Nilsson et al. BMC Genomics 2013, 14:496
http://www.biomedcentral.com/1471-2164/14/496

BMC
Genomics

Gene bionetworks that regulate ovarian primordial

follicle assembly

Eric Nilsson', Bin Zhang® and Michael K Skinner'”

Abstract

reproductive life.

the treatment of ovarian disease.

Genomics, System biology

Background: Primordial follicle assembly is the process by which ovarian primordial follicles are formed. During
follicle assembly oocyte nests break down and a layer of pre-granulosa cells surrounds individual oocytes to form
primordial follicles. The pool of primordial follicles formed is the source of oocytes for ovulation during a female's

Results: The current study utilized a systems approach to detect all genes that are differentially expressed in
response to seven different growth factor and hormone treatments known to influence (increase or decrease)
primordial follicle assembly in a neonatal rat ovary culture system. One novel factor, basic fibroblast growth factor
(FGF2), was experimentally determined to inhibit follicle assembly. The different growth factor and hormone
treatments were all found to affect similar physiological pathways, but each treatment affected a unique set of
differentially expressed genes (signature gene set). A gene bionetwork analysis identified gene modules of
coordinately expressed interconnected genes and it was found that different gene modules appear to accomplish
distinct tasks during primordial follicle assembly. Predictions of physiological pathways important to follicle
assembly were validated using ovary culture experiments in which ERK1/2 (MAPK1) activity was increased.
Conclusions: A number of the highly interconnected genes in these gene networks have previously been linked to
primary ovarian insufficiency (POI) and polycystic ovarian disease syndrome (PCOS). Observations have identified
novel factors and gene networks that regulate primordial follicle assembly. This systems biology approach has
helped elucidate the molecular control of primordial follicle assembly and provided potential therapeutic targets for
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Background

Complex and interconnected networks of gene expres-
sion, cellular signaling and other processes within cells
and organs are what control biological processes. This
raises the concern that the common reductionist experi-
mental approach to biomedical research may not be ad-
equate to fully understand the systems that control these
processes. Reductionist experiments will commonly im-
pose single treatments onto the biological entity under
study and measure a single response parameter com-
pared to controls. A relevant example from the authors’
own laboratory is the study of the effect that treatment
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of neonatal rat ovaries with anti-Millerian hormone
(AMH) has on the proportion of primordial follicles
formed [1]. Results from these types of experiments can
provide clear information about candidate regulatory fac-
tors, but typically do not elucidate the network of factors
or signals that are required for a normal biological process.
A systems biology experimental approach to studying nor-
mal development can be a powerful tool that is comple-
mentary to the more reductionist methods. The goal of
the current study is to use a systems biology approach to
identify gene expression networks involved in the forma-
tion of ovarian primordial follicles (primordial follicle as-
sembly), and to identify putative regulatory factors
involved in this developmental process.

Primordial follicle assembly is the process by which
ovarian primordial follicles are formed. A primordial
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follicle is composed of an oocyte arrested in prophase of
the first meiotic division and surrounded by a single
layer of pre-granulosa cells [2]. Follicle assembly in
mammals occurs either during gestation (e.g. cattle and
humans) or shortly after birth (e.g. rodents). The pool of
assembled primordial follicles is the source of oocytes
for follicle growth and ovulation over the course of a
female’s reproductive life [3]. When the primordial fol-
licle pool is depleted reproduction ceases and women
enter menopause [2-7]. Prior to follicle assembly, mitotic
proliferation of germ cells creates groups of cells linked
by intracellular bridges and surrounded by an epithelial/
mesenchymal cell layer and the structures are called oo-
cyte nests and when the surrounding stromal cells are
considered ovigerous cords [8-10]. The mitotically
arrested germ cells within the nests enter meiosis and
progress to the diplotene stage of prophase one of mei-
osis and arrest at that stage until such time as ovulation
occurs [5,6,11].

During the follicle assembly process oocyte nests break
down and a single layer of pre-granulosa cells surrounds
individual oocytes to form primordial follicles [3]. The
majority of oocytes in each nest undergo apoptosis dur-
ing follicle assembly [3,6,12,13]. Abnormalities in the fol-
licle assembly process can lead to a reduced primordial
follicle pool size and reproductive capacity. Abnormal
pool size may lead to some types of infertility such as
Primary Ovarian Insufficiency (POI) in which the follicle
pool is depleted early in life and women undergo early
menopause [14,15]. Previous research has shown that
several extracellular signaling molecules (e. g. growth
factors and hormones) can regulate follicle assembly
[3,5-7]. These studies have primarily used a reductionist
approach to test candidate factors one at a time for their
ability to affect the assembly process. Growth factors
and hormones that have been shown to regulate primor-
dial follicle assembly include anti-Miillerian hormone
(AMH) (decrease) [1], connective tissue growth factor
(CTGF) (increase) [16], estradiol (E2) (increase) [17-21],
activin A (increase) [21], progesterone (P4) (decrease)
[17,18,22,23], tumor necrosis factor alpha (TNFa) (de-
crease) [23-25], members of the notch/jagged signaling
pathway (increase) [26], members of the brain derived
neurotrophic factor (BDNF) / NTRK2 neurotrophin sig-
naling pathway [27,28] and kit ligand (KITL) and growth
differentiation factor-9 (GDF9) (increase) [29]. Evidence
suggests fibroblast growth factor-2 (FGF2) may also be a
regulator of follicle assembly [1,30], although this has
not been confirmed experimentally.

A systems biology experimental approach was employed
in the current study to expand upon the results of these
previous experiments that examined single gene effects on
the follicle assembly process. A similar systems biology ap-
proach has been used previously to identify coordinately
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and interconnected expressed gene modules and gene net-
works that regulate the primordial to primary follicle tran-
sition which is the subsequent stage of ovarian follicle
development [31]. This previous study used a systems ap-
proach to elucidate the suite of genes involved in initiating
the development of arrested primordial follicles to initiate
folliculogenesis. In the current investigation, whole rat
ovaries from zero-day old rats were cultured in vitro in a
manner that allows primordial follicle assembly to occur.
The ovaries were treated with one of several different
extracellular signaling factors that have been shown to
regulate follicle assembly. Messenger RNA was isolated
from the ovaries and used for microarray transcriptome
analysis to globally survey gene expression under these
different treatment conditions. The effects of each signal-
ing factor treatment were analyzed to determine similar-
ities and differences in gene expression between the
treatments. A gene bionetwork analysis subjected all the
differentially expressed genes across all treatments to a
weighted co-expression cluster analysis to identify groups
of genes (i.e. modules) whose expression was regulated in
a coordinated and interconnected manner [32-35]. In this
type of analysis biological systems are surveyed with
microarrays multiple times with and without perturba-
tions that cause the system to change. The coordinately
and interconnected expressed gene modules identified are
often associated with specific physiological processes and
have been used to identify potential therapeutic targets
[32,36,37]. In addition, the various groups and modules of
genes identified were subjected to an unbiased gene net-
work analysis that compared gene lists to databases of
known gene binding and/or functional relationships. The
gene expression analyses can then be interpreted from the
standpoint of physiological function and important regula-
tory gene networks. The objective of the investigation was
to use a systems biology experimental approach to identify
gene expression networks involved in regulating primor-
dial follicle assembly. Novel regulatory factors and poten-
tial therapeutic targets were identified that correlate with
normal follicle assembly and associated ovarian disease.

Results

Actions on primordial follicle assembly

In the selection of regulatory factors to be used in the
current study one novel factor was considered. Previous
research [1,30] indicated that FGF2 might be a regula-
tory growth factor for the follicle assembly process. In
order to determine if FGF2 would be included as a treat-
ment in the current study, organ culture experiments
were performed to empirically test the effects of FGF2
on follicle assembly. Ovaries from zero-day old rats
containing un-assembled oocytes in nests (Figure 1A)
were placed into an organ culture system and cultured
for two days with or without FGF2. After culture ovaries
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Figure 1 Validation of FGF2 as a growth factor that affects primordial follicle assembly. A) Representative image of a O-day old rat ovary,
showing oocytes in nests (circle nests). B) Representative image of an ovary after two days in culture, showing some oocytes assembled into
primordial follicles (arrows). C) Proportion of oocytes still retained in nests after two days of culture with or without FGF2 treatment. D) Total
number of oocytes per ovarian cross-section after culture. * = p<0.05 compared to untreated Control by Student's t-test.
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were fixed, sectioned, stained and evaluated morphologic-
ally (Figure 1B). The number of oocytes in oocyte nests and
assembled into primordial follicles was observed (see
Methods). Results indicate that treatment with 10ng/ml
FGEF2 resulted in a modest but statistically significant in-
crease in the proportion of oocytes retained in unassembled
nests (Figure 1C). A larger duration culture of four days
promotes a greater magnitude response, but is a combined
effect of oocyte survival and follicle assembly, such that the
shorter duration culture was used to focus on follicle as-
sembly. A 50 ng/ml dose did not have an effect in compari-
son with the 10 ng/ml dose which is assumed to be due to
negative feedback regulation during the 2 day culture
period required. There was no statistical difference in the
total number of oocytes per ovarian cross-section with
FGEF2 treatment (Figure 1D), although there was a trend for
oocyte numbers to rise. Observations suggest FGF2 acts to
inhibit the follicle assembly process. Based on these results
it was decided that FGF2 be included as a treatment in the
follicle assembly network experiments.

Growth factor and hormone regulation of the ovarian
transcriptome

To determine the gene networks and processes involved
in follicle assembly ovaries from zero-day old rats were

placed into an organ culture system and exposed to dif-
ferent regulatory factors. The ovaries were treated for 24
hours with one of each of the following regulatory extra-
cellular signaling factors: AMH, CTGF, E2, FGF2, activin
A, P4, TNFa, or were untreated as Controls. CTGF,
activin A, estradiol have been shown the increase assem-
bly, while AMH, progesterone and TNFa decrease as-
sembly. A 24 hour culture period was used to minimize
the impact of differences in follicle numbers (morpho-
logical impact), due to the required 2 days of culture to
observe detectable morphological differences. After cul-
ture the ovaries receiving the same treatment from one
culture well were pooled and RNA isolated. There were
three different experiments involving different ovaries
for each of the seven treatment compounds, and seven
different experiments with different ovaries for the con-
trols, for a total of 28 samples (see Methods). Gene ex-
pression in the RNA samples was evaluated using
Affymetrix©® Rat Gene 1.0 ST microarrays. Array data
pre-processing and evaluation determined that one array
(P4-treated) was abnormal and an outlier, so that array
was eliminated from further analysis (Additional file 1:
Figure S1).

The sets of differentially expressed genes, defined as
signature lists, in the treated ovary groups compared to
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controls were identified using criteria as described in
Methods. A total of 1081 genes were differentially
expressed in ovaries treated with these known regulators
of follicle assembly, suggesting these genes are involved in
the ovarian primordial follicle assembly process. Whether
the specific genes have an increase or decrease in expres-
sion is shown in Additional file 2: Table S1. Each treat-
ment resulted in 50 to 303 genes being differentially
expressed compared to controls. Interestingly, there were
relatively few (5-10%) differentially expressed genes in
common between the different treatments (Figure 2) as in-
dicated for specific genes in Additional file 2: Table S1.
Only one gene, the growth factor staniocalcin 1, was dif-
ferentially expressed in as many as four different treat-
ments, and no other genes were differentially expressed in
more than three treatments (Additional file 2: Table S1).
These genes in these signature lists were categorized into
gene functional categories. The metabolism and transport,
signaling, and receptors and binding proteins were pre-
dominant categories for all treatments (Figure 3 and
Additional file 1: Table S1).

Primordial follicle assembly pathway analysis

The complete list of 1081 differentially expressed genes
from the signature lists were correlated to curated cellu-
lar pathway and process gene lists from the KEGG data-
base (see Methods) to identify physiological processes
and pathways that may be regulated during follicle as-
sembly. Pathways that were statistically over-represented
within the differentially expressed gene lists included
focal adhesion, chemokine signaling, cytochrome P450
metabolism, glutathione metabolism, ECM-receptor
interaction and ribosomal components (Additional file 3:
Table S2). There was a high degree of overlap of affected
pathways between different treatments (Figure 2). The
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statistical analysis used both a hypergeometric probability
calculation and Fishers exact test calculation to identify
statistical likelihood of over-representation of differentially
expressed genes in pathways (Additional file 3: Table S2).
This analysis reduces the variable of data set size and po-
tential for artifact generation by identifying those pathways
with over-representation having differentially expressed
genes from several treatments. As can be seen, not all
pathways had statistical significance while others consist-
ently did (Additional file 4: Figure S2). From 44% to 87%
of affected pathways were common between treatments.
According to Fisher’s Exact test the probability that our
list of differentially expressed genes randomly overlaps
with the pathways is negligible (~1/2000 chance), particu-
larly since we had many genes falling in more than one
pathway. As can be seen in Additional file 3: Table S2 and
Figure 4, most affected pathways contained differentially
expressed genes from several different treatments. As
shown in the focal adhesion pathway, five of the factors af-
fected genes in the same pathway (Figure 4). Therefore,
each of these extracellular signaling factors that were used
as treatments affected similar pathways via different genes.
There were isolated exceptions to this trend. For example,
all of the genes present in the ribosome process pathway
were induced by activin A treatment, and four of five
genes in the GABAergic synapse pathway were induced by
FGF2 (Additional file 3: Table S2).

Primordial follicle assembly bionetwork analysis

Gene expression level data from the entire set of 1081 dif-
ferentially expressed genes was subjected to a cluster ana-
lysis to identify groups (ie. modules) of genes whose
expression is regulated in a coordinated and intercon-
nected manner (see Methods). The cluster analysis scores
each gene according to how well across different
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Figure 2 Number of genes and physiological pathways overlapped between treatment group (signature) lists. Total number of
differentially expressed genes for each treatment is shown in dark yellow column, while numbers of genes in common between each pair of
treatment groups are in light yellow columns. Total number of KEGG pathways affected by each treatment is shown in dark green row; numbers
of KEGG pathways in common for each pair of treatment groups are shown in light green rows. A KEGG pathway is considered affected if = 3
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Figure 3 Numbers of genes with mRNA expression levels significantly different between Control and treated ovaries after two days of
culture. Genes are placed into functional categories.

-

FOCAL ADHESION

Cell motility

> Stress fer/FA
formaton

Cell proliferation

Cytokine-
- -
[ ——# Cellsurvival
: —»{aE]

O/ -

Treatments:  E2 FGF2 INHBa P4 AMH
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ovaries and identifying by color the treatment group(s) from which the differentially expressed genes came. Adapted from KEGG
pathway ro04510, Kanehisa Laboratories, Kyoto University, Japan.
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treatments its changes in gene expression are correlated
with the changes in expression of every other gene. High
connectivity scores indicate that expression of a particular
gene changes in concert with that of many other genes. In
addition, the cluster expression analysis identifies gene
modules in which the member genes have similar changes
in expression in response to the various experimental
treatments. Such gene modules are often associated with
specific biological processes [32]. To identify gene mod-
ules, a topological overlap matrix [37] was generated that
reflected connectivity scores and sorted genes based on an
agglomerative hierarchical clustering algorithm (see
Methods). The topological overlap matrix map with gene
modules color-coded for the nine modules identified is
shown in Figure 5. The module to which each gene be-
longs can be found in Additional file 2: Table S1. The nine
modules contained collectively 851 genes with the
remaining 230 genes (colored as grey) not falling into any
module. The list of differentially expressed genes in each
module was correlated to signaling pathway and cellular
process databases to determine if specific physiological
processes were associated with particular modules (see
Methods). Those pathways and processes statistically
over-represented for each module are shown in Table 1.
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Figure 5 Gene cluster analysis and corresponding gene
modules. A topological overlap matrix of the gene co-expression
network consisting of the 1081 genes regulated by the various ovary
treatments is shown. Genes in the rows and columns are sorted by
an agglomerative hierarchical clustering algorithm (see Methods).
The different shades of color signify the strength of the connections
between the nodes (from white signifying not significantly
correlated to red signifying highly significantly correlated). The
hierarchical clustering and the topological overlap matrix indicate
highly interconnected subsets of genes (modules). Modules
identified are colored along both column and row and are boxed.
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Table 1 Gene category overlap with modules

Module  Gene category Gene Over
number representation
module fisher P-value®
overlap*

Turquoise Ribosome 10 7.52E-08

Turquoise cytosolic ribosome 7 2.40E-06

Turquoise Neural tube closure 4 0.00041

Turquoise Negative regulation of binding 5 0.00045

Turquoise Primary neural tube formation 4 0.00056

Turquoise Protein biosynthesis 15 0.00071

Turquoise  Glutathione metabolism 5 0.0011

Blue Response to oxidative stress 12 1.30E-06

Blue Regulation of anatomical structure 13 2.20E-06

morphogenesis

Blue Mesoderm development 18 1.90E-05

Blue Angiogenesis 6 2.20E-05

Blue Response to carbohydrate stimulus 6 3.60E-05

Blue Regulation of axonogenesis 6 5.00E-05

Blue Membrane raft 9 7.80E-05

Blue negative chemotaxis 3 1.00E-04

Blue Axon guidance 6 3.70E-03

Blue Glutathione metabolism 3 3.10E-02

Blue Focal adhesion 6 3.20E-02

Blue Fc gamma R-mediated phagocytosis 4 3.60E-02

Blue MAPK signaling pathway 6 8.50E-02

Brown Germ cell nucleus 3 7.00E-04

Brown Male meiosis 3 0.0015

Brown Neurite regeneration 3 0.0031

Brown Condensed nuclear chromosome 3 0.0041

Brown Other oncogenesis 3 0.0074

Brown Cell cycle 4 0.026

Brown Olfactory transduction 12 0.065

Yellow Hematopoietic cell lineage 3 0.0027

Yellow Positive regulation of apoptosis 5 0.009

Yellow Coenzyme and prosthetic group 3 0.015

metabolism

yellow Mitochondrial lumen 3 0018

Green proteinaceous extracellular matrix 3 0.0072

Black Extracellular matrix 4 0.00015

Black extracellular region 7 0.00042

Black Response to stress 8 0.002

Black Cell communication 6 0.0029

Black Negative regulation of apoptosis 4 0.0029

Pink Apical plasma membrane 3 0.0011

Pink Protein glycosylation 3 0.0018

Magenta  Calcium mediated signaling 2 0.0066

*Gene Number Module Overlap is the number of genes from that module that
are in common with those in the listed physiological process or pathway

(see Methods).

*Fisher's Exact test was used to calculate a p-value reflecting the probability
that the specified module and pathway/process would have listed number of
overlapped genes.
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The turquoise module predominately contains genes cod-
ing for ribosomal components and genes involved in pro-
tein and glutathione metabolism. The blue module
contains genes involved in processes related to tissue mor-
phogenesis. The red module has genes involved with germ
cells and meiosis. Some physiological processes, such as
apoptosis and extracellular matrix function, were over-
represented in several modules. However, in general the
genes of different modules were over-represented in differ-
ent cellular pathways and processes (Table 1).

Genes whose expression altered in response to treat-
ments were correlated with the genes assigned to each
module to determine if specific modules were heavily
influenced by particular regulatory factors (Figure 6). In
most cases, differentially expressed genes from each
treatment group could be found in each of the modules.
However, some modules had strikingly high numbers of
genes in common with specific treatments. For example,
among the 240 genes of the turquoise module and the
287 genes of the activin A treatment group, 184 genes
were in common. Interestingly, these included 10 of the
11 differentially expressed genes that populated the ribo-
somal component process. In addition, among the 209
genes of the blue module and the 303 genes of the FGF2
treatment group, 169 genes were in common. Similarly,
there were 58 genes in common between the brown
module and the P4 treatment group, and these included
8 of the 19 genes that populated the olfactory transduc-
tion pathway (Figure 6).

Primordial follicle assembly gene network analysis

In order to determine what functional relationships and
gene networks exist between the differentially expressed
genes identified, the complete list of 1081 genes was
subjected to an automated unbiased analysis of published
literature using Pathway Studio software (Elsevier Inc.
Rockville, MD USA), (see Methods). A total of 326 genes
were found to form a gene network that linked neighboring
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genes together with regulatory or binding relationships.
While this network was too large and complex for easy vis-
ual interpretation (Additional file 4: Figure S2), inferences
about the genes involved can be obtained. Genes with the
greatest number of putative regulatory connections to
neighbors in the network were considered to be important
in controlling the follicle assembly process, either as up-
stream regulators of the assembly network or as down-
stream targets of the network. The genes with the most
connections to neighbors in the network of 326 genes were
111b (interleukin 1 beta; 144 connections), Fnl (fibronectin
1; 100 connections) and IgfI (insulin-like growth factor 1;
99 connections) (Additional file 4: Figure S2).

Each module of coordinately regulated genes was
subjected to gene network analysis to determine which
genes within a module formed a gene network as shown in
Figure 7. A network for the turquoise module identified
Fnl, Statl (signal transducer and activator of transcription
1) and Veam (vascular cell adhesion molecule 1) as having
many connections, suggesting they may play a role in con-
trolling the physiological processes mediated by the tur-
quoise module. For the blue module (Additional file 5:
Figure S3A) Cavl (caveolin), Anxa2 (annexin A2), F3 (co-
agulation factor 3, thromboplastin) and Ccndl (cyclin D1)
have the most neighbor connections. F3 and Ccndl are seen
to be primarily the recipients of the regulatory relationships
suggesting their regulation may be an important output of
the blue module network. Although relatively small, the
black module also formed a network of connected genes
(Additional file 5: Figure S3B). The growth factors Igfl and
Il1b have the most neighbor connections. The remaining
modules did not form significant networks of genes related
to each other, even though many of these modules had more
genes than were present in the black module.

Each treatment signature list of differentially expressed
genes was analyzed to determine which genes formed a
gene network of regulatory relationships. For the genes
of the E2 treatment group, Igfl is seen to have many

bl
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#genes 240 209 176 65 45 43 27 26 20
AMH 158 14 7 28 19 25 0 0 7 3
CTGF 50 0 4 8 1 1 5 2 3 4
E2 120 1 6 3 20 8 14 15 9 4
FGF2 303 4 169 44 28 9 1 0 2 4
INHBa 287 184 24 26 5 2 15 0 14 1
P4 167 16 5 58 11 0 8 6 7 4
TNFa 116 36 10 19 6 4 2 4 0 6
Figure 6 Numbers of genes found to be in common when comparing genes differentially expressed in various ovary culture treatment
groups (left column) with differentially expressed genes assigned to co-expression modules (top row). Numbers in bold type indicate a
high number of genes in common with a treatment compared to others for that module (column). Underlined numbers indicate a high number
of genes in common with a module compared to others for that treatment (row).
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Figure 7 Gene network of known relationships among those differentially expressed genes assigned to the turquoise module. Node
shapes code: oval - protein; diamond - ligand; irregular polygon - phosphatase; circle/oval on tripod platform — transcription factor; ice cream
cone - receptor. Grey arrows represent regulation, lilac — expression, green — promoter binding, olive — protein modification, purple - binding.
Plasma membrane, cell nucleus, mitochndria, golgi apparatus and endoplasmic reticulum are indicated for gene expression localization.

J

neighbor connections (Additional file 6: Figure S4A). For
the FGF2 treatment network Vcam, Vim (vimentin) and
Tgfb2 (transforming growth factor beta 2) have many
neighbor connections, while CcndI and F3 appear to be
outputs of the network (Additional file 6: Figure S4B).
For the activin A treatment group, the transcription fac-
tor Statl and the growth factor Cxcl10 have many con-
nections, while Fnl appears to be an output (Additional
file 6: Figure S4C).

In order to determine those genes whose actions are
likely to be the most important in regulating the control
of primordial follicle assembly, a combined approach was
taken that determined the gene network associated with
the most highly interconnected genes. For each module,
the top 10% of genes with the highest connectivity index
(kin.) (i.e., those that are the most tightly co-regulated

within their module) were selected. These genes were then
screened for whether they were present in the large net-
work of 326 genes with known regulatory connections de-
rived from the entire list of 1081 differentially expressed
genes (Additional file 4: Figure S2). Those genes from the
top 10% of each module (tightly co-expressed) that also
had the most neighbor connections (regulatory relation-
ships) are presented in Table 2. These included the tran-
scriptions factors Ppargcla and Gata4, the growth factor
Tgfb2, the transferrin receptor (Zfrc), Mdm2 and Prkcb
(protein kinase C beta). These genes formed a regulatory
network among themselves, and were associated with spe-
cific pathways and cellular processes. As can be seen in
Figure 8, these genes have been previously shown to influ-
ence the processes of apoptosis, vascularization, contrac-
tion, cell migration, proliferation and differentiation.
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Table 2 Gene connectivity ranking information

Name / Gene description Local
symbol gene connectivity *
TNFRSF1A Tumor necrosis factor receptor superfamily, 37
member 1A
TGFB2 Transforming growth factor, beta 2 36
MDM2 Mdm2 p53 binding protein homolog (mouse) 27
GATA4 GATA binding protein 4 27
PPARGCTA Peroxisome proliferator-activated receptor 26
gamma, coactivator 1 alpha
PRKCB Protein kinase C, beta 25
TFRC Transferrin receptor (p90, CD71) 23
ANXAS5 Annexin A5 20
ANXA2 Annexin A2 20
SDC4 Syndecan 4 16
LRP2 Low density lipoprotein-related protein 2 16
GRLF1 Glucocorticoid receptor DNA binding factor 1 15
GSTP1 Glutathione S-transferase pi 1 14
HSD11B1 Hydroxysteroid (11-beta) dehydrogenase 1 13
UcpP2 Uncoupling protein 2 (mitochondrial, 12
proton carrier)
THRA Thyroid hormone receptor, alpha 10
(erythroblastic leukemia viral (v-erb-a)
oncogene homolog, avian)
ANPEP Alanyl (membrane) aminopeptidase 10
ILTR1 Interleukin 1 receptor, type | 9
EPHA2 EPH receptor A2 9
CTSK Cathepsin K 8
SMPD1 Sphingomyelin phosphodiesterase 1, acid 8

lysosomal

*Local connectivity is the number of regulatory connections which that gene
has with other genes, identified in published literature, within the gene
network of 326 genes derived from the complete set of 1081 differentially
expressed genes (see Additional file 4: Figure S2).

Other groups of differentially expressed genes exam-
ined were the growth factor, hormone and receptor fam-
ilies. These genes provide novel regulatory factors to be
investigated in future studies in their role in controlling
ovarian primordial follicle assembly. A subset of the en-
tire set of 1081 differentially expressed genes, comprised
of growth factors, hormones and their receptors was
evaluated for their ability to form a sub-network of regu-
latory connections. A sub-network of 52 genes was iden-
tified showing the regulatory connections between these
growth factors and receptors (Figure 9).

Primordial follicle assembly signaling pathway
modulation and validation

As described above, specific physiological processes and
pathways are over-represented in the lists of differen-
tially expressed genes identified in these studies (Table 1
and Additional file 3: Table S2), and so are predicted to
be important in regulating follicle assembly. The MAPK
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signaling, focal adhesion and chemokine signaling path-
ways are over-represented in particular gene modules or
in the global set of all 1081 differentially expressed genes.
ERK1/2 (MAPK]1) is a kinase that plays a prominent role
in these pathways (Figure 4). ERK1/2 activity is inhibited
by Dusp6 (dual specificity phosphatase 6; MKP-3) [38]. In
order to test if these physiological pathways are in fact im-
portant to the assembly process, ovaries from 0-day old
rats were treated in vitro for 2 days with the inhibitor of
DUSP6: BCI ((E)-2-benzylidene-3-(cyclohexylamino)-2,3-
dihydro-1H-inden-1-one [39,40]. Dusp6 inhibition resul-
ted in a significant increase in the proportion of assembled
follicles at the end of ovary culture with no effect on oo-
cyte numbers (Figure 10). Therefore, alteration of ERK1/2
signaling in physiological pathways predicted to be im-
portant for follicle assembly resulted in a change in the
rate of assembly of primordial follicles.

Primordial follicle assembly regulated gene correlation
with ovarian disease

The final analysis identified those differentially expressed
genes associated with ovarian disease. The genes within
the differentially expressed gene lists (Additional file 2:
Table S1) that have previously been shown to be linked
in the literature with primary ovarian insufficiency (POI)
and polycystic ovarian syndrome (PCOS) were identified
(Figure 11). Seventeen genes associated with POI and
PCOS were identified and two genes, Igfl and Tgfbr3
were common to both POI and PCOS.

Discussion

A systems biology approach was used to elucidate how
regulatory factors alter gene expression to influence ovar-
ian primordial follicle assembly. Neonatal rat ovaries were
treated with different growth factors or hormones and
changes in gene expression at the transcriptome level were
assayed and analyzed. The strength of a systems biology
approach is that it is unbiased and examines the genome
wide complexity of gene expression to elucidate regulatory
networks that control developmental processes. These
genes are identified regardless of whether they have
known functions consistent with the follicle assembly
process or whether they have known functions at all. The
unbiased systems analysis allows the complexity of the
biology to be considered to elucidate the developmental
process. Future investigations can now target identified
genes to further characterize their specific actions in the
networks regulating follicle assembly.

Primordial follicle assembly growth factors and hormones
investigated

Ovaries were treated with several different growth fac-
tors or hormones that affect the assembly process to get
a more complete view of the gene expression changes
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accompanying primordial follicle assembly. A number of
growth factors and hormones previously shown to
influence primordial follicle assembly were selected in-
cluding: AMH [1], CTGF [16], estradiol [17-21], proges-
terone [18,22,23], activin A [21], and TNFa [23,24]. The
combined actions of factors on assembly has not been
thoroughly investigated, but studies on follicle transition
have shown combined stimulatory or inhibitory factors
does not provide an additional response different from
the individual factors [3]. All of the growth factors and
corresponding receptors, as well as hormone receptors,
associated with the factors used have been shown to be
expressed in the ovary during primordial follicle assem-
bly. For example, AMH is expressed in the stromal/
interstitial cells of the 0 day ovary followed by expres-
sion later in development by the secondary and develop-
ing follicles [1]. Interestingly, some of the factors
promote follicle assembly (CTGE, activin A, estradiol),
while others (AMH, progesterone, TNFa, FGF2) inhibit
follicle assembly. Therefore, both positive and negative
regulation of follicle assembly is considered when char-
acterizing the regulatory gene networks. Comparison of
the stimulatory versus inhibitory factors did not show
any major differences in regards to regulated genes or
gene networks.

In addition to these known regulatory agents, a novel
factor was examined and included in the analysis. Previ-
ous research suggested FGF2 may be a regulator of fol-
licle assembly. A receptor for FGF2, FGFR2B, has
previously been shown to be differentially expressed in
0-day old rat ovaries with oocyte nests compared to 4-
day old ovaries that had completed assembly [30]. Treat-
ment of neonatal rat ovaries with the known inhibitor of
follicle assembly AMH resulted in differential expression
of Nudt6 (nudix 6) [41], which acts as an antisense
inhibitor of Fgf2 expression [42]. In order to determine
if FGF2 would be included as a treatment in the
current investigations, organ culture experiments were
performed to empirically test the effects of FGF2 on fol-
licle assembly. It was found that FGF2 acts as an inhibi-
tor of follicle assembly (Figure 1). The magnitude of the
inhibitory actions can be increased with an extended
culture duration (four days), but then alterations in fol-
licle number and ovarian morphology become con-
founders influencing data interpretation. A short 2-day
culture was used to reduce these confounder effects.
The optimal dose for the analysis of in vitro follicle as-
sembly analysis was lower than that for the short-term
24-hour culture gene expression analysis, in part due to
the negative feedback of the extended culture duration.
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The FGF2 was found to alter the expression of 303
genes with approximately 10% of these genes in com-
mon with the differentially expressed gene sets of the
other features. Although the differentially expressed
genes influenced by FGF were unique, 50-70 different
pathways were affected and in common with other fac-
tors investigated, (Figure 2). Therefore FGF2 was in-
cluded as one of the seven treatments used to perturb
the neonatal rat ovary experimental system.

Primordial follicle assembly differentially expressed genes
One thousand and eight-one genes were found to be dif-
ferentially expressed compared to controls when results
were combined across the different treatment groups.
These genes were predominantly from the functional
categories of metabolism and transport, signaling pro-
teins and receptors. The genes differentially expressed in
response to each growth factor or hormone treatment
were compared across the different treatments. Interest-
ingly, only a small proportion of differentially expressed
genes (<10%) were found to be common between any
two treatments (Figure 2). This is somewhat surprising
in light of the fact that all the treatments affect the same
process of follicle assembly. However, this same finding

was observed in a systems biology investigation of genes
regulating ovarian primordial to primary follicle transi-
tion [31]. In that study different treatments, all known
to regulate the transition of arrested primordial follicles
to developing primary follicles, were found to have few
differentially expressed genes in common. Although nei-
ther this previous study nor the current study found a
high degree of overlap between the specific treatment
signature gene lists, there was a high degree of overlap
among the specific signaling pathways and cellular pro-
cesses impacted by the differentially expressed genes of
each treatment (Figures 2 and 3). This indicates that all
the treatments affect similar cellular pathways and pro-
cesses as follicle assembly occurs (44% to 87%), but that
each treatment affects different genes in those pathways.
As shown in Additional file 2: Table S2, some pathways
had a highly statistically significant over-representation
of differentially expressed genes while others did not,
suggesting the analysis was not unduly influenced by
data set size or simply an artifact of the analysis. An ex-
ample of this is shown in Figure 4 where five of the dif-
ferent factors affected different genes in the focal
adhesion pathway. Similar observations have shown this
phenomena in other biological systems [43]. Multiple
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Figure 10 Results of experiments in which 0-day old ovaries
were cultured two days with or without BCI (an inhibitor of
DUSP6 that results in increased ERK12/MAPK1 activity). A)
Proportion of oocytes still assembled into follicles. B) Total number
of oocytes per ovarian cross-section after culture. * = p<0.05
compared to untreated vehicle-treated Control by Student’s t-test.

Mean + SEM from three different experiments is presented.

input points into these cellular pathways and processes
may allow for more precise regulation and for a more
robust regulatory network in the face of disruptions.

A cluster analysis of coordinated gene expression
grouped the differentially expressed genes into gene
modules containing genes whose expression responded
in concert to the different growth factor and hormone
treatments. This approach of generating a weighted gene
network and then clustering genes making use of a topo-
logical overlap matrix has been used extensively for
uncovering biologically meaningful gene modules
[31,32,44-46]. The gene modules identified in the
current study were, on the whole, each enriched with
genes associated with differing cellular pathways and
processes (Table 1). For example, the turquoise module
contains genes coding for ribosomal components, while
the blue module contains genes involved in processes re-
lated to tissue morphogenesis, and the red module has
genes associated with meiosis. This suggests that these
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modules of genes are each responsible for controlling
distinct functions necessary for primordial follicle as-
sembly. In contrast, most modules were enriched for
genes involved in apoptosis and extracellular matrix
function, perhaps underscoring the importance of these
processes to follicle assembly. Oocyte apoptosis is
known to have a vital role in the assembly of primordial
follicles [3,6,12,13]. Identification and examination of the
gene modules helps elucidate the molecular control of
follicle assembly.

When genes whose expression changed in response to
treatments were cross-matched with the genes assigned to
each module, it was found that in most cases differentially
expressed genes from each treatment group could be
found in all the gene modules (Figure 6). This is consistent
with the idea that all the treatments affect the same cellu-
lar processes, but that each treatment affects different
genes within those pathways. However, it should be noted
that in some cases a particular treatment shared a dispro-
portionate number of genes within a specific module. For
example, the activin A treatment resulted in differential
expression of 287 genes, of which 184 were in common
with the 240 genes assigned to the turquoise module, and
these included almost all the genes that coded for riboso-
mal components. Therefore, in some cases signaling from
a particular growth factor will induce a suite of genes that
may be targeted toward specific physiological tasks.

Primordial follicle assembly gene networks
In order to identify functional relations among differen-
tially expressed genes, an analysis of published literature
was used to detect connections among listed genes to
form gene networks of putative regulatory relationships.
Examination of these networks can yield inferences
about how genes interact to regulate primordial follicle
assembly, and can identify potentially important control
points within these regulatory networks. When the en-
tire list of genes found to be differentially expressed dur-
ing follicle assembly was analyzed in this way it was
found that the genes 1/1b (interleukin 1 beta), Fnl (fibro-
nectin 1) and Igfl (insulin-like growth factor 1) had the
most regulatory connections to neighbors. These genes
are considered important in controlling the follicle as-
sembly process as either regulators of the assembly net-
work or as downstream effectors of the network.
However, it should be kept in mind that genes that have
been extensively studied are more likely to have relation-
ships with other genes in the published literature, and
that un-studied genes may in fact be important. None-
theless, gene networks of regulatory connections provide
a good starting point toward understanding the control
of processes such as follicle assembly.

Since the genes of each module may act in concert to
accomplish distinct cellular processes during follicle
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assembly, each module was analyzed separately for gene
networks of putative regulatory relationships. The genes
of the turquoise, blue and black modules each formed
distinct gene networks (Figure 7 and Additional file 5:
Figure S3), implicating the genes Fnl, Statl (signal
transducer and activator of transcription 1), Vecam (vas-
cular cell adhesion molecule 1), Cavl (caveolin), Anxa2
(annexin A2), F3 (coagulation factor 3), Ccndl (cyclin
D1), Igfl and Il1b as being important within their re-
spective modules. Interestingly, genes of the brown, yel-
low, green, red, pink and magenta modules did not
contain gene networks of known regulatory relation-
ships, even though some of these modules contained
many more genes than the black module, which did have
such a network. This suggests that the genes within each
of these modules may have as yet un-characterized regu-
latory relationships with each other. Furthermore, the
genes of the red module were not found to be over-
represented in association with any particular known
cellular pathways or processes, and many of the red
module genes are poorly characterized expressed se-
quence tags (ESTs). However, genes of the red module

had relatively high connectivity scores (k. in.), indicating
that this group of genes was quite tightly co-regulated
(Figure 5). Observations suggest that groups of poorly
characterized genes are likely playing important roles in
primordial follicle assembly. Further research is needed
to uncover the functions of these genes and their roles
in developmental processes such as follicle assembly.

The most highly interconnected (k. in.) genes from each
module were compared to databases of genes present in
specific cellular pathways and processes. This group of
highly interconnected genes was found to be over-
represented in the processes of apoptosis, cell migration,
cell differentiation and cell proliferation (Figure 8). This is
consistent with the activities that occur during follicle as-
sembly and supports the idea that these highly
interconnected genes contribute to follicle assembly. Genes
were also over-represented in the process of vascularization
which is not known to be a part of follicle assembly. Inves-
tigations into the role vascularization plays in follicle as-
sembly are suggested in future studies.

Analysis of a specific gene sub-network of differentially
expressed genes in the growth factor, hormone and



Nilsson et al. BMC Genomics 2013, 14:496
http://www.biomedcentral.com/1471-2164/14/496

receptor functional gene categories identified a large
number of such regulatory signaling factors that
appear to regulate ovarian primordial follicle assembly
(Figure 9). Many of these growth factors and receptors
in this sub-network have multiple connections with each
other, indicating that these genes are known to regulate
other signaling factors within the sub-network. The
growth factors IL1B, IGF1 and CXCL10, and the recep-
tor CXCR4 have the most connections to other genes,
so these are candidates in the regulation of follicle as-
sembly to investigate in future studies. The CXCR4 and
IGF1 genes have been shown to be involved in primor-
dial follicle transition [47,48], but not previously been
associated with assembly.

Primordial follicle assembly modulation and pathway
validation

Analyses of the differentially expressed genes of the
current study implicate specific physiological pathways
and gene networks as being important to the follicle as-
sembly process. In order to test the validity of some of
these predictions, organ culture experiments were
preformed in which neonatal rat ovaries were treated
with BCL BCI has the effect of increasing ERK1/2
(MAPK1) activity via inhibition of DUSP6 [38,39].
ERK1/2 plays a prominent role in the MAPK signaling,
focal adhesion and chemokine signaling pathways, all of
which were implicated as important to follicle assembly
(Figure 4, Additional file 3: Table S2, Table 1). BCI-
treated ovaries with increased ERK1/2 activity were
shown to have an increase in assembled follicles
(Figure 10), supporting the predicted role of these
physiological pathways in primordial follicle assembly.
This experiment helps validate the systems biology ap-
proach used in the current study.

Primordial follicle assembly and ovarian disease

Since follicle assembly provides each female mammal
with the pool of primordial follicles from which their
ovulated eggs are derived, abnormal follicle assembly
could result in defective primordial follicles that may
lead to a reduced follicle pool size. This in turn can lead
to infertility and the cessation of reproduction early in
life, as is seen in women with primary ovarian insuffi-
ciency (POI). Women with POI deplete their pool of
primordial follicles prior to age 40 and undergo early
menopause [14,15]. Forty-nine genes that have been im-
plicated in POI in humans have been compiled and are
listed with the Ovarian Kaleidoscope Database (http://
ovary.stanford.edu/). Seven of these genes were found to
be in common with the 1081 differentially expressed
genes found in the current study to be associated with
follicle assembly (significant at p<0.05 by Fisher’s Exact
test). These genes were Tgfbr3 (transforming growth
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factor beta receptor type 3), Amhr2 (anti-Millerian hor-
mone receptor type 2), Pgrmcl (progesterone receptor
membrane component 1), Nuprl (nuclear protein tran-
scriptional regulator 1), Poflb (premature ovarian failure
1b), IGF1 and AFF2 (AF4/FMR2 family, member 20).
AMH, progesterone and Pgrmcl are known to play roles
in follicle assembly [1,17,18,22,23]. It is notable that
Pof1b, the gene named for its association with premature
ovarian failure (i.e. POI), is linked to follicle assembly in
the current study. These observations suggest that some
cases of POI may have abnormal follicle assembly as an
underlying cause. In addition to specific gene links with
POI, a number of links were also made to polycystic ovar-
ian syndrome (PCOS) (Figure 11). PCOS is the most pre-
dominant female reproductive disease affecting 7-18% of
the female population [49]. A number of the differentially
expressed genes identified in the current study correlated
to previously known genes linked to PCOS (Figure 11I).
Observations suggest abnormal ovarian primordial follicle
assembly may be a component of POI and PCOS later in
life as some of the genes involved are in common. Future
analysis of these genes and the gene networks identified is
anticipated to help elucidate the molecular etiology of POI
and PCOS, as well as provide novel therapeutic targets.

Conclusions

In summary, a systems biology experimental approach
can provide an unbiased global view of the relationships
important to a particular developmental process. For the
primordial follicle assembly process the systems ap-
proach evaluated genes that were differentially expressed
in response to growth factor and hormone treatments. It
was found that different treatments all affected similar
cellular pathways and processes, but that each treatment
affected expression of different genes within those path-
ways. Cluster analyses identified modules of coordinately
regulated genes and the different modules appear to ac-
complish distinct cellular functions during follicle as-
sembly. The regulatory gene networks identified provide
predictions about important regulatory genes, signaling
pathways and cellular processes involved in ovarian
primordial follicle assembly. An organ culture experi-
ment in which ovaries were treated to increase ERK1/2
activity confirmed some of the predicted physiological
pathways were in fact important in follicle assembly
regulation. The regulatory genes and gene networks
identified as controlling primordial follicle assembly,
when disrupted or altered, were suggested to be linked
to the etiology of ovarian diseases such as primary ovar-
ian insufficiency POI and polycystic ovarian syndrome
PCOS. Future investigations can now utilize the observa-
tions from this systems approach to further elucidate the
molecular control of ovarian primordial follicle develop-
ment and associated diseases.
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Methods

Ovarian organ culture

Zero-day old female Sprague—Dawley rats (Harlan
Laboratories, Inc., USA) were euthanized within six
hours after birth according to Washington State
University IACUC approved (#02568) protocols and the
ovaries removed and cultured whole as described previ-
ously [50]. Zero-day old rat ovaries contain primarily oo-
cytes in nests, prior to being assembled into follicles. For
ovary culture experiments in which ovarian RNA was
collected, 2—3 ovaries per well were cultured for one day
in the absence (controls) or presence (treated) of either
AMH (human Anti-Miillerian hormone)(50 ng/ml, R&D
Systems Inc., USA), FGF2 (rat Fibroblast growth
factor 2)(50 ng/ml, R&D Systems Inc., USA), CTGF
(human Connective Tissue Growth Factor)(500 ng/ml,
PeproTech Inc., NJ USA), TNFa (rat Tumor Necrosis
Factor alpha)(1ng/ml, R&D Systems Inc., USA), activin
A (human/mouse/rat activin beta-A homodimer)(100
ng/ml, R&D Systems Inc., USA), E2 (Estradiol)(1x10°M,
Sigma-Aldrich, USA), or P4 (Progesterone)( 1x10°M,
Sigma-Aldrich, USA). After only one day of culture there
are few morphological differences between control and
treated ovaries, so measurements of whole-ovary gene
expression reflect differences in RNA transcription, ra-
ther than differing proportions of cell types due to differ-
ing cell proliferation between treatments. After culture
the 2—3 ovaries receiving the same treatment from one
culture well were pooled and homogenized in one ml
Trizol™ reagent (Sigma-Aldrich, USA), then stored
at -70°C. There were three different biological experi-
ments (biological replicates) for each of the seven treat-
ment compounds, and seven replicates of the controls,
for a total of 28 RNA samples.

In order to determine the effect of FGF2 on primordial
follicle assembly, ovaries were cultured as above for two
days in the absence or presence of FGF2 (50 ng/ml).
Similarly, in order to determine the effect of increased
ERK1/2 signaling on follicle assembly, ovaries were cul-
tured in the presence or absence of BCI (1uM; Sigma-
Aldrich #B4313). After 2 days culture ovaries were fixed
with Bouin’s solution, paraffin embedded, sectioned onto
microscope slides and stained with hematoxylin and
eosin as described previously [50].

Morphometric analysis

The number of oocytes at each developmental stage was
counted and averaged in two serial sections from the lar-
gest cross-section through the center of the ovary. Oo-
cytes in ovarian cross sections were classified as
unassembled, or as assembled into primordial (stage 0),
or developing follicles (stages 1-4: early primary, pri-
mary, transitional and preantral) as previously described
[1,51]. Oocytes in nests are contiguous with other
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oocytes, without intervening stromal cells. An oocyte was
still considered to be part of a nest if, for any region of its
perimeter, one quarter of its circumference or more was
contiguous with other oocytes. Primordial follicles consist
of an oocyte arrested in prophase I of meiosis that is en-
capsulated by squamous (i.e. flattened) pregranulosa cells.
Early transition primary follicles have initiated develop-
ment (i.e., undergone primordial to primary follicle transi-
tion) and contain at least two cuboidal granulosa cells.
Primary and preantral follicles exhibit one or more
complete layers of cuboidal granulosa cells [30,52].
Hematoxylin/eosin stained ovarian sections were analyzed
at 400x magnification using light microscopy. Degenerat-
ing red eosin-stained oocytes were not counted. Oocytes
in which the cell nucleus was not clearly visible in the
plane of section were not counted.

RNA preparation

RNA was isolated from whole rat ovaries after
homogenization in one ml Trizol™ reagent (Sigma-
Aldrich, USA), according to manufacturer’s instructions.
Two or three ovaries from the same culture well (from
different rat pups) and receiving the same treatment
were pooled and homogenized together. Homogenized
samples were stored at —70°C until the time of RNA iso-
lation. After isolation from Trizol, RNA was further
purified using RNeasy MinElute Cleanup Kits (Qiagen,
USA) and stored in aqueous solution at -70°C.

Microarray analysis

The microarray analysis was performed by the Genomics
Core Laboratory, Center for Reproductive Biology,
Washington State University, Pullman, WA using stand-
ard Affymetrix reagents and protocol. Briefly, mRNA
was transcribed into cDNA with random primers, cRNA
was transcribed, and single-stranded sense DNA was
synthesized which was fragmented and labeled with bio-
tin. Biotin-labeled ssDNA was then hybridized to the
Rat Gene 1.0 ST microarrays containing 27,342 tran-
scripts (Affymetrix, Santa Clara, CA, USA). Hybridized
chips were scanned on Affymetrix Scanner 3000. CEL
files containing raw data were then pre-processed and
analyzed with Partek Genomic Suite 6.3 software (Partek
Incorporated, St. Louis, MO) using an RMA GC-content
adjusted algorithm. Comparison of all array histogram
graphs demonstrated that the data for 27 of 28 chips
were similar and appropriate for further analysis. One
chip, from a P4-treated sample, was an outlier and so
was discarded (Additional file 1: Figure S1). In addition,
a batch effect associated with RNA processing date was
noted and incorporated into the analysis. The data from
the remaining 27 chips were again pre-processed and
analyzed as a group, with the RNA processing batch
used as a blocking factor.
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The microarray quantitative data involves over 10 differ-
ent oligonucleotides arrayed for each gene and the
hybridization must be consistent to allow for a statistically
significant quantitative measure of gene expression and
regulation. In contrast, a quantitative PCR procedure only
uses two oligonucleotide primers, and primer bias is a
major factor in this type of analysis. Therefore, we did not
attempt to use PCR based approaches as we feel the
microarray analysis is more accurate and reproducible
without the primer bias of PCR based approaches.

All microarray CEL files (MIAME compliant raw data)
from this study have been deposited with the NCBI gene
expression and hybridization array data repository
(GEO, http://www.ncbi.nlm.nih.gov/geo) (GEO Acces-
sion number: Pending), all arrays combined with one ac-
cession number, and can be also accessed through www.
skinner.wsu.edu. For gene annotation, Affymetrix anno-
tation file RaGene-1_0-st-v1.na32.rn4.transcript.csv was
used unless otherwise specified.

Gene bionetwork analysis

The cluster coordinated expression analysis was re-
stricted to genes differentially expressed between the
control and the treatment groups based on previously
established criteria: (1) fold change of group means >1.2
or <0.83; (2) T test p-value <0.05 compared to control;
and (3) absolute difference of group means >10. The less
stringent cutoff for fold change avoids loss of important
genes at such an early stage of analysis since these can-
didate genes will go through subsequent systems-level
coexpression network and pathway analyses that can fur-
ther filter noisy signal, as we have shown in the previous
study [53]. The union of the differentially expressed
genes from the different treatments resulted in 1081
genes (i.e. Affymetrix probesets) being identified and
used for constructing a weighted gene co-expression
network [32,44]. Unlike traditional un-weighted gene co-
expression networks in which two genes (nodes) are ei-
ther connected or disconnected, the weighted gene co-
expression analysis assigns a connection weight to each
gene pair using soft-thresholding and thus is robust to
parameter selection. The weighted network analysis be-
gins with a matrix of the Pearson correlations between
all gene pairs, then converts the correlation matrix into
an adjacency matrix using a power function f{x) = .
The parameter  of the power function is determined in
such a way that the resulting adjacency matrix (i.e., the
weighted co-expression network), is approximately
scale-free. To measure how well a network satisfies a
scale-free topology, we use the fitting index proposed by
Zhang & Horvath [32] (i.e., the model fitting index R® of
the linear model that regresses log(p(k)) on log(k) where
k is connectivity and p(k) is the frequency distribution of
connectivity). The fitting index of a perfect scale-free
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network is 1. For this dataset, we select the smallest 8
( = 7) which leads to an approximately scale-free net-
work with the truncated scale-free fitting index R’
greater than 0.75. The distribution p(k) of the resulting
network approximates a power law: p(k)~k*2°.

To explore the modular structures of the co-expression
network, the adjacency matrix is further transformed into
a topological overlap matrix [37]. The topological overlap
between two genes reflects not only their direct inter-
action, but also their indirect interactions through all the
other genes in the network. Previous studies [32,37] have
shown that topological overlap leads to more cohesive and
biologically meaningful modules. To identify modules of
highly co-regulated genes, we used average linkage hier-
archical clustering to group genes based on the topological
overlap of their connectivity, followed by a dynamic cut-
tree algorithm to dynamically cut clustering dendrogram
branches into gene modules [54]. A total of nine modules
were identified and the module size was observed to range
from 20 to 240 genes.

To distinguish between modules, each module was
assigned a unique color identifier, with the remaining,
poorly connected genes colored grey. In this type of map,
the rows and the columns represent genes in a symmetric
fashion, and the color intensity represents the interaction
strength between genes (Figure 5). This connectivity map
highlights the fact that differentially expressed genes fall
into distinct network modules, where genes within a given
module are more interconnected with each other (blocks
along the diagonal of the matrix) than with genes in other
modules. There are several network connectivity mea-
sures, but one particularly important one is the within
module connectivity (k.in). The kin of a gene was deter-
mined by taking the sum of its connection strengths (co-
expression similarity) with all other genes in the module
to which the gene belonged.

In order to compile a shorter list of the most tightly
co-regulated genes from each module, the top 10% of
genes from each module with highest k.in. scores (con-
nectivity within module) were selected. Additional genes
were added from each module, above 10%, if those genes
had k. in. scores >8. If the list for any module did not in-
clude enough named genes (ie. genes that were not
EST’s) to equal 10% of the module size, then additional
genes with the highest k.in. scores were added until 10%
named genes was achieved.

Pathway analysis

Lists of differentially expressed genes for each regulatory
factor treatment, as well as for each module generated
in the network analysis, were analyzed for KEGG (Kyoto
Encyclopedia for Genes and Genome, Kyoto University,
Japan) pathway enrichment using Pathway-Express, a
web-based tool freely available as part of the Onto-Tools
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(http://vortex.cs.wayne.edu) [55]. Additionally, gene lists
were analyzed using the KEGG website (http://www.gen-
ome.jp/kegg/pathway.html). KEGG pathways were con-
sidered ‘impacted’ and were included in analyses for this
manuscript if three or more differentially expressed
genes were present within a KEGG pathway. Statistical
over-representation of differentially expressed genes
within a pathway was determined by Fischer’s exact test
for two by two contingency tables, and by calculating
hypergeometric probability of obtaining exactly the listed
number of genes in common with that pathway.

Global literature analysis of various gene lists was
performed using Pathway Studio (Ariadne, Genomics
Inc. Rockville MD) software, which performs pathway
and interaction analysis and identifies genes that have
regulatory or binding relationships. Pathway Studio was
also used to identify cellular functions and diseases (in-
cluding polycystic ovarian syndrome) linked in the pub-
lished literature to the genes in these lists. In addition,
Pathway Studio was used to determine over-represented
physiological processes for gene lists based on KEGG,
PANTHER (Protein ANalysis THrough Evolutionary Re-
lationships) and NCBI GO (National Center for Biotech-
nology Information Gene Ontology) databases.

Additional files

Additional file 1: Figure S1. Sample histograms and box plots for
ovary RNA sample microarray signal values prior to pre-processing and
normalization. Note that one of the P4-treated samples was an outlier,
and was discarded. X-axis shows hybridization intensity value. Y-axis
(Hybridization Frequency) shows the number of genes having a given
hybridization intensity.

Additional file 2: Table S1. Differentially expressed genes: A) Genes
influenced by treatment with anti-Mullerian hormone (AMH). B) Genes
influenced by treatment with CTGF. C) Genes influenced by treatment
with FGF2. D) Genes influenced by treatment with ActivinA. E) Genes
influenced by treatment with P4. F) Genes influenced by treatment with
TNFa. G) Genes influenced by treatment with E2.

Additional file 3: Table S2. Treatment and module differentially
expressed genes correlated to cellular pathways and processes.

Additional file 4: Figure S2. Gene network of known relationships
among all 1081 genes found to be differentially expressed in treated
versus Control ovaries. Genes with the greatest number of connections
(relationships) to other genes have enlarged gene symbols. Network is
derived from an un-biased search of literature using Pathway Studio™.
Node shapes code: oval — protein; diamond - ligand; irregular

polygon - phosphatase; circle/oval on tripod platform — transcription
factor; ice cream cone — receptor. Grey arrows represent regulation,

lilac — expression, green — promoter binding, olive — protein modification,
purple - binding.

Additional file 5: Figure S3. Gene network of known relationships
among differentially expressed genes assigned to specific co-expression
modules. A) Blue module. B) Black module. Network is derived from an
un-biased search of literature using Pathway Studio™. Node shapes code:
oval — protein; diamond - ligand; irregular polygon — phosphatase; circle/
oval on tripod platform - transcription factor; ice cream cone - receptor.
Grey arrows represent regulation, lilac — expression, green — promoter
binding, olive — protein modification, purple - binding.
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Additional file 6: Figure S4. Gene network of known relationships
among genes differentially expressed in ovaries receiving specific
treatments, compared to controls. A) E2 (estrogen). B) FGF2. C) Activin A.
Network is derived from an un-biased search of literature using Pathway
Studio™. Node shapes code: oval — protein; diamond - ligand; irregular
polygon — phosphatase; circle/oval on tripod platform — transcription
factor; ice cream cone — receptor. Grey arrows represent regulation,

lilac — expression, green — promoter binding, olive - protein modification,
purple - binding.
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