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Abstract

Background: Associations between proteins are essential to understand cell biology. While this complex interplay
between proteins has been studied in model organisms, it has not yet been described for the oomycete late blight
pathogen Phytophthora infestans.

Results: We present an integrative probabilistic functional gene network that provides associations for 37 percent
of the predicted P. infestans proteome. Our method unifies available genomic, transcriptomic and comparative
genomic data into a single comprehensive network using a Bayesian approach. Enrichment of proteins residing in
the same or related subcellular localization validates the biological coherence of our predictions. The network
serves as a framework to query existing genomic data using network-based methods, which thus far was not
possible in Phytophthora. We used the network to study the set of interacting proteins that are encoded by genes
co-expressed during sporulation. This identified potential novel roles for proteins in spore formation through their
links to proteins known to be involved in this process such as the phosphatase Cdc14.

Conclusions: The functional association network represents a novel genome-wide data source for P. infestans that
also acts as a framework to interrogate other system-wide data. In both capacities it will improve our
understanding of the complex biology of P. infestans and related oomycete pathogens.

Keywords: Oomycetes, Phytophthora infestans, Protein-protein interaction, Protein-protein associations, Network,
Bayesian integration, Protein complex, Functional module
Background
The late blight pathogen Phytophthora infestans is one
of the most destructive pathogens of tomato and potato,
and a continuous threat to global food production [1]. P.
infestans belongs to the lineage of oomycetes that unites
diverse saprophytic and pathogenic species that share
morphological similarities to true fungi [2], yet are closely
related to non-pathogenic diatoms and brown algae. Over
the last two decades, P. infestans has gradually developed
into a model organism not only for oomycetes, but also
for filamentous plant pathogens. The releases of its gen-
ome sequence and that of other closely related oomycetes
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[1,3] have greatly increased our understanding of their
complex biology, pathology and evolution (e.g. [4,5]). So
far, however, only individual gene products, mostly in the
context of pathogenicity, have been intensively studied [6].
Genome-wide experiments elucidating functional associa-
tions among proteins have not yet been performed and as
a result, the complex interplay of proteins within a cell
and its contribution to fundamental cellular processes is
poorly understood.
Even though some proteins operate solitarily, the ma-

jority is associated with other proteins. They are embed-
ded in a complex network in which assemblies of proteins
synergistically mediate a biological function [7,8]. Proteins
can associate directly by physical interaction, e.g. in pro-
tein complexes, or indirectly, e.g. in the same pathway or
cellular process. Functional association networks represent
the compendium of all possible associations in a cell. In
vivo, however, these associations are dynamic and depend
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on physiological conditions such as external stimuli or
changes during the life cycle.
A considerable number of functional association net-

works in many species have been described: These net-
works are not only derived from large-scale experimentally
determined physical associations [7,9], but also from inte-
grative approaches combining diverse functional and com-
parative genomics data. Such integrative networks made
a substantial contribution in system-wide understanding
of the biology of well-studied model organisms such as
Saccharomyces cerevisiae (budding yeast) and Arabidopsis
thaliana (thale cress) [10-12]. Many of these studies used
a Bayesian framework to integrate heterogeneous data into
a single unified network [10,11]: every data source adds a
certain level of evidence to the combined evidence of func-
tional linkage between two proteins. At the same time, this
approach accounts for differences in the quality of the in-
dividual data sources. The resulting network maximizes
the coverage of the proteome while ensuring an acceptable
level of confidence [11]. The reliability of these integrative
approaches has been benchmarked using experimental
data that are available in these model organisms. While
very few protein-protein interactions or functional associa-
tions have been reported in P. infestans [13], a consider-
able amount of transcriptomic and comparative genomic
data for P. infestans and other related oomycetes is avail-
able [1,3,14,15].
In this study, we present the first functional association

network in the oomycete model organism P. infestans.
Our method integrates diverse functional and comparative
genomics data sets into a unified network. The first data
set is composed of projected interactions based on in-
terolog mapping. Interolog mapping describes the transfer
of protein-protein interactions from one organism to an-
other: proteins in the species of interest are expected to
interact if their orthologs in another species have been
shown to interact [16]. The second data set adds predicted
associations between proteins encoded by co-expressed
genes [17,18]. Thirdly, we used conserved co-expression,
i.e. orthologs of co-expressed genes in one species are
also co-expressed in a related species, to increase the
moderate predictive power of gene co-expression towards
functional association [19]. As a fourth line of evidence we
predicted interacting proteins by conserved phylogenetic
co-occurrence of the two encoding genes across a consid-
erable amount of divergent species [20]. This approach
assumes that interaction partners should either be gained
or lost together, as a single interaction partner cannot
perform the full function. We adapted a scoring schema
that assesses the merit of each individual data set and sub-
sequently integrates the data using a Bayesian approach
yielding a comprehensive functional association network,
covering 37% of the predicted proteome of P. infestans.
Our predicted network enables the in-depth analysis of
complex omics data such as microarrays. For example, in
the predicted functional association network we identified
functional modules of differentially expressed genes dur-
ing distinct life phases of P. infestans, thereby highlighting
dynamic features of this network. These functional mod-
ules place unknown gene products in a cellular context.
The functional association network represents a valuable
addition to the growing genomic resources for P. infestans
serving as an important framework for in-depth analyses
of existing and yet to appear omics data. We anticipate
that its availability will add significant knowledge to our
understanding of the complex biology of this devastating
plant pathogen.

Results and discussion
Adaptation of a Bayesian scoring schema in P. infestans
To integrate four complementary large-scale transcrip-
tomic and comparative genomic data sets of gene-to-gene
(protein-to-protein) associations we adopted a unified scor-
ing schema (Figure 1A) that has been applied successfully
in other eukaryotes [11,12]. This scoring schema is derived
from Bayesian statistics and describes the log likelihood
score (LLS) of association under given evidence and is
corrected for the background expectation of association.
Therefore, the LLS is proportional to the confidence of the
given experiment to successfully recall known associations
[11]; an LLS of 0 corresponds to random association. More
importantly, this unified scoring schema allows accounting
for the variability in the predictive quality between both
binary data, such as predicted protein-protein interactions,
as well as continuous data with an intrinsic scoring schema,
such as the similarity between gene expression profiles. The
continuous data is transformed into a range of LLS scores
for different values of the intrinsic score (Material and
Methods). Due to the lack of experimentally defined pro-
tein associations (positive set) and consequently also nega-
tive set in P. infestans, we approximated such sets using
KEGG maps. Based on these approximations, we derived
the prior odds (Additional file 1A), i.e. the ratio of probabil-
ity of functional association and its negation without evi-
dence, and the posterior odds, i.e. the ratio of probability of
functional association and its negation given the evidence,
for each dataset (Additional file 1B) and subsequently deter-
mined the LLS.

Protein-protein interactions from three model organisms
are projected to P. infestans
We projected a substantial number of physical interac-
tions between protein pairs based on interolog mapping.
To this end, we identified orthologs using an orthology
detection algorithm (similar to Orthologous MAtrix OMA
[21]) that we applied to an selection of 51 diverse eu-
karyotic species. We identified 3,507 orthologous groups
(orthologous pairs + inparalogs) between P. infestans and
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at least one of the three genomes (Homo sapiens (human),
S. cerevisiae and A. thaliana), of which 1,781 orthologous
groups are shared between all four genomes (Figure 1B).
Using the 3,507 orthologous groups, we projected protein-
protein interactions from six different databases that
aggregate information from H. sapiens, S. cerevisiae and
A. thaliana to P. infestans (Additional file 1C). The in-
formation available from BioGRID and IntAct enabled
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discrimination between different levels of confidence. Since
these interactions are mapped using orthology, some of the
orthologous groups also include inparalogs and in some
cases it is not directly obvious to which of the possible
pairs the functional interaction would be most reliably
mapped (see Figure 1C). These specific cases were dis-
entangled using additional data considering overlapping
and complementary functional characteristics, such as gene
co-expression and cellular co-localization (Material and
Methods).
All sixteen predicted protein-protein interaction net-

works, derived from the six different databases, have an
LLS score that is higher than random linkage (LLS > 0),
ranging from 2.8 (IntAct attachments) to 6.46 (BioGRID
4PM [human]), reflecting their high quality (Figure 2
and Additional file 1B). The ranking of the LLS for the
KEGG and the alternative GO benchmark yields similar
results (Material and Methods; Additional file 1B), even
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co-occurrence profiles measured in 51 eukaryotic species
(Material and Methods).
These three genomic datasets score higher than ran-

dom in our applied LLS scoring schema (Figure 2). As
expected, their confidence is lower than the predicted
protein interaction data, but the coverage of the prote-
ome increases. Gene co-expression on its own has been
shown to be a limited predictor of functional association;
a correlation coefficient of 0.8 corresponds to an LLS of
only ~0.71. However, if conservation of co-expression,
orthologs of co-expressed genes are also co-expressed in
a related species, is taken into account, this conserved
co-expression is a high quality proxy for functional asso-
ciation [19]; a score of 0.8, which is approximated by the
average of both correlation coefficients (Material and
Methods) correspond to an LLS of ~1.25. This higher
quality of conserved co-expression as a proxy for func-
tional association, in return for a smaller coverage, is an
observation that is also visible in our scoring schema
(Figure 2).

The prediction and initial survey of the functional
association network of P. infestans
To obtain a comprehensive picture of functional associa-
tions, we integrated the four above described large-scale
gene association data sets using a naïve Bayesian approach:
we additively derived an LLS describing the combined evi-
dence for association among pairs of proteins (Material
and Methods). Each individual data source, even though
less reliable by itself, adds evidence for the functional link-
age of two proteins. Thereby, we unified these diverse lines
of evidence into a comprehensive functional association
network in P. infestans while simultaneously controlling
quality (expressed by the associated LLS) and coverage of
these predictions. We applied an LLS cutoff of 2.1 to each
protein pair that corresponds to a conservative Pearson
correlation coefficient for co-expressed gene pairs of ~0.94.
This Pearson correlation coefficient was determined by the
99.9 quantile of the distribution of 100,000 random gene
pairs. The LSS cutoff of 2.1 allows the inclusion of associa-
tions from genomic data sources if their score is above the
LLS cutoff as well as the inclusion of lower scoring associa-
tions that require several independent lines of evidence to
cumulatively pass the LLS cutoff.
The predicted network in P. infestans links 6,741 pro-

teins (~37% of the predicted proteome), with 112,421
functional associations (Additional file 3). With a pair-
wise LLS cutoff of 2.1 for inclusion, the total confidence
of the combined network is 2.75 (Figures 2; Figure 3A).
As expected given the applied cutoff, 55% of the functional
associations are in part derived from protein interaction
data in other species; consequently the P. infestans func-
tional association network is partially a physical interaction
network. Moreover, 34,118 of these protein associations
(~55%) have additional support based on other large-scale
(comparative-) genomic data sets, giving further evidence
for the robustness of the predictions. The network com-
prises 70 connected components (98% of proteins reside
in the largest component; Figure 3A). A characteristic path
length of 3.6, which is smaller than e.g. the overall protein-
protein interaction network of S. cerevisiae but similar to
the subset of essential proteins [22], and high clustering
coefficient (0.27) are indicative of a dense network that re-
flects the homology-based projection of complexes and
interactions.
Proteins that are part of the network show highly signifi-

cant enrichment (all p-values <1e-7) in central cellular pro-
cesses such as gene expression (GO:0010467), translation
(GO:0006412), cellular localization (GO:0051641) and cell
cycle (GO:0007049). The majority (51%) of proteins in the
network is at least partially projected/included based on
physical interaction which favors evolutionary conserved
processes and hence explains the enrichment in core cellu-
lar processes. Nevertheless this information is useful as it
provides further insights into the wiring of these core pro-
cesses in P. infestans.
Given the nature of our analyses, the predicted network

is mainly composed of evolutionary conserved processes
(see above). Nevertheless, the network also includes few
proteins with putative functions in pathogenicity or pro-
teins that have been shown to induce defense responses in
the host [6]; many of which are predicted to be secreted
upon infection (Additional file 3). The network contains
364 secreted proteins; a 3.4-fold increase to the number
we would have obtained if we only considered interactions
derived by orthology projection of protein-protein inter-
action data. The RXLR- and Crinkler-effectors, two classes
of host-targeted effectors that most likely promote in-
fection of the host, are highly abundant in the proteome
of P. infestans (596 RXLR- and 452 Crinkler-effectors)
[1,23], and also occur 34 and 15 times, respectively, in
the predicted network. The associations of these proteins
with others are solely based on (conserved-) co-expression
data, indicating involvement in the same process, without
any evidence for potential physical associations. Two not-
able classes of highly abundant enzymes that are poten-
tially linked to pathogenicity are glycoside hydrolases and
peptidases [1,3,4,24]. We observed 53 glycoside hydrolases
and 126 peptidases in the predicted network. This is a con-
siderable increase of 2.6 and 1.8 fold, respectively, com-
pared to a network that would only be based on projected
physical data.

The functional association network is enriched for
co-localized protein pairs
Functionally associated proteins that show physical inter-
action are close together in the same subcellular compart-
ment [25,26]. Subcellular localization therefore presents a
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suitable criterion to assess the biological significance of
the predicted associations in P. infestans independently of
the initial benchmark of (homology-based) KEGG path-
ways used to derive the LLS for each association. The
network displays non-random distribution and local clus-
tering of proteins with the same subcellular localizations,
approximated by GO-cellular compartment (Figure 3A).
To quantify this, we examined the enrichment/depletion
of associations between proteins that are predicted to re-
side in the same/different subcellular compartment within
the predicted functional association network (Figure 3B,
Material & Methods). Associations between proteins with
the same subcellular localization are significantly enriched,
in agreement with observation on directly measured asso-
ciations in other organisms and confirming the validity of
our predicted network. Associations are enriched across
compartments (meaning that partners are predicted to
reside in different compartments) for the endoplasmic
reticulum, the Golgi apparatus or membranes which is
consistent with previous results for human proteins [26].
In accordance with the observations by Gandhi et al., pro-
teins with predicted localization in the nucleus, the ribo-
some and to a smaller extent the mitochondrion do not
tend to interact with proteins present in many other sub-
compartments [26].
As homology is part of the initial source of the projected
physical interactions – i.e. the LLS scoring via the KEGG
benchmark as well as the prediction of subcellular local-
ization via GO – we used two additional approaches to
assess similarity in subcellular localization of predicted as-
sociations independent of homology. In the first approach,
we divided the network into two components, one con-
taining associations that are supported by at least one
protein-protein interaction dataset (Additional file 4A), and
the second, which is merely based on non-physical associa-
tions (co-expression, co-occurrence) (Additional file 4B).
Both networks yield similar results in the (significant) en-
richment of associated proteins predicted to co-localize. In
a second independent approach, we used WoLF PSORT
that predicts subcellular localization merely on sequence
features and not homology [27]. Again, we found similar
patterns of enrichments in associations between proteins
with the same subcellular localization. Proteins residing in
the nucleus and the mitochondrion showed depletions for
associations with proteins predicted to reside elsewhere
(Additional file 4C). These patterns are less pronounced,
most likely because the prediction algorithm is not opti-
mally trained for oomycete sorting signals. These independ-
ently derived similar patterns in enrichment and depletion
support our predicted functional associations, even though
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experimentally verified associations, as present for other
species, would provide a superior benchmark set to adjust
confidence levels and assess the predicted associations.

The compendium of protein complexes embedded within
the functional association network
One of the major steps in understanding the function of
a cell is to identify and determine the composition of its
protein complexes. We mined the subset of the pre-
dicted functional association network that is supported by
at least a single protein-protein interaction to derive pro-
tein complexes. We applied the ClusterONE algorithm
that detects overlapping protein complexes in weighted
networks by searching for sub-graphs that are character-
ized by many reliable interactions between proteins and
separation from the remaining network [28]. In total, we
detected 287 protein complexes covering 3,144 proteins
(Additional file 5).
Due to incomplete proteome annotation, members of a

protein complex are unlikely to be identified by functional
annotation (GO terms) alone. For example, the Arp2/3
complex, a central organizer of the actin filaments, con-
tains seven subunits in yeast and human [29]. While its
constitution can be completely retrieved in yeast and hu-
man based on its GO term (GO:0005885), the same is im-
possible in P. infestans: the annotation of the encoding
genes is limited (only a single member of the Arp2/3 com-
plex has this term) and higher-level terms such as cyto-
skeleton are too broad and retrieve too many results. The
functional association network is therefore a necessary
framework to predict and study the composition of protein
complexes in P. infestans. Indeed, the Arp2/3 complex is
one of the complexes we detected (complex 17). Besides
Arp2 and Arp3, which have already been described [30],
the detected complex contains the remaining five together
with an additional subunit (Figure 4A). The genes encoding
the seven subunits display a high degree of co-expression,
whereas the additional protein, a tubulin-tyrosine ligase like
protein (TTLL), is not co-expressed (Figure 4B), and there-
fore likely not part of the core Arp2/3 complex. In-depth
investigation revealed that the associations to TTLL have
been projected via a read-through transcript containing an
Arp2/3 subunit and TTLL from human, underscoring the
necessity to assess fusion transcripts in future analyses and
to include gene expression data to validate and disentangle
predicted protein complexes.
The analysis of another protein complex highlights the

necessity of an integrative approach that combines dif-
ferent data sets from diverse organisms: The eukaryotic
initiation factor 3 (eIF3) is among the largest translation
initiation factors in eukaryotes [31]. Its conserved ‘core’
contains five essential (eIF3a, eIF3b, eIF3c, eIF3g and eIF3i)
and one nonessential subunit (eIF3j) [31]. Only three of
them could have been predicted in P. infestans based on
GO terms. The eIF3 core is a subset of one of the detected
complexes (complex 79; Figure 4C) that also contains sev-
eral other subunits. The H. sapiens eIF3 complex described
by the CORUM database contains six additional subunits,
whereas the eIF3 complex described by the Complexome
database contains four additional subunits, all of which
have orthologs in P. infestans. Our predicted network uni-
fies this information and consequently, the automatically
inferred protein complex contains all these subunits, except
a single protein from Complexome, and additional two,
one of which are also eukaryotic translational initiation
factors and hence likely functionally related. The genes
encoding the eIF3 core proteins as well as the orthologs of
the human complex are highly co-expressed and therefore
likely forming a functional complex, whereas the orthologs
of the yeast subunits, especially pronounced for eIF5
[BROAD:PITG_01255], show a lower level of co-expression
(Figure 4D). The ATP-binding cassette protein RLI1 (yeast:
[SGD:YDR091C]) is a conserved factor that has been impli-
cated in several essential cellular processes such as transla-
tional initiation [32,33] and translational termination and
recycling [34]. According to CORUM database, there is no
interaction between human RLI (the ortholog to RLI1 in
yeast) and eIF3 core factors, whereas the yeast complex in
Complexome and consequently the predicted P. infestans
network contain this experimentally determined interaction
[32] (Figure 4C).

Identification of functional modules during the
development of P. infestans
Microarray technologies are a valuable source for the
identification of genes involved in development and patho-
genesis in P. infestans [1,15,35]. The interpretation of the
results is challenging since a direct biological role for dif-
ferentially expressed genes is not necessarily apparent,
especially for uncharacterized gene products. The pre-
dicted functional association network provides a conveni-
ent framework to enhance the biological interpretation of
gene expression data by placing functionally characterized
and uncharacterized gene products in their cellular context.
We aimed to apply the predicted network to identify

functionally related subsets of differentially expressed
genes at defined time points in the lifecycle of P. infestans
(Figure 5A). To prevent circularity in the analysis, we ex-
cluded associations within the network that were only sup-
ported by gene expression data, leaving us with a network
of 62,000 associations between 3,500 proteins. We used
the algorithm HEINZ [36] that automatically finds the
subset of up-regulated genes that are also interconnected
by a significant amount of associations. Such an ensemble
of genes is referred to as a functional module, and allows
identifying and studying proteins likely involved in a de-
fined process and their associations. We studied five dif-
ferent time points during the asexual development of
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Figure 4 Predicted Arp2/3 and eIF3 complexes in P. infestans. (A) Automatically predicted Arp2/3 complexes (ClusterONE prediction in light
green) include the seven conserved subunits of the eukaryotic Arp2/3 complex (Arp2, Arp3 and the five associated subunits; highlighted in dark
green). (B) Gene expression of the predicted Arp2/3 complex (note: there is no gene expression data for Arp2/3 subunit 5 [BROAD:PITG_00293]).
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P. infestans [15]: in vitro growing nonsporulating hyphae,
sporangia, cleaving sporangia, swimming zoospores and
germinating zoospore cysts that contain specialized infec-
tion structures called appressoria (Figure 5A). We defined
differentially expressed genes at each transition and subse-
quently detected functional modules (Figure 5A and B).
Each developmental transition is represented by a func-

tional module of associated differentially expressed genes.
The modules display little overlap and a distinct pattern of
gene expression changes (Figure 5B). They vary in size,
ranging from nearly 400 members at the transition from
germinated cyst to hyphal growth, to only two members
at the transition from cleaving sporangia to swimming
zoospores (Additional file 6). The latter transition contains
only very few up-regulated genes (FDR 0.05) in the pre-
dicted network which is the reason for the small size of
the module. Interestingly, the functional module at the
former transition is enriched for proteins with a predicted
function in proteolysis (GO:0006508; p-value << 1e-4), in-
cluding twelve, mostly intracellular, peptidases. In contrast,
the transition from hyphae to sporangia is significantly
(p-value < 1e-3) enriched for regulation of biological
process (GO:0050789) and in particular signal transduc-
tion (GO:0007165). Among other proteins involved in
regulation, we also found ten kinases. Four of these are
also found in the functional module of the subsequent
transition from sporangium to cleaved sporangium, a mod-
ule that contains 17 kinases. Kinases have been reported to
be among the genes with the highest fold expression
change in this transition [15]. Oomycetes contain an exten-
sive repertoire of these central regulators [24,37]. The high
abundance of kinases in functional modules points to their
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Figure 5 Developmental stages of the asexual lifecycle of P. infestans and determined functional modules. (A) Transition between five
distinct developmental stages in the asexual lifecycle of P. infestans. Gene expression data of these stages are available [15] and were used to
assess gene expression changes between the transitions. Transitions between different developmental stages are colored coded. (B) The gene
expression changes and the membership of all 825 genes predicted in the five functional modules are displayed. The heat map shows the gene
expression changes (log2) for the transitions of two subsequent life stages (same color code as in A; heat map saturated at ± 2.5). Presence
(black) or absence (white) of genes in a functional module is highlighted next to the heat map and membership is indicated by color code.
C refers to the sporulation module as described in (C). (C) Determined functional module of genes up-regulated during sporulation and their
predicted associations. Examples discussed within the text and their directly associated proteins are highlighted with light green. The nodes are
colored according to the fold change in expression in sporangia compared to hyphae (same scale as in B).
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prominent role in regulation of sporangium formation. The
associations of and amongst these kinases present impor-
tant novel information that would not have been available
using gene expression data alone.

The sporangia formation module contains genes encoding
known and novel proteins, and novel associations
To highlight the merit of the functional association
network as a framework to study gene expression and
the predicted associations between co-regulated proteins,
we further studied the initial phase of sporulation. In
Phytophthora this major transition leads to the formation
of sporangia, asexual spores that can either germinate di-
rectly and infect the host, or develop into a zoosporan-
gium which cleaves and releases multiple zoospores that
function as infectious propagules (Figure 5A). We identi-
fied a module that contains 128 interconnected proteins
of which 124 are encoded by up-regulated genes during
sporangium formation (Figure 5C). This functional module
is significantly enriched (p-value <0.05) for proteins with
predicted functions in signal transduction (GO:0007165),
cell differentiation (GO:0030154) and developmental pro-
cesses (GO:0032502). Interestingly, our predicted module
contains most proteins known to be involved in sporangia
formation, but also many novel interactors that have not
yet been associated with this important process.
In the predicted functional module we observed Pigpa1

[BROAD:PITG_03612] and Pigpb1 [BROAD:PITG_06376],
the alpha and beta subunit of the heterotrimeric G-protein.
Both encoding genes are up-regulated early during spore
formation [38]. Whereas Pigpb1 silenced mutants have mal-
formed sporangia and very few asexual spores [39], Pigpa1
silenced mutants show altered zoospore mobility, reduction
in zoospore release and appressorium formation [40]. One
of the predicted interaction partners of both Pigpa1 and
Pigpb1 is a Rac1 homolog [BROAD:PITG_06691], a small
GTPase of the Ras-like superfamily. Its role as a central
regulator is corroborated by several predicted interaction
partners: eukaryotic protein kinases such as mitogen-
activated kinases [BROAD:PITG_02212/BROAD:PITG_17
361/BROAD:PITG_12186] or the phosphatidylinositol-4-
phosphate-5-kinase [BROAD:PITG_15552]. Next to Rac1,
we observed other signal transduction components related
to the Ras superfamily of GTPases such as ARF-like
[BROAD:PITG_13269] and Rab [BROAD:PITG_19907/
BROAD:PITG_17136], highlighting the importance of these
signaling proteins and the associations of these novel candi-
dates for spore formation.
In the functional module we also observed the phos-

phatase Cdc14 [BROAD: PITG_18578]. In eukaryotes, it
plays a role in a variety of processes including cell cycle
regulation and termination of mitosis. In contrast to its
orthologs, Cdc14 in P. infestans is specifically expressed
during sporulation, and has a central role in spore for-
mation [41]. It also does not seem to be involved in the
regulation of mitosis during normal growth, even though
it complements the function of Cdc14 in yeast [41] and
therefore might still maintain this regulatory role during
sporulation [42]. Additionally, recent evidence points
to a possible role of P. infestans Cdc14 in the develop-
ment of the flagellum due to its co-localization with the
known basal body marker DIP13 (deflagellation-inducible
protein; [BROAD:PITG_13461]) [42]. Even though Cdc14
and DIP13 show considerable (conserved) co-expression
(Pearson correlation coefficient 0.76), this evidence is in-
sufficient to infer association within the framework of our
network. Interestingly, Cdc14 is predicted to interact with
a 4.3-fold (log2) up-regulated tyrosine kinase [BROAD:
PITG_17410] (Figure 5C). We observed an association be-
tween this kinase and DIP13 (not based on physical evi-
dence; Additional file 3), therefore indirectly linking DIP13
to Cdc14 as initially suggested by the co-localization stud-
ies by Ah-Fong and colleagues [42].
The up-regulated Cdc14 interaction partners within the

functional module include several other kinases such as
the 2.5-fold (log2) up-regulated Ser/Thr kinase [BROAD:
PITG_00124]. Interestingly, we predicted a novel associ-
ation between Cdc14 and NIFC1 [BROAD:PITG_11238], a
protein that contains a nuclear LIM interactor-interacting
factors domain and is reported to be involved in transcrip-
tional regulation [43]. NIFC1 is highly expressed during
zoospore-formation (cleavage) [15,43], whereas Cdc14 is
expressed early during sporangium formation and main-
tains a high expression level during zoospore-formation.
Together with the predicted association between Cdc14
and the sir2-like histone deacetylase [BROAD:PITG_1
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0164], these interactions imply a role of Cdc14 as a tran-
scription regulator to reprogram gene expression during
zoospore formation.
We highlighted how the predicted functional association

network serves as a valuable framework for the analysis of
gene expression data. The delineation of functional mod-
ules generates a concise set of candidates and their associa-
tions for further studies. The sporangia formation module
illustrates this nicely: firstly we identified proteins that have
been already experimentally linked to this transition, e.g.
Cdc14 and Pigpb1. Subsequently, we were able to place
these in their wider cellular context allowing the identifica-
tion of directly associated proteins. Since many of these
have only putative functions (~50%) or are without func-
tional annotation (~28%) the functional network approach
used in this study revealed interesting novel candidates that
may play central roles in sporangia formation.
Conclusions
Proteins rarely act alone. They interact either directly or
indirectly with other proteins to synergistically mediate
biological functions. So far, hardly anything is known about
this complex interplay between proteins in oomycetes. The
only large-scale experimental study in oomycetes investi-
gated the interactions between effector proteins produced
by the downy mildew Hyaloperonospora arabidopsidis with
known proteins from the A. thaliana (thale cress) immune
system [44]. Although this study emphasized the impor-
tance of functional association data, it solely addressed as-
sociations within the plant cells and not in the pathogen.
As an initial step on the way to fully expose the en-

semble of all functional associations between proteins,
we here present the first functional association network
in P. infestans. We combined available genomic, tran-
scriptomic and comparative genomic data to predict asso-
ciations (interactions) between protein pairs resulting in a
comprehensive network of gene associations that covers
37 percent of the predicted proteome. As expected, this
number is lower than previous studies in S. cerevisiae [11]
or A. thaliana [12], reflecting the relative paucity of data,
especially for large-scale descriptive data such as gene ex-
pression, in P. infestans compared to these well studied
model organisms. The majority (>50%) of the associations
are predicted using conservation (interolog mapping) and
therefore our network is biased for core cellular processes.
Consequently, we observed only very few genes with a
proposed role in pathogenicity (RXLR, Crinkler or hydro-
lases) and those we do observe are mainly associated by
integration of complementary comparative genomics and
expression data. Nevertheless, the availability of associa-
tions for a considerable fraction of the predicted proteome
is crucial to provide insights into functional genomics in
this group of organisms.
We balanced the coverage with an acceptable level of
confidence given all available large-scale data and our in
silico benchmark. The lack of experimentally confirmed
benchmark sets in P. infestans limits a completely inde-
pendent assessment of our prediction. In the future, more
complementary gene expression data will most likely be
available and consequently, together with experimentally
determined interactions in P. infestans and closely related
species, the genome-wide prediction of functional associa-
tions will be enhanced. This is of special importance for
pathogenicity related genes that are currently underrepre-
sented in our predicted network due to the limitations
(quantity, coverage and divergence) of the currently avail-
able gene expression data.
We showed that proteins that are predicted to be func-

tionally associated are enriched to reside in the same, or re-
lated, cellular sub-compartments, further validating the
biological coherence of our predictions and the merit of the
applied integrative approach. We exemplified the usability
of the predicted functional association network on two ex-
amples: We automatically determined protein complexes
and subsequently studied their constitution; an analysis that
is not possible by just applying functional annotation to
the genome. Moreover, we highlighted how the availability
of the functional association network together with gene
expression data allowed us to predict modules of function-
ally related genes during distinct phases of development.
We exemplified this by analyzing the sporulation module
that contained several experimentally characterized pro-
teins such as Cdc14 and Pigpb1. The predicted physical
interaction partners to these well-described proteins al-
lowed us to place a concise set of candidates into a promi-
nent role in sporangia formation.
Our study created a so far lacking addition to the grow-

ing genomic resources in the plant pathogenic model or-
ganism P. infestans. We demonstrated that these data are
needed to further improve the ability to retrieve biological
knowledge from large-scale data such as microarrays,
RNA-seq or (phospho-) proteomics. The availability of the
predicted functional association network allows a gradual
transition from a single gene perspective to a more com-
prehensive understanding of the complex biology of P.
infestans and other oomycetes.

Material and methods
Prediction of orthologs between 51 eukaryotic species
We defined the groups of orthologs for a set of 51
eukaryotic species that were selected based on the taxo-
nomic diversity. The orthologous groups were computed
following an OMA (Orthologous MAtrix)-like algorithm
[21,45] which was adjusted to the specific requirements
of the analysis. To also identify weaker similarity be-
tween sequences we modified the following steps: (i) the
minimal alignment score for potential orthologs was
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reduced to 130, (ii) the minimal alignment coverage was
reduced to 40% in the first clustering step (assembling
doubly-connected components, as opposed to cliques in
the original OMA algorithm) and (iii) alignments with
only 25% sequence coverage were added to the best
matching cluster. We empirically determined the neces-
sary cutoff values to maximize the inclusion of distant
homologs while at the same time avoiding the excessive
clustering of paralogs. This approach clustered in total
644,999 proteins into 58,533 orthologous groups. Each
group is intended to represent all extant descendants
from a single gene in the last common ancestor of eu-
karyotes; or, for a gene invented later, all descendants of
that gene.
Interolog transfer of protein-protein interactions
We retrieved in total sixteen protein-protein interaction
networks from six different sources (Additional file 1C).
Three of these data sets were subsequently subdivided,
either to account for different levels of confidence ex-
pressed by the number of distinct publications (1PM-
5PM) confirming an interaction (BioGRID) or to distin-
guish between core and attachments (IntAct). BioGRID
interactions were mainly based on protein-protein inter-
action, however if at least a single publication reported
the physical associations, also genetic interactions were
considered to enhance the support for the specific asso-
ciation (2PM-5PM).
Interactions from the source databases were first mapped

to the human Ensembl, yeast and Arabidopsis identifiers
and subsequently projected from the source species to
P. infestans using the identified orthologous groups. Since
orthologous groups can also contain inparalogs, both in
the source (H. sapiens, A. thaliana and S. cerevisiae) and in
P. infestans, we excluded all genes from the mapping with
an alignment score to the source gene of less than 75% of
the best matching inparalog, assuming that larger differ-
ences might be indicative of neo-functionalization of the
paralog. If the mapped pairs still included inparalogs in
P. infestans, we disentangled these specific cases by apply-
ing four different functional criteria to define which of the
P. infestans proteins most likely retained the interaction.
An interaction between two proteins is retained if both
proteins (i) are on the same Kyoto Encyclopedia of Genes
and Genomes (KEGG) map [46], (ii) have protein domains
that are known to mediate protein-protein interactions, (iii)
share a common Gene Ontology [47] (GO) term (biological
process or cellular component) at a depth of level ≤ 6
or ≤ 5, respectively, (iv) share a common GO term
(biological process or cellular component) at a depth of
level ≤ 4 and their expression profiles have a Pearson
correlation coefficient ≥ 0.4. If none of these criteria was
applicable we chose the protein with the highest similarity
to the source protein so that we kept at minimum a single
interaction between a set of orthologous groups.
The details of these four criteria to disentangle inparalogs

in P. infestans are as follows: (i) To define pairs that are on
the same KEGG map, we retrieved 94 predicted KEGG
maps for P. infestans from the KEGG database (01.05.2012;
excluding maps pif01100 and pif01110) that contained in
total 1,329 proteins from P. infestans (7.5% of the predicted
proteome). (ii) Protein domains that are predicted to medi-
ate protein-protein interactions are retrieved from 3did
(03.05.2012). Protein domains are predicted for the prote-
ome of P. infestans using hmmer3 [48] (gathering cutoff)
and a local Pfam-A database (v26) [49]. (iii) We predicted
the GO terms for all predicted proteins in P. infestans
using the BLAST2GO algorithm (default parameters) [50].
Since GO is an acyclic graph, we first searched within each
of the two domains (biological process or cellular compo-
nent) for common GO terms between the two potentially
interacting proteins. For all possible combinations of GO
terms between the two proteins, we first searched all pos-
sible paths for common GO terms that minimize the dis-
tance to the initial GO term. If more than a single GO
term is equally distant to the initial GO term, we chose the
common term that minimized the distance to the root of
the ontology. Subsequently, the depth of the common GO
term that is shared between the proteins, which can be
seen as a measure of functional similarity, is assigned to
the pair by calculating the shortest path to the root of the
ontology (Additional file 2). (iv) In addition to the ap-
proach outlined in (iii), we added gene expression data as a
complementary feature (details to the gene expression ana-
lysis can be found below). We calculated Pearson correl-
ation coefficients of the expression profiles between two
pairs and kept an interacting pair if both the depth cutoff
and the correlation cutoff were reached. Suitable cutoffs
for the GO depth and the Pearson correlation in (iii) and
(iv) were determined by maximizing the positive predicted
value and the accuracy while minimizing the false discov-
ery rate for 1,000 randomly picked positive pairs as defined
by KEGG (see above) and 1,000 random gene pairs or 500
pairs for (iii) and (iv), respectively.

Functional interactions by additional comparative
genomics data
To define the functional interaction network in P. infestans,
we added complementary data next to the predicted
protein-protein interactions. We used (i) co-expression, (ii)
conserved co-expression and (iii) co-occurrence to define
these additional functional associations between two genes.
(i) Publicly available gene expression data for P. infestans
was extracted from NCBI Gene expression omnibus [51]
with the accessions GSE9623 (Affymetrix), GSE13580
(Affymetrix), and GSE14480 (NimbleGen). The Affymetrix
data were normalized using MAS5 and the log2 of the
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expression intensities was computed using Bioconductor
(Affy package) [52]. Replicates were averaged and the
resulting gene expression vector was normalized calculating
the Z-score per unigene. Because the Affymetrix chip was
designed prior to the availability of the genome sequence of
P. infestans, we mapped the unigenes that have been used
in the chip design to the transcripts derived from the P.
infestans genome. We only considered the best hits of each
unigene to the transcript set (blastn [53], evalue cutoff 1e-
20, ≥ 95 percent identity). If several independent unigenes
have the same transcript as their best hit we assigned the
most C-terminal unigene to this transcript, since these
unigenes tend to have the highest expression values. Nor-
malized target intensities (log2) were extracted from the
NimbleGene data, replicates were averaged and Z-scores
were calculated. The three independent experiments (the
union of the genes in the three experiments is 8,749 genes)
were combined to compute pairwise Pearson correlation
coefficients between all genes. (ii) To predict pairs of pro-
teins that are encoded by conserved co-expressed gene
pairs in P. infestans, we used defined orthologs between P.
infestans and P. sojae as outlined above using a confined
species selection. Furthermore, we used three publicly
available gene expression data sets for P. sojae GSE15100
(Affymetrix), GSE22978 (Affymetrix) and GSE735084
(RNA-seq). The analysis of the two Affymetrix expression
sets was conducted as described above, however, before
normalization all non-P. sojae probes (the vast majority for
this array) were removed. The RNA-seq derived gene ex-
pression intensities were log2 transformed and otherwise
treated similarly to the microarray experiments (see above).
Pearson correlation coefficients of the normalized (Z-
score) and subsequently combined gene expression values
were calculated for all genes (union of the thee experi-
ments, i.e. 7,716 genes). A single unified score for each
conserved co-expressed gene pair was derived by rescaling
(between 0 and 1) the averaged Pearson correlation coeffi-
cients of the gene pair in P. infestans and the orthologous
gene pair in P. sojae. The average Pearson correlation was
calculated after applying a Fisher’s Z-transformation to the
individual correlation coefficients. (iii) We predicted puta-
tive pairs of functionally associated proteins by comparing
the phylogenetic profiles of all genes with at least one gene
loss during their evolutionary history. The similarity be-
tween profiles was measured by reconstructing the gene
gain and loss events within an orthologous group over all
51 eukaryotic species. We ignored duplications, since the
presence/absence of a gene within a genome was taken
into account. We used ‘partial correlations’, as described by
Cordero et al. in detail [54], to compare the gains and
losses assigned to the branches of the species tree. The
‘partial correlation’ is based on the Pearson correlation co-
efficient of the events, but corrected against genome-wide
trends such as whole-genome duplications or genome
streamlining. We based the threshold on the 99 percent
quantile of the partial correlation, estimated from 200,000
random pairs.

Bayesian integration of distinct data sources
We integrated the different data sources by applying a scor-
ing system that is derived from Bayesian statistics followed
by a Bayesian integration approach as outlined by Lee et al.
[11]. Briefly, we calculated for each data source the log like-
lihood score (LLS) (log odd ratio) that two proteins are
functionally linked, defined as LSS = loge(OPosterior / OPrior).
The LLS was calculated based on the prior odds (OPrior),
describing the ratio of probability of functional linkage and
its negation without evidence, and the posterior odds
(OPosterior), describing the ratio of probability of functional
linkage and its negation under the given evidence. The
prior odds can be estimated by the number of protein pairs
that share a defined functional annotation, e.g. being on the
same KEGG map, and the number of protein pairs that do
not share the functional annotation, e.g. residing on two dif-
ferent KEGG maps. Similarly, we derived the posterior odds
by estimating the number of protein pairs that share or do
not share functional annotation and are supported by the
given evidence. We mainly used KEGG to estimate the
prior odds and the posterior odds for each dataset.
Alternatively, we also used GO – 6th level (biological
process) to derive prior odds and compared these to the
KEGG based results. If the dataset is discrete (e.g. protein-
protein interactions) a single LLS is determined (Additional
file 1b). If the dataset has a continuous scoring schema, e.g.
Pearson correlation coefficient for the co-expression data,
we first determined a mapping function to re-score the ini-
tial score to the corresponding LLS similar to Lee et al.
[11]. Therefore we ranked the original initial scores (e.g.
Pearson correlation coefficients) and calculate the LLS for
protein pairs in equally sized bins (bin size 20,000
(conserved co-expression/co-occurrence) and 80,000 (pairs
co-expression)). Subsequently, we performed a non-linear
regression on the initial score and the calculated LLS to de-
termine the coefficients of the fitted function (Additional
file 7). This function is used to subsequently re-score the
initial score of a pair of proteins to our LLS schema, thereby
converting independent scoring schema into a single uni-
fied LLS schema. The combined LLS of all available evi-
dences for an association between a pair of genes/proteins
was calculated using a naïve Bayesian approach: LLSsum =
SUM(LSS)PPI (excl. Biogrid) + max(LSS)BioGrid Human + max
(LSS)BioGrid Yeast + LLSCE + LLSCC + LLSCO. If the
summed LLS of a pair of proteins was smaller than the
cutoff, the association was not reported. We also
implemented and evaluated a weighted Bayesian approach
as outlined by Lee et al. (2004) [11]. For our data, this
integration approach results in a marginal increase in con-
fidence combined with substantial reduction in coverage.
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Enrichment/depletion of subcellular localization of
protein pairs
We assessed the enrichment/depletion of the shared
subcellular localization between pairs of associated
proteins as outlined by Gandhi et al. [26]. Briefly, we cal-
culated the fold enrichment/depletion of the number of
observed edges between proteins of a certain subcellular
localization (GO cellular compartment; a single protein
can be annotated to be localized in more than one cellular
compartment), e.g. number of edges between proteins
where one partner is annotated as residing in the nucleus
and the other in the endoplasmic reticulum, compared to
the expected number of edges based on random networks
that maintained the protein annotation, the degree for each
protein (number of associations) and the total number of
edges (see Gandhi et al. for details [26]). The statistical sig-
nificance was assessed using a Poisson distribution and the
resulting p-value was corrected for multiple testing.
We independently predicted subcellular localization

using the WoLF PSORT algorithm that uses sequence
features and not homology to assign localization [27]. We
used both animal and fungi presets, assigning subcellular
localization to protein upon agreement, otherwise to
‘unknown’. Enrichment and depletion was otherwise
calculated as described above.
Functional modules
Functional modules, i.e. maximally co-regulated sub-
networks under a defined condition, were predicted
based on differentially expressed genes between two
conditions assessed by limma [55]. The functional mod-
ule was identified in a subset of the functional network,
excluding associations that were merely supported by
gene expression. Moreover, only the proteins whose
genes have corresponding expression values and were
part of the largest component within the sub-network
were considered. The functional module within each
sub-network was identified using BioNet [36], where the
p-values obtained from limma were scored using a fitted
beta-uniform mixture model and a false discovery rate
of 0.01. We were only interested in up-regulated mod-
ules during the defined condition, consequently we set
all scores of proteins to –abs(S) when the gene expres-
sion difference expressed as fold (log2) was smaller than
0, thereby only allowing inclusion of these nodes in the
functional module if they connect high scoring nodes.
Additional files

Additional file 1: Calculation of prior/posterior odds and used
protein-protein interaction data. The table contains (a) the calculated
prior odds of association based on the KEGG and GO benchmark, (b) the
calculated posterior odds and log-likelihood scores for the protein-protein
interaction data sets and (c) the used data sources to project protein-protein
interactions form different source organisms to P. infestans.

Additional file 2: Determination of positive and negative sets for
benchmark. Approximation of positive and negative associations using
(a) KEGG and GO (biological process). (b) The number of proteins that are
annotated by KEGG and GO. (c) The number of determined protein pairs
and the fraction of positives.

Additional file 3: Log-likelihood evidence for the association
between protein pairs. All log-likelihood evidence for the association
between protein pairs in the functional association network. The
contribution of each individual evidence to the combined LLS score is
indicated. Moreover, functional annotations (secretome, RXLR, Crinkler,
glycoside hydrolase, peptidase, Gene Ontology (biological process)) are
displayed for each protein in the predicted association network.

Additional file 4: Correlation of sub-cellular localization with
predicted protein associations. The figures displays the log2-fold
enrichment/depletion of protein pairs where both partners are predicted
to reside in the same/different sub-cellular localization compared to the
expected numbers. We discriminated between associations that have
predicted protein-protein interactions as a source of evidence (a) and
associations that were merely predicted by co-expression, conserved
co-expression and co-occurrence (b). Panel (c) shows the same
information, however the sub-cellular localization was predicted using
WoLF PSORT (Material and Methods). Enrichment/depletion is displayed
by the heatmap (lower half of the symmetrical matrix) (values saturate
at +− 1.5 or +−1 for WoLF PSORT); the corresponding raw numbers are
shown in upper half. Significant enrichment/depletion (after multiple
testing correction) is indicated by asterisk. The total number of proteins
predicted to reside in a particular sub-cellular localization is displayed in
brackets above the plot.

Additional file 5: Inferred protein complexes in P. infestans. This
table lists the automatically inferred protein complexes in P. infestans
using ClusterONE alongside GO annotation of the proteins.

Additional file 6: Functional modules during the asexual
development of P. infestans. This table lists the gene ids and
associations between members of functional modules for different
transitions during the asexual development of P. infestans. Upregulated
genes that are part of the functional module are indicated in red,
downregulated in green.

Additional file 7: Mapping of continuous scores to the unified
log-likelihood schema. The figure displays the mapping of intrinsic
continuous scores from (a) co-expression, (b) conserved co-expression
and (c) phylogenetic co-occurrence to the unified log-likelihood schema.
The derived mapping function (based on non-linear regression; Material
and Methods) for each mapping is shown.
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