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Abstract

Background: Receptor tyrosine kinases (RTK) form a family of transmembrane proteins widely conserved in
Metazoa, with key functions in cell-to-cell communication and control of multiple cellular processes. A new family
of RTK named Venus Kinase Receptor (VKR) has been described in invertebrates. The VKR receptor possesses a
Venus Fly Trap (VFT) extracellular module, a bilobate structure that binds small ligands to induce receptor kinase
activity. VKR was shown to be highly expressed in the larval stages and gonads of several invertebrates, suggesting
that it could have functions in development and/or reproduction.

Results: Analysis of recent genomic data has allowed us to extend the presence of VKR to five bilaterian phyla
(Platyhelminthes, Arthropoda, Annelida, Mollusca, Echinodermata) as well as to the Cnidaria phylum. The presence
of NveVKR in the early-branching metazoan Nematostella vectensis suggested that VKR arose before the bilaterian
radiation. Phylogenetic and gene structure analyses showed that the 40 receptors identified in 36 animal species
grouped monophyletically, and likely evolved from a common ancestor. Multiple alignments of tyrosine kinase (TK)
and VFT domains indicated their important level of conservation in all VKRs identified up to date. We showed that
VKRs had inducible activity upon binding of extracellular amino-acids and molecular modeling of the VFT domain
confirmed the structure of the conserved amino-acid binding site.

Conclusions: This study highlights the presence of VKR in a large number of invertebrates, including primitive
metazoans like cnidarians, but also its absence from nematodes and chordates. This little-known RTK family
deserves to be further explored in order to determine its evolutionary origin, its possible interest for the emergence
and specialization of Metazoa, and to understand its function in invertebrate development and/or reproductive
biology.
Background
Receptor Tyrosine Kinases (RTKs) are transmembrane
proteins that are involved in many fundamental
intra- and inter-cellular processes. RTKs have essential
multicellular-specific functions, including cell-to-cell
communications, control of cell proliferation and diffe-
rentiation [1]. They have been found in all metazoan
genomes, from the marine sponge Geodia cydonium to
humans [2,3]. Moreover, RTKs were also shown to be
present in choanoflagellates [4,5] and Filasterea [6],
which are the sister groups of Metazoa. A large number
of RTKs are conserved throughout evolution, but unique
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and organism-specific RTKs have been identified, such
as Sweet tooth in Hydra vulgaris [7] or kin15/kin16 in
Caenorhabditis elegans [8,9]. RTKs have been classified
into distinct families, depending on the modular com-
position of their extracellular domains and their ability
to bind different types of ligands, as well as by their kin-
ase domain sequences. The human genome encodes 58
RTKs, and these receptors are classified into 20 families
[10]. According to the data regrouped in http://kinase.com,
the invertebrate model organisms Drosophila melanogaster
and C. elegans possess 16 and 29 RTKs and share 11 and
10 families with human RTKs, respectively [3].
Venus Kinase receptors (VKRs) constitute an RTK

family, originally found in the parasite platyhelminth
Schistosoma mansoni [11], then in several other inverte-
brates (insects and echinoderms). However, no VKR
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could be found in any chordate genome and, more strik-
ingly, this receptor was not present in C. elegans and D.
melanogaster [12]. VKR proteins possess an atypical
structure [11,12], containing an intracellular tyrosine
kinase (TK) domain similar to that of insulin receptors,
and an extracellular Venus Flytrap (VFT) domain. VFTs
were first identified as bacterial periplasmic-binding pro-
teins involved in the transport of small molecules, such
as amino acids, sugars or ions and they constitute the
binding pocket of different receptor types such as class
C G-protein coupled receptors [13]. The VFT domain of
VKR is related to that of the ANF receptor in protein
family databases (pfam 01094) [12]. VKR kinases can be
activated following the binding of amino-acids to the
extracellular VFT domain [12,14], and this opens inter-
esting perspectives on a novel mechanism for RTK acti-
vation as well as on possible specific and new functions
of these receptors in cellular signalling.
In this paper, we present an up-dated version of the

VKR family, resulting from an exhaustive research of
VKR orthologs in the published genomes of a variety of
organisms belonging to major phyla in Metazoa. We
show that vkr genes are present at least in five major
phyla in Bilateria (Platyhelminthes, Arthropoda, Annel-
ida, Mollusca, Echinodermata), and also, more strikingly,
in the cnidarian Nematostella vectensis. Phylogenetic
analyses indicated that all the putative protein sequences
grouped monophyletically, and a new version of the
VKR phylogeny was built. In silico analyses and multiple
alignments of the VFT and TK functional domains of
VKRs allowed us to reinforce the structural model of the
receptor and to get a better prediction of potential li-
gands and kinase activity of VKRs.

Results and discussion
A large distribution of vkr genes in eumetazoan genomes
Previous studies have shown that VKRs constitute a dis-
tinct RTK family. These receptors were described in 15
different protostomes, including insects and the platy-
helminth S. mansoni. A vkr gene was also found in the
deuterostome Strongylocentrotus purpuratus [12]. The
aim of this study was to extend the VKR family to a large
number of phyla in order to evaluate the place of these
receptors in the animal kingdom and to contribute to a
better understanding of their evolution.
Using BLAST approaches, we searched for vkr genes

in multiple genomic databases (see Methods). Results
showed that vkr genes were present in at least 36 species
from six distinct phyla (Cnidaria, Echinodermata, Platy-
helminthes, Mollusca, Annelida and Arthropoda, see
Table 1). The protein architecture of each putatively
encoded VKR was analysed using the SMART online soft-
ware http://smart.embl-heidelberg.de/ in order to verify
that newly discovered genes effectively encoded struc-
turally conserved proteins, composed of an extracellular
VFT module and an intracellular TK domain linked to-
gether by a single transmembrane α-helix. In Platyhelmin-
thes, two putative vkr genes were detected in both
Clonorchis sinensis and S. mansoni [14] parasitic trema-
todes. By contrast, only one vkr was found in the genome
of the three parasitic cestodes, Echinococcus multilocu-
laris, Echinococcus granulosus and Hymenolepis microsto-
ma. No unequivocal VKR sequence could be found in the
genome of the planarian Schmidtea mediterranea, but a
sequence encoding a polypeptide composed of a TK
domain and a truncated VFT module (GenBank:
AAWT01078636.1) was identified, suggesting that a vkr
gene might still exist in Turbellaria. However, deeper in-
vestigations are needed to extend reliably the existence of
VKR to planarian species and to the whole of the Platyhel-
minth phylum. Several new vkr genes were also found in
diverse insect genomes. We identified 15 new vkr genes in
13 species belonging to the Hymenoptera and Lepidoptera
orders. In Hymenoptera, on top of the two genes previ-
ously characterized in the honeybee Apis mellifera and in
the parasitic wasp Nasonia vitripennis [12], we were able
to identify 11 new vkr genes in the genomes of eight
Formicidae and three Apidae species. In Lepidoptera, we
could show that both the silkworm Bombyx mori and the
monarch butterfly Danaus plexippus possess two vkr
genes located in tandem on a single scaffold (GenBank
accession numbers DF090406.1and JH386161.1, respect-
ively). Additionally, we could find truncated vkr sequences
in other arthropod genomes, such as those of Rhodnius
prolixus (Hemiptera), Glossina morsitans morsitans (Dip-
tera) and Daphnia pulex (Cladocera). However, the bad
scores of similarity registered from sequence alignments
and the lack of protein structure conservation led us to
exclude these sequences from further phylogenetic ana-
lyses. These were performed to assess that the predicted
proteins were VKR orthologs belonging to the same fam-
ily. A maximum likelihood phylogenetic tree was gener-
ated under the JTT+I+G model with the support of three
outgroups composed respectively of insulin (outgroup 1),
RTK-like orphan (ROR) (outgroup 2) and epidermal
growth factor (EGF) (outgroup 3) receptors of inverte-
brates (Figure 1). Results showed that all VKR sequences
consistently form a monophyletic group distinct from the
three other RTK families. Inside of the VKR family, dis-
tinct and robust groups were formed by hymenopteran,
coleopteran or dipteran sequences. Platyhelminth VKRs
form a cluster made of two distinct cestode and trematode
branches. In the trematode branch, VKR1 proteins
grouped distinctly from the VKR2 ones. Similarly, lepidop-
teran VKR1 and VKR2 sequences (BmVKR1/2 and
DpVKR1/2) were split into two different branches, but
surprisingly lepidopteran VKR1 proteins were rejected out
of the arthropod group and placed at the root of the VKR

http://smart.embl-heidelberg.de/


Table 1 Complete list of the 40 vkr genes found in genomic databases

Species Class Name Accession number Database

Acromyrmex echiniator Insect AeVKR GL888498.1 http://flybase.org/

Aedes aegypti Insect AaVKR DAA06509.1 http://blast.ncbi.nlm.nih.gov/Blast.cgi

Anopheles gambiae Insect AgVKR ACF34410.1 http://blast.ncbi.nlm.nih.gov/Blast.cgi

Apis florea Insect AfVKR GL576580.1 http://flybase.org/

Apis mellifera Insect AmVKR ACF34409.1 http://blast.ncbi.nlm.nih.gov/Blast.cgi

Atta cephalotes Insect AcVKR GL377380.1 http://flybase.org/

Bombus impatiens Insect BiVKR XP_003486761.1 http://ncbi.nlm.nih.gov/

Bombus terrestris Insect BtVKR GL898830.1 http://flybase.org/

Bombyx mori Insect BmVKR1 DF090406.1 http://flybase.org/

Bombyx mori Insect BmVKR2 DF090406.1 http://flybase.org/

Camponotus floridanus Insect CfVKR EFN73169.1 http://ncbi.nlm.nih.gov/

Capitella teleta Annelid CtVKR 136189 http://genome.jgi.doe.gov/pages/search-for-genes.jsf?
organism=Capca1

Clonorchis sinensis Trematode CsVKR1 GAA27163.2 http://ncbi.nlm.nih.gov/

Clonorchis sinensis Trematode CsVKR2 GAA49307.1 http://ncbi.nlm.nih.gov/

Culex quinquefasciatus Insect CqVKR DAA06510.1 http://ncbi.nlm.nih.gov/

Danaus plexippus Insect DplVKR1 EHJ69301.1 http://ncbi.nlm.nih.gov/

Drosophila ananassae Insect DaVKR DAA06508.1 http://ncbi.nlm.nih.gov/

Drosophila grimshawi Insect DgVKR DAA06505.1 http://ncbi.nlm.nih.gov/

Drosophila mojavensis Insect DmoVKR DAA06504.1 http://ncbi.nlm.nih.gov/

Drosophila persimilis Insect DpVKR DAA06507.1 http://ncbi.nlm.nih.gov/

Drosophila pseudoopscura Insect DpseVKR ACF34407.1 http://ncbi.nlm.nih.gov/

Drosophila virilis Insect DvVKR DAA06503.1 http://ncbi.nlm.nih.gov/

Drosophila wilistoni Insect DwVKR DAA06506.1 http://ncbi.nlm.nih.gov/

Echinococcus granulosus Cestode EgVKR NODE_166072 http://www.sanger.ac.uk/resour…s/echinococcus-granulosus.
html

Echinococcus
multilocularis

Cestode EmVKR pathogen_EMU_scaffold_007728 http://www.sanger.ac.uk/resour…s/echinococcus-multilocularis.
html

Harpegnathos saltator Insect HsVKR EFN85558.1 http://ncbi.nlm.nih.gov/

Hymenolepis microstoma Cestode HmVKR 744 http://www.sanger.ac.uk/resour…hs/hymenolepis-microstoma.
html

Linepithema humile Insect LhVKR GL905323.1 http://flybase.org/

Lottia gigantea Mollusc LgVKR 109151 http://genome.jgi-psf.org/pages/search-for-genes.jsf?
organism=Lotgi1

Megachile rotundata Insect MrVKR GL985818.1 http://flybase.org/

Nasonia vitripennis Insect NvVKR DAA06502.1 http://ncbi.nlm.nih.gov/

Nematostella vectensis Anthozoan NveVKR SB_43850 http://nematostella.bu.edu/stellabase/

Pediculus humanus
corporis

Insect PhcVKR DAA06501.1 http://ncbi.nlm.nih.gov/

Pogonomyrmex barbatus Insect PbVKR GL738256.1 http://flybase.org/

Schistosoma mansoni Trematode SmVKR1 AAL67949.1 http://ncbi.nlm.nih.gov/

Schistosoma mansoni Trematode SmVKR2 ADD91576.1 http://ncbi.nlm.nih.gov/

Solenopsis invicta Insect SiVKR EFZ12829.1 http://ncbi.nlm.nih.gov/

Strongylocentrotus
purpuratus

Echinoidea SpVKR DAA06500 http://ncbi.nlm.nih.gov/

Tribolium castaneum Insect TcVKR ACF34408.1 http://ncbi.nlm.nih.gov/

Vkr gene name is specified for each species, as well as protein or scaffold accession number and website link of the database in which the gene was found.
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Figure 1 Phylogenetic construction of the VKR family. A maximum likelihood tree was generated from the 40 VKR sequences using MEGA5
under the JTT+G+I model with 100 bootstrap repetitions. Outgroups are formed by insulin receptors (IR, outgroup 1), RTK-like orphan receptors
(ROR, outgroup 2) and/or EGF receptors (EGFR, outgroup 3) of the following species: A. aegypti (AaIR, AAB17094.1), A. echiniator (AeEGFR,
EGI67610.1), A. gambiae (AgIR, EAA00322.3), A. mellifera (AmROR, XP_397058.4), B. impatiens (BiROR, XP_003490221.1 ), Biomphalaria glabrata (BgIR,
AAF31166.1), B. mori (BmIR, NP_001037011.1), C. floridanus (CfEGFR, EFN60989.1), Crassostrea gigas (CgIR, EKC21734.1; CgROR, EKC27495.1), C.
sinensis (CsROR, GAA34401.2), C. teleta (CtIR, ELT96360.1), D. melanogaster (DmIR, AAC47458.1), D. plexippus (DplIR, EHJ65074.1), D. virilis (DvEgfr,
ABD64816.1), E. multilocularis (EmEGFR, CAD56486.1), H. saltator (HsIR, EFN83767.1; HsEGFR, EFN75184.1) Hydra vulgaris (HvIR, Q25197.1), Ixodes
scapularis (IsIR, XP_002416224.1), Lymnaea stagnalis (LsEGFR, ABQ10634.1), Metaseiulus occidentalis (MoIR, XP_003739590.1), N. vitripennis (NvROR,
XP_001601308.2; NvEGFR, XP_001602830.2), P. humanus corporis (PhcIR, XP_002430961.1), S. mansoni (SmIR1, GenBank: AAN39120.1; SmIR2,
GenBank: AAV65745.2 and SER, GenBank: AAA29866.1), S. purpuratus (SpIR, XP_784376.3; SpErbB4, XP_791361.3 and ROR_Sp, XP_003729469.1) and
T. castaneum (TcIR, EFA11583.1). For VKR abbreviations and accession numbers, see Table 1.
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tree. Finally, the cnidarian (NveVKR), annelid (CtVKR),
mollusc (LgVKR) and echinoderm (SpVKR) proteins were
correctly bound to the VKR tree, but no conclusion can be
drawn about their phylogenetic proximity since only one
vkr is available for each phylum. Thus, in these studies, we
have confirmed the distribution of VKR in arthropods
(in insects particularly), platyhelminths and echinoderms
and found new VKR orthologs in three additional phyla,
Annelida (Capitella teleta), Mollusca (Lottia gigantea) and
Cnidaria (N. vectensis) (Figure 2). Additionally, putative
VKR sequences were found in EST databases of different
orders of Arthropoda (Cochliomyia hominivorax (gb|
FG295125.1), Rhipicephalus microplus (gb|FG302900.1),
Coptotermes formosanus (GI:345171826) and Crassostrea
gigas (GI:313329111)), in the mollusc Biomphalaria gla-
brata (Contig1132.1, Biomphalaria glabrata Genome Ini-
tiative, biology.unm.edu/biomphalaria-genome/index.html),
in the annelid Helobdella robusta (gb|EY370614.1) and in
the echinoderm Paracentrotus lividus ( emb|AM524433.1).
The identification of a putative VKR in this second echino-
derm indicates that vkr genes could be present in multiple
deuterostomes, and excludes a recent horizontal gene
transfer or a genomic material contamination. The pres-
ence of VKR in Cnidaria, an animal lineage early diverging
from Bilateria, suggests that the VKR family emerged prior
to the expansion of Bilateria, the clade that comprises
almost all extant animals. However, though we identified
NveVKR in the anthozoan Nematostella, we could not
detect any VKR sequence in the genome of the hydrozoan
Hydra magnipapillata, a result in agreement with the
recent genome-wide RTK screening performed for this spe-
cies [15]. Such a difference could be related to those already
described for gene diversity and content between antho-
zoan and hydrozoan genomes [16]. At this time, cnidarians
are the first branch of Metazoa in which vkr genes have
been found and the question of their presence or not
throughout all phyla of Bilateria is still open. Extensive
research in vertebrate and roundworm genomes allowed us



Choanozoa

Porifera

Ctenophora

Cnidaria

Acoela

Echinodermata

Chordata

Platyhelminthes

Rotifera

Ectoprocta

Brachiopoda

Mollusca

Annelida

Nematoda

Arthropoda

X

X

M
etazo

an

E
u

m
etazo

an

B
ilateria

D
eu

tero
sto

m
ia

L
o

p
h

o
tro

ch
o

zo
a

E
cd

yzo
zo

a

?

?

?

?

?

?

?

No data available

No data available

No data available

No data available

No data available

Not found in A. queenslandica

Putative vkr in M. brevicollis and 

S. rosetta

In S. purpuratus;  putative vkr 
in P. lividus

In N. vectensis; Not found in H. 
vulgaris

In C. teleta; putative vkr in 

In L. gigantea; putative vkr in B.
glabrata

In 27 species; several other 
putative vkr genes in various 

orders

In 5 species

Figure 2 Distribution of vkr genes in metazoan phyla. Vkr genes were definitely identified in Arthropoda (27 insect species), Platyhelminthes
(trematode and cestodes parasites), and in Mollusca, Annelida and Echinodermata (at least in one species for each phylum). Additionally, putative
VKR sequences have been detected in the genomes of many other arthropods, in the mollusc Biomphalaria glabrata, in the annelid Helobdella
robusta and in the echinoderm Paracentrotus lividus. The presence of VKR has been confirmed in the cnidarian N. vectensis but not found in Hydra
(H. magnipapillata and H. vulgaris) genomes. The “unclassified” TK (UTK12) [5] and the RTKS kinase [17] found respectively in the choanoflagellates
Monosiga brevicollis and Salpingoeca rosetta possess an architecture similar to VKR proteins. However, no vkr gene was found in the poriferan
Amphimedon queenslandica. Concerning Ctenophora, Acoela, Rotifera, Ectoprocta, Brachiopoda phyla, genomic data are currently not sufficient to
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to conclude that VKR is absent from Chordata and Nema-
toda but the lack of genomic data for species of the Acoela,
Rotifera, Ectoprocta and Brachiopoda phyla still stands in
the way of a better understanding of the place of VKR
throughout evolution (Figure 2). Moreover, the existence of
vkr in Premetazoa remains to be considered because we
have recently noticed in choanoflagellates that the “unclas-
sified” TK annotated as UTK12 of Monosiga brevicollis [5]
as well as the RTKS kinase of Salpingoeca rosetta [17] have
both a protein architecture similar to that of VKR proteins.

Diversification of vkr genes
Previous studies have already demonstrated that vkr
genes were substantially heterogeneous in length as well
as in intron-exon composition throughout species, while
their organization within a given order was rather well
conserved, like in Diptera [12]. In this work, we have
made an extensive study of the exon/intron structure of
all the discovered vkr genes using the GenScan [18] and
Augustus [19] gene prediction Web servers. Data in
Table 2 illustrate the gene composition of vkr genes
from all the species grouped into families. They indicate
for each vkr gene the total number of exons and specify
the exons that encode VFT, TM or TK domains. The
results confirmed a wide heterogeneity for vkr genes
across the diverse phyla. In arthropods, vkr genes have
highly variable size (estimated from 4 to 65 kb) and exon
numbers (from 5 in Drosophilidae and Culicidae to 13



Table 2 Characteristics and structural organization of vkr
genes

Origin Name Size Exon
number

Coding exons for :

VFT TM TK

Cnidaria

Anthozoa

Edwardsiidae

Nvevkr 13,5 kb 15 E2-E7 E12 E12-E15

Arthropoda

Diptera

Drosophilidae

Dvvkr 3,8 kb 5 E2-E5 E5 E5

★ Dpseuvkr 3,8 kb 5 E2-E5 E5 E5

Dmovkr 3,8 kb 5 E2-E5 E5 E5

Davkr 3,8 kb 5 E1-E4 E4 E5

Dpvkr 3,8 kb 5 E2-E5 E5 E5

Dwvkr 3,8 kb 5 E2-E5 E5 E5

Dgvkr 3,8 kb 5 E2-E5 E5 E5

Culicidae

Cqvkr 18 kb 5 E2-E5 E5 E5

Aavkr 48 kb 5 E2-E5 E5 E5

Anophilinae

★ Agvkr 65kb 9 E6-E9 E9 E9

Hymenoptera

Formicidae

Pbvkr 6,5 kb 11 E4-E8 E8 E9-E11

Sivkr 5,5 kb 9 E4-E6 E8 E8-E9

Hsvkr 7 kb 11 E4-E7 E7 E8-E11

Acvkr 7 kb 11 E4-E6 E6 E7-E11

Lhvkr 6,5 kb 11 E3-E5 E5 E6-E7

Cfvkr 8 kb 11 E4-E8 E8 E8-E9

Aevkr 15,5 kb 13 E3-E6 E6 E7-E10

Apidae

Afvkr 8,5 kb 12 E5-E8 E9 E9-E12

★ Amvkr 8 kb 11

Bivkr 37 kb 12 E4-E7 E7 E8-E12

Btvkr 37 kb 12

Megachilidae

Mrvkr 5 kb 8 E2-E5 E5 E6-E8

Pteromalidae

Nvvkr 27 kb 12 E6-E11 E12 E12

Lepidoptera

Bombycidae

Bmvkr1 24 kb 5 E5 E5 E5

Bmvkr2 7 kb 5 E2-E4 E4 E4

Table 2 Characteristics and structural organization of vkr
genes (Continued)

Nymphalidae

Dplvkr1 7 kb 6 E4-E5 E5 E5-E6

Dplvkr2 21,5 kb 8 E3-E7 E7 E7-E8

Coleoptera

Tenebrionidae

★ Tcvkr 16 kb 5 E2-E4 E4 E4-E5

Phthiraptera

Pediculidae

Phcvkr 9,5 kb 10 E4-E8 E8 E8-E10

Annelida

Polychaeta

Capitellidae

Ctvkr 8,5 kb 18 E4-E11 E12 E12

Mollusca

Gasteropoda

Lottiidae

Lgvkr 9,5 kb 17 E4-E10 E11 E11-E15

Platyhelminths

Trematoda

Schistosomatidae

★ Smvkr1 30 kb 16 E7-E10 E10 E11-E14

★ Smvkr2 30 kb 18 E7-E10 E10 E11-E14

Opistorchiidae

Csvkr1 48 kb 15 E5-E9 E9 E10

Csvkr2 34 kb 15 E4-E8 E8 E8-E11

Cestoda

Taeniidae

Egvkr 23,5 kb 15 E3-E7 E9 E10-E12

Emvkr 19 kb 16 E4-E8 E10 E11-E13

Hymenolepididae

Hmvkr 19 kb 11 E1-E6 E7 E8-E10

Echinodermata

Echinoida

Strongylocentrotidae

★ Spvkr 60 kb 21 E9-E14 E16 E17-E21

Data illustrate the composition of vkr genes from all the animal species (see
Table 1) which have been classified into their respective phylum, order and
family. They indicate for each vkr gene the number of exons and specify those
that encode VFT, TM or TK domains. Stars indicate genes for which the
complete cDNA sequence was obtained.
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in the ant Acromyrmex echiniator). As it was already
observed in the case of dipterans [12], sizes and/or
exon-intron structures were homogeneous inside of the
hymenopteran order, particularly for Formicidae and
Apidae. The low number of exons found in vkr genes of
Drosophilidae and Culicidae could be due to the high
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degree of intron loss that has occurred during the evolu-
tion of the protostome lineage leading to flies and mos-
quitoes [20].
Vkr genes found in lophotrochozoan organisms (anne-

lids, molluscs, platyhelminths), are overall more complex
(15 to 18 exons) than the insect ones, except in the ces-
tode H. microstoma (11 exons). Lophotrochozoan vkr
genes are according to this more similar to that one
detected in the phylogenetically basal animal N.
vectensis. Indeed, Nvevkr is also intron-rich (15 exons),
respecting therefore the known high complexity of the
genes present in early animal genomes [20]. Spvkr found
in the echinoderm S. purpuratus remains the most com-
plex vkr gene found with a size of 60kb and a total of 21
exons. In trematodes, the organisation of Smvkr1 and
Smvkr2 genes was shown to be quite identical (see
Table 2, and [14]), arguing for a duplication event in
S. mansoni.
As a preliminary approach to understand vkr gene evo-

lution, we have analysed the conservation of intron posi-
tions throughout the diverse animal groups (Figure 3).
First results overall indicated that vkr genes were all shar-
ing at least one conserved intron position, arguing that
they might belong to the same family.
We also noticed that 12 out of 14 intron positions of

Nvevkr were found in at least one phylum and that most
of these conserved exon-intron boundaries were located
in regions that encode VFT and TK domains. Most of
these positions were shown to be conserved in the anne-
lid (Ctvkr), mollusc (Lgvkr) and echinoderm (Spvkr)
genes. Inversely, only a very limited number of intron
positions seem to be conserved in arthropods as well as
in platyhelminthes, indicating a profound reorganization
of vkr genes along evolution. Finally, specific or non-
conserved intron positions were also found in various
vkr genes (Figure 3). Taken together, these studies dem-
onstrate that vkr genes are highly variable in size and in
complexity but that, in spite of their heterogeneity, all of
them possess common features, which are conserved
from Cnidaria to the other phyla.

Conservation of VKR tyrosine kinase domains
Using the multiple alignment ClustalW algorithm, we
have compared the TK domain sequences of the 40
VKRs and generated an identity matrix. As it could be
expected for catalytic structures, the sequences are rela-
tively well conserved across all species, with the best
scores of identity observed between the species belong-
ing to a same order. For example, in Hymenoptera the
TK domains of Bombus and Apis species are more than
92% identical, in Diptera, those of Drosophila species are
more than 75% identical and those of the mosquitoes
A. gambiae and A. aegypti are 93%. For platyhelminth
VKRs, identities between TK domains scored between
57 to 96%, with the best score registered between the
two cestode parasites E. multilocularis and E. granulosus.
In Lepidoptera, the TK domains of Bombyx and Danaus
VKRs were less conserved, except for BmVKR2 and
DplVKR2 that share 81% of identity.
In the aligned sequences, we could identify most of

the residues shown to be essential for TK activity [21].
As indicated in Figure 4, the glycine-rich motif
G8xGxxGxV15 required for the correct positioning of
ATP is found in all VKRs except in that of D. ananassae,
which lacks the first G residue. The V32AxK(16x)E52
motif essential for ATP stabilization is also tightly con-
served, except for the hymenopteran N. vitripennis VKR.
The phosphotransfer site H147RD (L/V/I)xxRNxL156 is
also present in the catalytic loop of all VKRs but in the
insect VKRs of P. humanus corporis and H. saltator, this
motif is interrupted by an insertion. Without exception,
all VKRs possess the D194FG196 site essential for the
binding to the catalytic magnesium ion. In the activation
loop, the two juxtaposed Y211Y212 autophosphorylation
site that allows an open access to ATP and substrates in
many activated RTKs (like insulin receptors) [22], is
found in all VKRs, except in VKR1 isoforms of B. mori
and D. plexippus in which a single Y is found at this pos-
ition. The M262(A/S)PE265 motif implicated in the
stabilization of the active kinase core is present in most
VKRs, but the A/S residue is replaced by a P residue in
all the Drosophila species as well as in cestodes. We can
note also that this motif is totally absent from the VKR
of the ant L. humile. Other hydrophobic residues M56,
L67, L91, (L/V/I)284, (L/V/I)288 , that compose in every ac-
tive kinase spatially conserved motifs, termed spines,
and that play a major role in kinase dynamic assembly
and activity [23], are present in all VKRs. Overall, these
data showed that a large part of VKR sequences
contained all the motifs essential for TK activity. Fur-
thermore, our previous demonstrations [12,14] that re-
combinant receptors from A. mellifera and S. mansoni
were catalytically active and able to autophosphorylate,
strongly suggest that most of the VKRs identified in this
work might exhibit similarly kinase activity. Concerning
the ones (DaVKR, NvVKR, BmVKR2, DplVKR2,
PhcVKR, HsVKR and LhVKR), that lack one or several
motifs essential for catalytic activity, we could suggest
that they constitute dead or pseudokinases, but this con-
clusion should be taken with much caution because of
possible artefacts in gene prediction or sequences. Fur-
ther analyses of their kinase potential would be needed
to conclude.

Conservation and divergence of VKR ligand-binding
domains
Multiple alignment of the VFT module sequences from
the 40 VKRs shows that protein sequences are relatively



Figure 3 Schematic representation of the organisation of vkr genes. Coding sequences of genes selected in the different groups of
organisms are represented. Boxes indicate respectively the positions of VFT, TM or TK domains. For each gene, arrows indicate the presence of
introns at conserved positions either in several phyla (red arrows) or inside of a given phylum (black arrows). Grey arrows indicate the presence of
introns at non conserved positions.
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well conserved, particularly in insect species (Figure 5).
Excluding the two lepidopteran VKRs, all insect VFT
sequences share from 29% (between PhcVKR and
DpseVKR) to 98% (between the two Bombus species) of
identity. Interestingly, VFT sequences are highly con-
served within a given order. As an example, VKRs from
the 13 hymenopteran species all share at least 70% iden-
tity. Likewise, there is at least 50% identity between the



Figure 4 Alignment of the TK sequence of VKR proteins using the CLUSTALW algorithm. Numbers I to XI correspond to the eleven
subdomains conserved in protein kinase domains. Essential motifs for protein kinase activity are indicated in red. The motif G8xGxxGxV15 is
required for binding of ATP and V32AxK (16×)E52 for its stabilization. The motif H147RD(L/V/I)xxRNxL156 is implicated in phosphotransfer and the
triplet D194FG196 is the Mg2+ binding site. The two residues Y211 and Y212 constitute the autophosphorylation site and the motif M262(A/S)PE265 is
required for stabilization of the active kinase core.
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VKRs identified in all dipteran species. Taken together,
these results agree with an evolutionary conservation of
insect VFT sequences. However, an exception concerns
the lepidopteran VKRs (BmVKR1/2 and DplVKR1/2) for
which VFT module sequences are highly divergent from
each other and from all insect VFT domains (less than
16% of identity). Still, the BmVKR2 VFT module seems
closer to that of DplVKR2 (40% of identity). Concerning
the VFT sequences of platyhelminths, intermediate levels
of conservation were observed between trematode and
cestode sequences (24% to 44% identity) while we could
note, as previously observed for the TK domain, a
marked identity (93%) within the genus Echinococcus be-
tween EgVKR and EmVKR VFT domains. Finally, other
VKRs (from Annelida, Mollusca and Cnidaria species)
were found to be highly divergent from platyhelminth
and lepidopteran VKRs in their VFT domains, but as
discussed above concerning their phylogeny (Figure 1),
available sequences are not sufficient to state about re-
ceptor evolution in these phyla.
VFT modules constitute the binding pocket of various

receptors activated by small molecules [13]. They are
composed of two lobes connected via flexible tethers
that close around the bound ligand. In most class C
GPCRs, these modules contain the binding site for nat-
ural amino acids or derivatives and ligand recognition is
dependent on a consensus motif of 8 residues that
participate to the binding of the α-amino acid functions
(i.e. primary amine and carboxylic acid) [24]. Among
these residues, the serine that binds the COOH group of



Figure 5 Alignment of the VFT sequence of VKR proteins using the CLUSTAL W algorithm. Lobe I and Lobe II (indicated by the upper
black line) and the three linkers (L1, L2, L3) constitute the structure of VFT domains. Residues highlighted in red are highly conserved in all or
most VKR sequences, and residues highlighted in green correspond to the consensus amino-acid binding motif of VFT domains [24].
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glutamate in mGluR1 (Ser165), is the most conserved
residue in class C GPCRs. In most VKRs (except in ces-
tode and lepidopteran receptors), this residue is strictly
conserved (at position 66 in the VFT sequence, Figure 5).
The R107, another important residue composing the con-
sensus site for AA binding in VFT modules [24] is also
present in all VKRs (except in Lepidoptera). These ob-
servations are totally in agreement with our demonstra-
tion that amino-acids, and particularly L-arginine, are
able to bind and activate both honey bee and schisto-
some VKRs [12,14] and we have recently confirmed the
requirement of S66 and R107 for the amino-acid recogni-
tion by VKR receptors (unpublished). Interestingly, if the
six other elements composing the consensus motif in
VFT modules for amino acid binding [24] are different
in the ligand-binding domains of VKRs, we could note
that at their exact positions, many VFT domains present
identical residues (highlighted in green in Figure 5), and
this is particularly obvious inside of the Hymenoptera
order. Among these residues, Y406 was found to be
present in all VKRs (except in lepidopteran sequences).
Y406 is exactly at the position K509 in mGluR1, the
residue involved in the binding of the terminal carbox-
ylic group of glutamate [12], and this strengthens our
observation that glutamate is not a ligand for VKR. Add-
itionally, we can see in the VFT alignment several con-
served residues and motifs (highlighted in red, Figure 5),
such as C35 and W128 which are present in all domains
and the motif (G247Y(V/I)WFLPxWL256) which is
present in most VKRs. Finally to investigate the potential
importance of these conserved residue positions for the
VFT properties, we performed a comparative modeling
of the VFT domain of VKR using the ModWeb server of
the ModBase databases. A VFT model of AmVKR was
generated with the human Glutamate Receptor 5
(mGluR5) as homologous template (PDB: 3lmkA)
(Figure 6). Results confirmed the position inside of the
ligand pocket formed between the two lobes of the VFT,
of the residues potentially involved in amino-acid recog-
nition. The model also indicates that many of the other
conserved residues are constituents of alpha-helices or
beta-sheets, and thus take part very likely in the tertiary
structure of the domain. Interestingly, two residues T108

and I109, highly conserved in most VKRs, are located in



Figure 6 Evolutionary conservation of residues of the VFT
domain visualized on the comparative modeling of AmVKR
based on mGluR5 crystal (PBP: 3lmkA). Structurally important
motifs are indicated in red and residues composing the consensus
amino-acid binding motif of VFT domains [24] are in green sticks
(for details see Figure 5). The highly conserved residues S66, E92 and
Y406, found to be important for amino-acid binding, are localized
within the binding pocket, together with two conserved structural
residues T108 and I109 shown in red sticks.
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the putative ligand binding pocket, suggesting that they
could contribute with the conserved residues of the
amino-acid binding motif to ligand specificity and/or af-
finity. Taken together, these results let suppose that in
spite of a partial conservation of primary structures, the
VFT domains of many VKRs can bind a common ligand.

Conclusions
This survey based on the analysis of newly released gen-
omic data has allowed us to show that vkr genes actually
represent a novel RTK family, widespread in the
bilaterian branch of Eumetazoa. From this study we can
extend the presence of VKR to a large variety of proto-
stomes (Ecdysozoa and Lophotrochozoa). However,
after the analysis of a large number of deuterostome
genomes (Chordata and Hemichordata), it seems that
deuterostomes would not contain vkr genes, with the
exception of echinoderms. In these studies, an import-
ant information concerns the detection of NveVKR in
the basal metazoan N. vectensis. From the presence of a
vkr gene in Cnidaria, we can suggest that the origin of
VKR would be anterior to the radiation of Bilateria, and
possibly close in time to that of the setting-up of animal
multicellularity. This would agree with the general ac-
ceptance that emergence of a series of cell surface re-
ceptors (including RTKs) necessary for cell adhesion,
differentiation and cell-cell communications has driven
evolution towards multicellularity [6]. In this context,
we have recently found putative RTKs exhibiting an
architecture close to that of VKR proteins in the
genomes of the choanoflagellates M. brevicollis [5] and
S. rosetta [17], which are free-living unicellular and
colonial flagellates considered to be the closest living
relatives of the animals. These findings (unpublished)
encourage us to postulate that VKR could represent an
ancient RTK present early in protists, that might have
contributed to the establishment of multicellularity and
to animal development.
Another important question concerns the distribution

and stability of VKR throughout evolution. Vkr genes
were found preferentially in the genomes of protostomes
and particularly in insect genomes, but the large number
of insect VKR sequences could likely result from the
relative abundance of insect sequences in genomic data-
bases. However, it was very interesting to observe that
the finding of one vkr in all species of a given genus is
not a general rule. For example, in the Drosophila genus,
D. melanogaster and some others exceptionally do not
possess a vkr gene [12]. Also, it is surprising that no vkr
exists in other ecdysozoa like nematodes, and in C.
elegans particularly.
In this work, we have analysed the exon/intron struc-

ture of all vkr genes and shown that their organization is
widely heterogeneous across the different phyla. How-
ever, all vkr genes share intron positions common to the
ancestral gene Nvevkr, and this suggests that they might
have been derived from this common ancestor, then
subjected to more or less marked reorganization along
evolution. Finally, the question of the existence of two
vkr genes in Trematoda and Lepidoptera is still open, to-
gether with the problem of the “keep or loss” of vkr in
some species. Further investigations about the functions
of VKR in the biology and physiology of organisms
should be required to answer these questions.
We have previously shown that vkr genes were preferen-

tially expressed in larval stages and in gonads of several
organisms, including sea urchin, mosquito and the trema-
tode S. mansoni, thus suggesting a role of the receptor in
embryogenesis and gonad development [11,12,14]. About
their functional activity, we have been able to demonstrate
the tyrosine kinase activity of several VKRs [12,14] and se-
quence information here obtained for the TK domains of
all VKRs confirms that most VKRs should be active ki-
nases as well. VKR receptor activation was shown to be
dependent on the binding of L-amino-acids, and specific-
ally of L-arginine, to the extracellular VFT domain, in
which conserved residue positions (for example S66 and
R107) are essential for ligand-receptor interaction and
probably involved in specificity and affinity of L-arginine.
However, in some VKRs, these major conserved residues
are not present, suggesting that they could bind other li-
gands and perhaps have different functional activities. We
have shown that SmVKR1 and SmVKR2 of S. mansoni dif-
fer both in the primary sequence of their VFT domain
and in their localization in the parasite. The observa-
tion that these receptors are activated respectively by
L-arginine and Calcium [14] really illustrates this possible
functional divergence between VKR.
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Currently, diverse strategies are developed to analyse
the consequences of VKR knock-down in organisms.
Preliminary results of VKR targeting by RNA interfe-
rence in S. mansoni have confirmed the importance of
SmVKR1 and SmVKR2 for growth and differentiation of
reproductive organs and parasite fertility (to be pub-
lished). The use of other organisms as candidate models
for studying the function of VKR is under investigation.
In conclusion, the VKR family is a little-known RTK

family that deserves to be further explored in order to de-
termine more precisely its evolutionary origin, its possible
importance for the emergence and specialization of Meta-
zoa, and to understand how its maintenance or its loss in
various phyla or species could be in relation with develop-
ment and physiological activities (like reproduction).

Methods
Genome database searches
Putative vkr sequences were searched using tBLASTn on
genomic sequences available in the following databases:
GenBank (http://www.ncbi.nlm.nih.gov/blast/Blast.cgi),
FlyBase (http://flybase.org/), VectorBase (http://www.
vectorbase.org), Wellcome Trust Sanger institute data-
bases (http://www.sanger.ac.uk/resources/databases/) and
the JGI genome portal (http://genome.jgi-psf.org/). Add-
itionally, we also searched for vkr sequences in Hydra
magnipapillata (hydrazome), Schmidtea mediterranea
(SmedDB) and Schistosoma japonicum(schistoDB) genome
databases.
Selected genomic sequences were analysed by GenScan

(http://genes.mit.edu/GENSCAN.html) and Augustus
(http://bioinf.uni-greifswald.de/augustus/) gene prediction
servers, and putative VKR proteins were then determined.
The presence of VFT, TM and TK domains was verified,
and their delimitation defined using the SMART software
(http://smart.embl-heidelberg.de/). Finally, TM regions
were confirmed with the TMHMM server (http://www.
cbs.dtu.dk/services/TMHMM).

Phylogenetic analyses
Protein sequences (listed in Additional file 1) were
aligned using ClustalW algorithm in the BioEdit v7.1
software, and manually corrected. Maximum likelihood
trees were built using MEGA5 [25] under the JTT+I+G
model, with 100 bootstrap repetitions.

Comparative modeling
Comparative modeling was performed on the VFT se-
quence domain of VKRs using the comparative modeling
web-server Modweb (https://modbase.compbio.ucsf.edu/
scgi/modweb.cgi) of the ModBase databases. Calculation
and evaluation of models were performed with ModPipe
software using sequence-sequence, sequence-profile and
profile-sequence methods for fold assignment and target-
template alignment.
Additional file

Additional file 1: FastA text file containing the full length
sequences of the 40 VKR proteins aligned using the Clustal W
algorithm. For VKR abbreviations, see Table 1.
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