice microarray data using
both One-Cycle and Two-Cycle Eukaryotic Target Label-
ing Assay from Affymetrix (Santa Clara, CA, USA). Both
showed the same decreasing trend of probe intensity near
3’ end and 5’ end of transcripts (See Figure 1 for more
details).
It is also notable that, for mRNA transcripts, the

decreasing trend of the two-cycle labeling is heavier than
that of the one-cycle labeling, which implies that we are
probably misled. Three possible reasons may account for
this phenomenon. The first one is the degradation of tran-
script due to RNA’s instability, especially in 16 hour’s in
vitro transcription (IVT) stage during the amplification
process. Another reason might be the usage of random
primers in the start of the second round amplification,
which concludes uncompleted reverse transcription from
aRNA to cDNA. The third reason may be the satura-
tion of probe spot on microarray chip. Therefore, it is
necessary to revise the microarray data generated with
two-cycle RNA amplification before using it to perform
further analysis, such as detecting differentially expressed
genes, constructing co-expression gene network and so
forth.
A few works before have also mentioned the problem of

RNA degradation during two-cycle labeling [7-12]. How-
ever, there is almost no universally applicable solutions

reported to deal with this problem. In this study, we pro-
posed a statistical framework to model the process of
mRNA two-cycle linear amplification, and established a
linear model to revise the expression intensity at probe
level. Probe level correction in this study means bias cor-
rection for intensity of Perfect Match probe (PM) if there
is no special instruction.
This paper proceeds as follows. In the second section,

we described three types of microarray experiments and
a Real Time PCR experiment to validate the degrada-
tion effect. After that, we proposed a probabilistic model
for probe level adjustment, and the parameters are esti-
mated by MLE. In the third section, we displayed the bias
existed in microarray experiment and validated the bias
by Real Time PCR. Then we discussed the effects that
might bring bias, especially the degradation effect in the
RNA two-cycle labeling protocol. By applying our model
to two stamen microarray data sets, we showed that our
model adjustment obtained a significant improvement for
the quality of microarray raw data. Finally, we discussed
the necessity of our model adjustment and a possible
application to RNA-seq data in the last section.

Methods
Materials and Methods
In this chapter, we first briefly introduced three kinds of
microarray data of rice, and then described the designed
Real Time PCR experiment to revalidate transcriptional
degradation. For brevity, we refer to these three data
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Figure 1 Correlation between position and intensity of probes. Correlation between position and intensity of probes for present probe sets in
one-cycle and two-cycle amplification microarray data. X-axis is the distance of probe (the 13th nucleotide) from 3’end of its corresponding
transcript, while Y-axis is the mean PM intensity of probes at each position. Microarray data generating using one-cycle (red), two-cycle (green) RNA
labeling protocols are plotted respectively. We only plot the probes within 600bp of 3’ end on transcripts (account for 98.68% of the present
probesets). It’s obvious that variation in two cycle is larger and the bias is more serious.
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sets as Data Set 1, Data Set 2 and Data Set 3, respec-
tively. Plant materials as well as sample collection and
total RNA isolation method are the same in three data
sets. Data Set 1 was designed to show the phenomena
of RNA degradation and to estimate parameters in the
model. Data Set 2 was designed to validate the repro-
ducibility of the bias from RNA degradation and to deter-
mine whether the bias is sample specific. Data Set 3
was applied to validate the efficiency of our adjusting
model. After that we established a probabilistic model
to estimate the extent of bias caused by RNA degrada-
tion during two-cycle linear amplification and attempted
to correct for this bias. As mentioned above, the reason
why bias is introduced is mainly due to the using of ran-
dom primers and RNA degradation, on which our model
is based. The saturation effect of micoarray chip is beyond
our consideration.

Plantmaterials
Rice (O. sativa L. ssp. japonica cv. Zhonghua 15) seeds
were soaked in water at 30◦C for about one week. And
then seedlings were transplanted in plastic pots and cul-
tured at 30±2◦C under 11 hours day/13 hours night cycle.

Microarray Data Set 1
The rice embryos were obtained from the seeds soaked
in water for 2-3 days. The third mature expanded leaves
were collected when they had just fully expended. Rice
seedlings were harvested when they were 2-3 cm in height.
The panicles were collected when they were 0.6-4 cm
in length. Total RNA was isolated separately from rice
embryos, the third mature leaves, the fifth mature leaves,
seedlings and panicles with TRIzol Reagent from Invitro-
gen Life Technologies.
To obtain microarray data covering almost all genes in

rice, total RNA from different samples described above
was mixed into a big pool called Pre-amplified mRNA
sample (PAM) by almost equal magnitude. Eight sub-
groups were separated from the purified PAM. The half
of them were amplified and labeled by the One-Cycle
Eukaryotic Target Labeling Assay from Affymetrix (Santa
Clara, CA, USA). The resulting samples were called
One-Cycle cRNA samples (OCS). The other half were
amplified and labeled by the Two-Cycle Eukaryotic Tar-
get Labeling Assay from Affymetrix (Santa Clara, CA,
USA). The resulting samples were called Two-Cycle cRNA
samples (TCS). All experimental procedures strictly fol-
lowed instructions specified in the Affymetrix GeneChip
Expression Analysis Technical Manual.

Microarray Data Set 2
This data set contained microarray data from two dif-
ferent samples, including the third leaf primordium and
the third mature leaves of rice. Total RNA was extracted

from the two samples. And then each of them was sepa-
rately amplified by two methods, the One-Cycle Labeling
Assay and the Two-Cycle Labeling Assay (Affymetrix,
Santa Clara, CA, USA). Two replicates were applied for
each Assay. Totally there are 8 hybridization samples for
the following microarray experiments.

Microarray Data Set 3
This data set included 21 slides of Affymetrix microar-
ray. There are 7 different stages from rice, including the
third leaf primordium, the third mature leaves, and sta-
men samples at stage 2, 3, 4, 5 and 6 (Stages are partitioned
by the development of Stamen) [13,14]. Biological repli-
cates are applied 3 times for each of them. All the 21
mRNA samples are amplified with Two-Cycle Labeling
Assay (Affymetrix, Santa Clara, CA, USA).
All amplified RNA samples were hybridized with

the Affymetrix GeneChip Rice Genome oligonucleotide
arrays, which is widely used for rice gene expression anal-
ysis. The .CEL files are available at http://www.math.pku.
edu.cn/teachers/dengmh/RiceTCAC/index.html.

Validation of RNA degradation by Real Time PCR
To validate the degradation trend mentioned above, we
developed a strategy by applying Real Time PCR to sev-
eral transcripts. Real Time PCR were carried out using
the same RNA samples as that of Data Set 1, including
Pre-amplified mRNA samples (PAM), One-Cycle cRNA
samples (OCS), and Two-Cycle cRNA samples (TCS).
In brief, primers were designed for transcripts using Real

Time PCR Primer Design tool (http://www.genscript.com/
cgi-bin/tools/primer genscript.cgi?op=standard). Each primer
was further confirmed by dissociation curve analysis after
the PCR reactions. First strand cDNA was synthesized by
reverse transcription using 1 μg of total RNA in 20 μl of
reaction volume using SuperScriptTM III Reverse Tran-
scriptase from Invitrogen Corporation. Diluted cDNA
samples were used for Real Time PCR analysis with 100
nM of each primer mixed with SYBR Green PCR master
following manufacturer’s instructions. The reactions were
carried out in Optical 96-Well Fast Plate on the 7500 Fast
System (Applied Biosystems, USA).
We designed several pairs of primers locating from 5’end

to 3’end of a transcript. The target of each pair of primers
was called amplicon. Then we used the pairs of primers to
carry out Real-time PCR with PAM, OCS and TCS sepa-
rately. The Schematic diagram of Real Time PCR experi-
ments is shown in Additional file 1: Figure S3. In order to
remove the amplification efficiency of different amplicons,
expression value of amplicon in PAM was served as refer-
ence. We calculated the relative expression values of the
ith amplicon in jth sample Rij (see Equation 1).

Rij = 2−(CT(i,j)−CT(i,PAM)) j = {OCS,TCS} (1)

http://www.math.pku.edu.cn/teachers/dengmh/RiceTCAC/index.html
http://www.math.pku.edu.cn/teachers/dengmh/RiceTCAC/index.html
http://www.genscript.com/cgi-bin/tools/primer_genscript.cgi?op=standard
http://www.genscript.com/cgi-bin/tools/primer_genscript.cgi?op=standard
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Where CT (cycle threshold) is the number of cycles
required for fluorescent signal to reach the threshold.
The larger CT is, the less the amount of RNA is. For a
fixed j, among all the amplicons of a transcript, amplicon
with the maximum relative expression value (MAX(Rij))
located in the region with minimal impact by degrada-
tion and amplification. And MAX(Rij) was closest to the
actual expression level of the transcript. So we calculated
the DPij of each amplicon relative to the MAX(Rij) to
make clear the impact of degradation and amplification on
different regions of transcript:

DPij = 1 − Rij

MAX(Rij)
j = {OCS,TCS} (2)

DPij is a number between 0 and 1, where 0 means no
degradation effect and 1 indicates the amplicon is com-
pletely degraded. The closerDPij is to 0, the less the region
of ith amplicon is affected by amplification in jth sample,
and vice versa.

Model Adjustment for RNA amplification
According to the two-cycle linear amplification protocol,
for each RNA transcript, it might have been shortened
three times from the beginning to the end of two-cycle
amplification (See Figure 2, details see manual in [7]),
which are: (i) RNA degradation during the IVT of first
cycle amplification; (ii) Introducing of random primer in
the second cycle; and (iii) RNA degradation during the
IVT of second cycle amplification.
To better understand the model, we introduce the nota-

tion. To simplify calculation, we first assume that RNA
is degrading at an even speed, regardless the sequence
effect, e.g. GC content. Let 0 and L (base pair, bp) be the
positions of 3’ end and 5’ end of a transcript before ampli-
fication, where L is the length of the transcript. Let Ai and
Bi be the position of the new 3’ and 5’ end after the ith
shorten (i = 1, 2, 3). It’s obvious that A0 = 0,B0 = L.
(i) After the first cycle amplification, based on the uni-
form assumption of RNA degradation, we further assume
A1 ∼ U[A0,A0 + a] and B1 ∼ U[B0 − b,B0], where
a, b are the degradation limits of 3’ end and 5’ end sep-
arately. (ii) In the second cycle of amplification, 3’ and
5’ ends varies more complicated. As random primer is
used in the step of the first strand cDNA synthesis from
antisense RNA produced in the first cycle of amplifica-
tion, which may result in incomplete synthesis. 5’ end is
decreased while 3’ end remains the same. Therefore, the
position of new 3’ endA2 is the same asA1, while the posi-
tion of new 5’ end B2 ∼ U[A1,B1], as random primer can
bind to any position of the cRNA. (iii) As the same as in
the first cycle, degradation takes place at both 3’ end and
5’ end in the IVT steps of the second cycle amplification.
So it’s similarly concluded that A3 ∼ U[A2,A2 + a] and

B3 ∼ U[B2 − b,B2], where a, b are the same as in the first
cycle.
As most RNA transcripts are more than 200 bp, we uti-

lized integral to substitute sum for calculation. Then we
could obtain the joint distribution of (Ai,Bi), i = 1, 2, 3.

i) The joint distribution of A1 and B1 is:

F1(x, y) = P(A1 ≤ x,B1 ≤ y)

= x(y + b − L)

ab
, (x ∈[ 0, a] , y ∈[ L − b, L] )

(3)

ii) The joint distribution of A2 and B2 is:

F2(x, y) = P(A2 ≤ x,B2 ≤ y)

=
∫ a

0
dx

′
∫ y

L−b
P(A2 ≤ x,B2 ≤ y|A1

= x
′
,B1 = y

′
)p1(x

′
, y

′
)dy

′
(4)

where

p1(x
′
, y

′
) = ∂2F1(x

′ , y′
)

∂x′
∂y′ , (5)

P(A2 ≤ x,B2 ≤ y|A1 = x
′
,B1 = y

′
)

=

⎧⎪⎨
⎪⎩

y − x
y′ − x

, for x = x
′

0, for x �= x
′

iii).The joint distribution of A3 and B3 is:

F3(x, y) = P(A3 ≤ x,B3 ≤ y)

=
∫ x+a

x
dx

′
∫ y

y−b
P(A3 ≤ x,B3 ≤ y|A2

= x
′
,B2 = y

′
)p2(x

′
, y

′
)dy

′
(6)

where

p2(x
′
, y

′
) = ∂2F2(x

′ , y′
)

∂x′
∂y′ ,

P(A3 ≤ x,B3 ≤ y|A2 = x
′
,B2 = y

′
)

= (x − x′
)(y + b − y′

)

ab
(7)

Thus F3(x, y) can be rewritten out piecewise (shown in
Additional file 1: Formula F1). Then, for each transcript’s
products, we could estimate a Retaining Rate function
pi(z), i = 1, 2, which states a probability indicates how
probable the the nucleotide on the position of z (bp)
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Figure 2 Illustration for the process of mRNA transcript degradation during RNA two-cycle amplification. The transcript of a probe set
becomes shorter 3 times from the beginning to the end of two-cycle amplification. x-axis is the distance of probe from the 3’end of transcript (bp).
y-axis represents the retaining probability of each position after the ith-cycle. L represents length of a transcript. a and b are degrading limits from
3’end and 5’end.

retains after the incomplete synthesis in the ith cycle
amplification. Here, z, in [ 0, L], represents the distance of
a nucleotide on the transcript away from its 3’ end. After
the first cycle amplification, the Retaining Rate function
p1(z), can be easily calculated from the distribution of 3’
and 5’ end:

p1(z) =
⎧⎨
⎩

z
a , for 0 ≤ z ≤ a
1, for a < z < L − b
L−z
b , for L − b ≤ z ≤ L

(8)

But for the second cycle amplification, the Retaining
Rate function p2(z) is complicated piecewise, associ-
ated with F3(x, y). We calculated it by integrating with
R software.

Adjustment of biased signal
For each transcript, there is a probe set containing prox-
imately 11 probes (99.58% of 57381 probe sets for rice
microarray) on microarray to detect its the expression sig-
nal. We first define a Retaining Rate for a position on
transcript, which is a probability indicates how probable
the position of the probe on transcript remains after
two-cycle amplification. Before the first step of two-cycle
amplification, the Retaining Rate for each probe is 1,
when amplification is over, the retaining rate for probe
at z is p2(z) (Note that z refers to distance of the middle
nucleotide of probe from 3’ end of the transcript). For
the kth poly(A) RNA, the ideal intensity of ith probe after
jth cycle, j = 1,2, is IPSjk ; and the observed intensity (PM

intensity) for ith probe at position zik is IPijk . Then we can
get IPijk as a function of IPSjk :

IPijk = IPSjk × Pj(zik) + εijk (9)

For determined j, k and all i, εijk ∼ N(0, σ 2
jk), where

σ 2
jk is unknown. Then least square estimation becomes

maximum likelihood estimation.
Thus, the maximum likelihood estimation for IPSjk is:

IPSjk =
∑
i
(IPijk × pj(zik))
∑
i
p2j (zik)

(10)

where i = 1, 2, . . . nj, nj is the number of probes in the jth
probe set.
Although the above model only uses PM of probe for

training the parameters, it can also be used to adjust
MM intensity, as Retaining Rate represents the proba-
bility of the nucleotide of each position on transcript to
be remained after two-cycle amplification. As our model
only correct for the bias caused by degradation during
amplification at probe level, the corrected intensity didn’t
perform the background correction or normalization at
probe set level. We think it necessary to perform a further
pre-processing to adjust for bias introduced by cross-
hybridization or other factors. After adjusting for PM and
MM, we could apply many existing popular normaliza-
tion methods, such as PDNN [15], dchip [16] and RMA
[17] to preprocess the modified microarray data before
further investigation. In this study, we choose PDNN as
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Figure 3 Real time PCR results for two genes. Real time PCR results confirmed correlation between position and intensity of probes
afteramplification. (A-C) Data for LOC Os06g07140.1. (A) The intensity of LOC Os06g07140.1 decreased dramatically in Two-Cycle cRNA sample
(TCS) comparing with One-Cycle cRNA sample (ONS) in our microarray experiment. (B) Schematic diagram of LOC Os06g07140.1. Yellow line, cDNA
of the gene; Big orange arrow, coding sequence (CDS) of the gene; Green line section (A1-A6), designed amplicons in Real Time PCR experiments;
Numbers in the brackets were the starting point of amplicons from 5’ end; Blue narrow arrow, designed probes on the microarray. Their starting
points (unlabeled in the figure) were 421, 498, 502, 514, 547, 580, 678, 680, 684, 688, and 691. (C) Degradation Proportion (DP, see details in Methods
section) of amplicons (A1-A6) showed in (B). DP decreased along with distance from the 5’ end and increased when it was too close to 3’ end
because of degradation and random effect. (D-F) Data for LOC Os01g43520.1. (D) The intensity of LOCOs01g43520.1. (E) Schematic diagram of
LOCOs01g43520.1. (A1-A7) were designed amplicons. The probes’ starting points on microarray were 2485, 2505, 2515, 2537, 2568, 2579, 2599,
2627, 2642, 2658, and 2669. (F) DP of amplicons (A1-A7) showed in (E). Because there was no amplicon too close to 3’ end, DP didnt increase again.

it is more powerful by considering the sequence binding
information [18,19].

Results
Degradation trends of transcripts
In the beginning of the first cycle amplification, a tran-
script is complete poly(A) RNA, whose cap in 5’ ends

and tail in 3’ ends to some extent protect the RNA
sequence. Thus, degradation of the transcript is relatively
slow in this process. However, when the second cycle
begins, as the RNA cap in 5’ end and tail in 3’ end
have degraded or almost degraded, the degrading effect
becomes heavier and thus leads the RNA sequence to be
shorter [7]. Besides, using random primer also leads the
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RNA sequence to become shortened directly. As a result,
it implies that the key effect of degradationmay hide in the
second cycle. Combining with the protocol of the Two-
Cycle Labeling Assay (Affymetrix, Santa Clara, CA, USA),
we postulated that there may be three possible reasons for
the bias listed as follows. The first effect is RNA degra-
dation in amplification process. With regard to RNA’s
instability comparing with DNA, degradation would prob-
ably take place in the tube of RNA amplification, even
in the initial RNA period which the degraded loss would
amplify in the end. Second, random primers used in the
second cycle have dubitable uncertainties that, unlike the
oligo (dT) primer, can bind not only to 3’ poly(A) end
of RNA, but also to the middle or the other end of
transcript, concluding cDNA’s uncompleted reverse tran-
scription from amplified RNA, which leads greater bias
after the second cycle amplification. Third, in some cases,
real expression intensity on some probe spots are under-
estimated, because of the saturation of the microarray
chip.
Regardless the decaying speed of a mRNA varying by

different ribonucleic acids and its secondary structures,
we assume that a ribonucleic acid on mRNA degrades
linearly relied on the distance to an end, either 3’ end
or 5’end. Also, we assume that there exists a degrading
limit, behind which degradation seldom takes place. We
are clear that mRNA degrades from both 5’ and 3’ ends.
In one pathway, mRNA shortening is followed by removal
of the 5’ cap structure. Decapping gives a 5’-to-3’ exonu-
clease access to degrade the remainder of the mRNA [9].
In the other pathway, poly (A) shortening is followed by
3’-to-5’ digestion by a complex of exonucleases named
the exosome. The exosome is distinct from the exonu-
clease that removes the poly (A) tail [9]. But poly (A)
shortening is absent in microarray data, for hybridiza-
tion losing the poly (A) fragments. Thus, degradation
of 3’ end in microarray data is slighter and more easily
treated. Another reason why we first consider degrada-
tion of 3’ end is that 5’ end’s decline attributes not only
to decaying, but also to incomplete reverse transcription
by random primers. For all 631066 probes of 57381 probe
sets of rice microarray, we collected their distance away
from 3’ end of transcript (Each probe represented by its
middle nucleotide), and plotted the number of probes at
the same position to show its distribution (Additional file
1: Figure S1). It’s obvious that most probes are designed
to have distances less than 577 bp from 3’ end, and the
number decreases between 30 bp and 577 bp. A simi-
lar gradient for 235700 probes of 21407 present probe
sets (selected by MAS5.0) is shown in Additional file 1:
Figure S1. For present probes, we calculated the mean of
PM intensities of probes at the same distance (Figure 1).
Two lines, respectively, are plotted from the same bio-
logical sample, microarray data using one-cycle (Green)

and two-cycle (Red) amplification. It is obvious that, with
the same trend, the two lines increase before the left of
133 bp from 3’end, and then decrease until 577 bp. No
apparent pattern appears after that, because low number
of probes at the same position breaks stability, i.e, there
are a small number of probes on transcript further than
600 bp from 3’end, which make it to be of no statistical
significance. From Figure 1, it’s obvious that variation of
mean intensity in the two cycle labeling is much larger
and the bias trend is much more serious than the one
cycle labeling. Besides, leaf samples using the Affymetrix
one-cycle and two-cycle RNA labelling protocols with the
Rice microarray in Data Set 2 shows similar degradation
trend (See Additional file 1: Figure S2), which demon-
strates that this situation is technique specific rather than
sample specific.

Result of Real Time PCR
After carrying out Real Rime PCR with primers men-
tioned above, we calculated the Degradation Propor-
tion (DP) of each amplicon. The details about DP were
described in method section. Briefly, the closer DPij was
to 0, the less the region of ith amplicon was affected
by degradation and amplification in the jth sample, and
vice versa. Because of degradation and amplification, we
could expect that the DP of amplicons near the 5’ end
to be higher. And the further away amplicon was from
5’ end, the lower the DP was. But when amplicons were
very close to 3’ end of transcript, the DP would increase
again because of 3’ degradation. According to the annota-
tion from Affymetrix company, LOC Os06g07140 (Gene
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of the Coefficient of Variation (CV) for PM intensities of present probe
sets before (Red) and after (Green) adjustment. The CV for probe sets
decreased significantly after adjustment (p-value < 2.2e-16).
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Nomenclature from MSU Rice Genome Annotation
Project) was represented by probe set Os.4216.1.S1 a at
on the GeneChip Rice Genome Array. And its inten-
sity decreased dramatically in TCS comparing with OCS
(Figure 3, A). We designed 6 amplicons (A1-A6) to its
transcripts(Figure 3, B, green line). As we expected, DP of
A1 to A4 was approximately to 1, decreased along with
the position from 5’ to 3’ end. A5 was close to 3’ end
and had the minimal DP. It meant that if the probes were
designed at this position, the intensity would be the near-
est to the actual expression level. Interestingly, the DP of
A6 had increased despite its position was very close to the
3’ end. It demonstrated that degradation from 3’ end also
took effect (Figure 3, C). Probe set Os.4216.1.S1 a at com-
prised 11 probes, and all of them located at the region of

421-691bp from 5’ end. It could explain why the inten-
sity of Os.4216.1.S1 a at in TCS was underestimated. We
also selected another gene, LOC Os01g43520.1. It was
represented by probe set Os.652.1.S2 a at. Its intensity
exhibited opposite profile comparing to Os.4216.1.S1 a at
in OCS and TCS (Figure 3, D). DP of A1-A5 was close
to 1 because they were located at 5’ end. DP of A6-A7
decreased and A7s had the minimal DP because they
were close to 3’ end. Meanwhile they were not very close
to 3’ end, so they were not affected by 3’ degradation
(Figure 3, F). Surprisingly 11 probes of Os.4216.1.S1 a at
were located at the region of A7. Their locations were con-
sistent with the fact that its intensity was higher in TCS
than OCS. Several other genes also provided the similar
results (See Additional file 1: Figure S4).
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Figure 5 Hierarchical clustering of stamenmicroarray samples. Hierarchical clustering of 15 rice stamen microarray samples (PDNN) using 4234
probe sets only present in stamen samples. Left is clustering using PDNN preprocessed data with original PM, while right using PDNN preprocessed
data with adjusted PM. Before adjustment, sample Stamen 3.1 is far away from the other two samples of stage 3. After adjustment, it is classified to
be with sample Stamen 3.2.
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In conclusion, our Real Time PCR results indicated the
correlation between position and intensity of probes in
amplification processes: the probe close to the 5’ end
would be underestimated because of degradation and ran-
dom primer effect, while the probe very close to the 3’
end would be also underestimated because of 3’ degrada-
tion; the probe located but still had a distance to 3’ end
might have the most exact expression measurement of
probe set.

The Coefficient of Variation of probe sets
As probes of a same probe set measures the intensity of
the same transcript, we expect the PM intensity of these
probes to be more alike, i.e. have smaller Coefficient of
Variation (CV). Using the microarray data generated with
two cycle amplification in Data set 1, we calculated the
CV for present probe sets before and after model adjust-
ment, as shown in Figure 4. The histogram indicated that
CV of these present probe sets decrease significantly after
adjustment (p-value < 2.2e-16 with Wilcoxon Signed-
Rank Test). Thus, the bias could be reduced efficiently and
our model adjustment could preserve the inner structure
of samples.

Correlation of 15 rice stamenmicroarray samples
To further evaluate the biological meaning of our adjust-
ing model, we created 21 rice microarray samples
(Data Set 3,15 rice stamen samples, 3 leaf samples and
3 bud samples) using the Affymetrix two-cycle RNA
labeling.
We first adjusted the PM intensity for 15 stamen

microarray samples using our adjustment model, and then
performed PDNN [15]. After that, we chose the probe
sets only present in 5 stamen stages but not in leaf nor
bud as a classifying set (Identified By MAS5.0, 4234 probe
sets). The results of hierarchical clustering for the 15
stamen samples are shown in Figure 5. It shows that
without adjustment, sample Stamen 3.2 is separate from
other samples, while after adjustment, Stamen 3.1 is much
closer to Stamen 3.2. Although Stamen 3.3 is far away, it
is close to Stamen 4, thus samples of adjacent periods are
classified closer, which is more biologically reasonable. In
fact, the time of development from stamen stage 2 to sta-
men stage 6 is very short and is difficult to distinguish,
thus makes samples abstracted from these stages to be
very similar, i.e. the correlation efficient seems to be very
high. Using the adjusted model, the correlation coeffi-
cients of samples (Using 28062 probe sets that are present
in at least one of 5 stamen stages) increased significantly
after adjustment (see Figure 6, p-value < 2.2e-16 with
Wilcoxon Signed-Rank Test). These results demonstrated
that we could get a more biologically reliable classification
of samples after degradation adjustment.
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Figure 6 Histogram of the correlation coefficient among 15
stamenmicoarray samples. Histogram of the correlation coefficient
among 15 stamen micoarray samples before (Red) and after (Green)
adjustment. There is an obvious increase after adjustment, which
means the stamen samples are more alike, as we expected.

Discussion
Several works have considered the effect of mRNA degra-
dation in microarray during the process of two-cycle
linear amplification as well as the bias it caused [12], how-
ever, almost no or less work has been reported to establish
adjusting methods to solve this problem.
In this study, focusing on the process of two-cycle lin-

ear amplification and the features of gene expression
microarray data, we found two key factors that could bring
biases: (i) Reverse transcription by random primers; (ii)
RNA degradation in the first and second cycle amplifi-
cation. We modeled these processes with uniform dis-
tributions and established a model to correct the bias.
As we performed the adjustment for PM at probe level,
one could further apply any kinds of microarray prepro-
cessing methods, such RMA, dchip or PDNN to perform
normalization. Note that we could not only apply the
model to PM, but also to MM, as the Retaining Rate mea-
sures how probable each position of transcript remains
after amplification, which has no relationship to bind-
ing mechanism. Other preprocessing methods consider-
ing MM could also be combined to do further reliable
normalization.
To evaluate our model, we applied the adjustment

method to microarray data of Data Set 1 and 3. From
three aspects: (i) Coefficient of Variation for probes within
a probe set decreases significantly, (ii)The clustering dia-
gram showsmore reasonable classification for rice stamen
samples and (iii) the relationship among them become
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be much more closer, we could see that our model had
obtained relatively more biologically reasonable results.
To demonstrate the necessity of our model for adjust-

ing, we applied another adjusting method that assigning
different weight to each position of transcript accord-
ing to mean PM expression intensity. The main steps
are designed as follows: (i) Plot the mean PM intensity
for probes at 12∼588bp (probes in 98.68% of present
probests) of transcripts. (ii) Apply lowess (locally weighted
scatterplot smoothing) to fit the data. Then compute loess
smoothed values for all points along the curve. Normal-
ize all loess smoothed values to make their mean to be 1.
Take the reciprocal of the normalized value at each posi-
tion as the weight for probes at this position (See Figure
S5). (iii) Adjust PM at each position bymultiplying the PM
intensity by the weight. (iv) Combine with known prepro-
cessing methods (PDNN, or RMA).We call this process of
adjusting Curve Adjustment (CA for short). To compare
CA with our method, we applied both of them to Data Set
1 and 3. We could see from Figure S6 that, the CV didn’t
decrease and the clustering of 15 samples were almost the
same as that of none adjustment (Figure S7). Besides, the
sample correlation coefficients didn’t raised much after
CA (Figure S8). Thus, these results indicate that direct
curve adjustment for microarray data is not suitable and
our model adjustment is necessary. See Additional file 1
for more details.

Conclusion
Although we could correct for the bias to some extent,
there are still some challenges, such as the assump-
tion of the distribution for random primer to be union,
which may be different from actual condition. Besides,
we applied a simple linear model to simulate RNA degra-
dation and didn’t consider the different degradation rate
caused by different nucleotides, such as GC-content,
which may play an important role in two-cycle amplifi-
cation. A new challenge will be the combination of both
position of probe and sequence preference to make more
accurate correction of bias.
With the development of Next Generation Sequencing,

RNA-seq is widely utilized to measure gene expression
at transcriptional level at unprecedented precision and
throughput [20-24]. Our model may have further appli-
cations, as most RNA-seq Library Preparation Protocols
also require RNA amplification. In this article, we just pro-
vide a basic idea of correcting for bias in microarray raw
data to get more accurate result for further analysis, which
may shed light on the adjusting methods for RNA-seq
data.
Although the approaching of Next Generation Sequenc-

ing leads to more accurate results of gene expression,
it is now still relatively too expensive. Microarray will
still be a feasible way to measure gene expression in

the near future. Our method could be applied to reuse
the existing microarry data generated with two cycle
amplification protocols, and the more biological promis-
ing results obtained by the adjusting model will surely
benefit the following analysis, e.g. detecting differentially
expressed genes or gene set analysis.
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