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Abstract

Background: As several rare genomic variants have been shown to affect common phenotypes, rare variants
association analysis has received considerable attention. Several efficient association tests using genotype and
phenotype similarity measures have been proposed in the literature. The major advantages of similarity-based tests
are their ability to accommodate multiple types of DNA variations within one association test, and to account for
the possible interaction within a region. However, not much work has been done to compare the performance of
similarity-based tests on rare variants association scenarios, especially when applied with different rare variants
pooling strategies.

Results: Based on the population genetics simulations and analysis of a publicly-available sequencing data set, we
compared the performance of four similarity-based tests and two rare variants pooling strategies. We showed that
weighting approach outperforms collapsing under the presence of strong effect from rare variants and under the
presence of moderate effect from common variants, whereas collapsing of rare variants is preferable when
common variants possess a strong effect. We also demonstrated that the difference in statistical power between
the two pooling strategies may be substantial. The results also highlighted consistently high power of two
similarity-based approaches when applied with an appropriate pooling strategy.

Conclusions: Population genetics simulations and sequencing data set analysis showed high power of two
similarity-based tests and a substantial difference in power between the two pooling strategies.
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Background
Although genome-wide association studies (GWAS) have
identified many common single nucleotide polymorph-
isms (SNPs) associated with common diseases (http://
www.genome.gov/gwastudies/), these common variants
explain only a small fraction of the phenotypic variance
attributable to genetic factors [1,2]. Recently, the scientific
community has devoted a lot of attention to the analysis
of rare variants, with the hope of finding the missing heri-
tability. Indeed, there is growing evidence that rare variants
are associated with some complex traits [3-6]. Therefore,
research in the area of rare variants has a high potential
to discover unknown associations of genomic regions
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with complex phenotypes. Numerous methodologies have
been developed to test association of multiple rare variants
within a region with a phenotype [7-11].
Measures of genotype similarity have been the basis of

many proposed statistical tests. The idea of similarity-
based tests is to consider the relationship between geno-
typic and phenotypic similarities (similarity here roughly
refers to a measure of closeness of two genotypes or
phenotypes). Similarity-based tests are motivated by the
fact that haplotypes carrying the same causal mutation
are more related compared with those without causal
mutations; so, case haplotypes are expected to share
longer stretches of DNA identical by descent [12]. One
of the major advantages of similarity-based tests is the
ability to accommodate multiple types of DNA variations
(SNPs, insertions and deletions, CNV) observed within a
region, given flexibility in the choice of similarity mea-
sures between two sequences [13]. Another issue that
similarity-based tests address is the possible interaction
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of different variants within a region, which is potentially
accounted for by considering multi-site similarity mea-
sures [14]. For unrelated individuals, similarity measures
have been incorporated within a framework of single
SNP analysis of variance [15], multiple regression [16],
U-statistic [17] and distance-based regression [14].
Methods based on genotype similarity include the fol-
lowing: sequence kernel association test (SKAT) [11];
kernel-based association test (KBAT) [18], multivariate
distance matrix regression test (MDMR) [19]; and aggre-
gate U-test [20]. However, so far, no attempts have been
made to evaluate the performance of similarity-based
tests on rare variants association scenarios when com-
mon variants are included into or excluded from the
analysis. Even though many non-causal common SNPs
are removed by considering only rare variants, it is un-
clear if consideration of fewer variants would be suffi-
cient to compensate for the loss of association signal
from common SNPs. Also, when both rare and common
variants are included into the analysis, it is of interest to
evaluate the change in the performance of the tests
when rare variants have lower effect sizes than common
SNPs. Additionally, statistical tests may utilize different
pooling strategies for rare variants, e.g. weighting or col-
lapsing. Given the choice, it is unclear which pooling strat-
egy is the best to be applied with similarity-based tests.
In this article, we compared the performance of the

four similarity-based tests (SKAT, KBAT, MDMR and a
modified U-test proposed by Schaid et al. [17]) applied
with two popular rare variants pooling strategies (weight-
ing and collapsing). The comparison was performed based
on population-genetics simulations under four different
disease models and the GAW17 sequencing data set. The
results highlighted that, under the presence of strong rare
variants association signal and moderate association of
common variants, weighting may be a much better strat-
egy than collapsing, whereas collapsing tends to outper-
form weighting when common variants possess a strong
effect. Moreover, we discovered that the magnitude of the
difference in power among similarity-based methods,
when applied with weighting and collapsing strategies,
may be very high, sometimes over 50%. Under the strong
effect size of rare variants when common variants were
excluded from the analysis, we observed better perform-
ance of collapsing strategy and lower power of weighting
pooling strategy. Also, when the appropriate pooling strat-
egy is applied, both SKAT and KBAT showed consistently
high power among all the four similarity-based tests com-
pared here.

Results
Population genetic simulations
For each test, 1000 permutations were performed to as-
sess the significance of association. To make sure the
empirical type-1 error is controlled, we ran the analysis
of simulated data under the null model. As can be seen
from Additional file 1: Table S1, the type-1 error was
well controlled by using the permutation procedure to
estimate the significance level. It is noticeable that for
“Risk Rare” scenario when weighting pooling strategy is
applied and for “Risk Common” scenario the estimates
of type-1 error are below 0.05. This suggests that in
these cases the methods show slightly conservative be-
havior. The double-sided 99% confidence interval for the
type-1 error estimate is approximately 0.033–0.67. This
can be derived from the normal approximation, given
that the estimate of type-1 error rate is distributed as an
observed probability of success for a binomial random
variable with a success probability of 0.05 under no infla-
tion of type-1 error and the sample size of 1000, which is
the number of data replicates. As can be seen, the empir-
ical type-1 error estimates for population genetics simula-
tions were within the 99% confidence interval.
Figure 1 shows the power of the four tests with col-

lapsing and weighting pooling strategies under different
association scenarios. As can be seen from Panel 1 (“Risk
Rare” scenario), the power of the tests was in the follow-
ing order: for collapsing MDMR performed no worse
than SKAT but no better than U-test, which in turn had
lower power compared to KBAT; for weighting, MDMR
performed worse than KBAT, and KBAT was no more
powerful than SKAT, whereas U-test was the most power-
ful among all the four tests considered. Also, weighting
increased the power of all the tests, except for MDMR.
The same situation was observed when a weak association
signal from common variants was introduced, together
with weaker signal from rare variants (“Risk Both” sce-
nario in Panel 2 of Figure 1). The performance of the tests
when rare variants had lower effect compared with com-
mon variants (“Risk Common” scenario) is presented in
Panel 3 of Figure 1. As can be seen, the pattern is different
from those observed for the previous two scenarios. For
all the tests, the collapsing strategy performed better than
weighting. These results suggest that weighting outper-
forms collapsing when strong rare variants association is
present; however, when common variants explain a signifi-
cant portion of phenotype variability, collapsing is more
advantageous since the weighting scheme undermines the
signal from common variants.
Finally, we investigated the performance of the tests in

the “Mixed Rare” scenario which incorporated both risk
and protective variants within a region (Figure 1, Panel 4).
As expected, collapsing underperformed weighting pool-
ing strategy because collapsing risk and protective variants
annihilates the association signal. Overall, the simula-
tion results highlighted the consistently high power of
KBAT and SKAT when the appropriate rare variants pool-
ing strategy was applied (namely, collapsing for “Risk
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Figure 1 Power as a function of significance level for the four similarity-based tests and two rare variants pooling strategies. Panel 1:
“Risk Rare” Scenario; Panel 2: “Risk Both” Scenario; Panel 3: “Risk Common” Scenario; Panel 4: “Mixed Rare” Scenario.
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Common” scenario, and weighting for other scenarios).
Although these two tests had slightly lower power com-
pared to the U-test for “Risk Rare” and “Risk Both” scenar-
ios, they had much higher power for the other two
scenarios. Additionally, we calculated the maximum abso-
lute power difference over the type-1 error rate for each
test and phenotype scenario. As can be seen from Table 1,
the maximum absolute power difference was substantial,
and ranged from as low as 10% to as high as 55%. The
average maximum absolute power difference for the
considered tests across the phenotype models were
39.8%, 43.9%, 25.8% and 31.8% for MDMR, SKAT,
KBAT and U-test respectively. This result shows the
extreme importance of choosing the right rare variants
pooling strategy for different disease models. As in our
simulations no adjustment for population stratification
was made, we analyzed the data using another popular
similarity measure: identity-by-state [14]. The results
were similar to those obtained for exponential similarity
(Additional file 2).
We also analyzed the simulated data after excluding

all common variants defined as those with MAF > 1%
(Figure 2). Since all common variants were excluded,
association tests under collapsing were performed only
on a collapsed super-locus. In contrast to the previous
results, for “Risk Rare” and “Risk Both” scenarios, collaps-
ing performed better and weighting performed worse. For
the collapsing strategy, the reduction in the number of
SNPs was beneficial despite the loss of association signal
from the excluded common SNPs. However, for the
weighting pooling strategy, the loss of some of the causal
variants with MAF above 1% lowered the statistical power
of the tests. Hence, the results suggest that under strong
rare variants effect size in one direction, one should prefer
collapsing to weighting when common variants are ex-
cluded from an association test. For the “Risk Common”
scenario, the power of all the tests and all pooling strat-
egies was lower, as the strong association signal from com-
mon variants had been removed. For the “Mixed Rare”
scenario, we observed that the results were similar to
those depicted in Figure 1. Also, it is notable that across
the four scenarios, the performances of the four tests were
Table 1 The maximum absolute difference in power (over
the type-1 error rate) between weighting and collapsing
pooling strategies for different tests and phenotype
scenarios in population genetics simulations

Scenario/Test MDMR SKAT KBAT U-Test

Risk Rare 0.466 0.472 0.157 0.511

Risk Both 0.395 0.29 0.094 0.379

Risk Common 0.551 0.479 0.388 0.235

Mixed Rare 0.18 0.516 0.393 0.148
very similar under the collapsing strategy. This suggests
that for a single SNP analysis, the power of the four tests
is very similar to one another.

GAW17 data set
The GAW17 data set is a large scale exome sequencing
data set with genotypes from the 1000 Genomes Project
(http://www.1000genomes.org). The dataset consists of
697 unrelated individuals from six populations (Centre
d'Etude du Polymorphisme Humain (CEPH) samples,
Tuscan, Chinese, Japanese, Yoruba and Luhya). The
complex phenotype model incorporates environmental
covariates (age, sex and smoking status) and both com-
mon and rare causal SNPs from genes in particular path-
ways. Totally 200 replicates of several quantitative traits
and case–control status were simulated under the pheno-
type model. A more detailed description of the simula-
tions can be found in Almasy et al. [21].
We performed an association analysis of causal genes

that affect two quantitative traits, Q1 and Q2, and a di-
chotomous trait, D. Adjustment for covariates was done
in a similar way as in Jiang et al. [22]. Let G be the geno-
type matrix, Qj, j = 1, 2 are vectors of two quantitative
traits, Ei i = 1, 2, 3, are vectors of covariates (age, sex and
smoking status, respectively), and R is the matrix of ten
principal components of genotype matrix obtained using
the software Eigenstat [23]. The corrected genotype,

phenotypes and covariates are
⌣
G ¼ G � RRTD , Q̃j ¼

Qj � RRTQj; j ¼ 1; 2, D̃ ¼ D� RRTD and Ẽi = Ei-RR
TEi,

i = 1,2,3. Next, covariates are regressed out of adjusted
phenotypes using the regression models:

Q̃1 ¼ a0 þ
X3

i¼1
ai Ẽ i þ ε1; Q̃2 ¼ b0

þ
X3

i¼1
bi Ẽ i þ ε2; D̃ ¼ C0 þ

X3

i¼1
ci Ẽ þ ε3

ð1Þ

The residuals from the regression models (1) were
dichotomized (upper 30% of the observed distribution
were declared cases, while the others were controls) and
tested for association with adjusted genotype Ğ of the
causal genes. The type-1 error was set at 0.05, and 1000
permutations were performed for each of the 200
phenotype replicates to assess the power. To assess the
empirical type-1 error rate for all the statistical tests, we
ran the analysis with randomly permuted adjusted phe-
notypes obtained from the regressions (1). The resulting
type-1 error rates are presented in Additional files 3 and 4.
The double-sided 99% confidence interval for the type-1
error estimate is approximately 0.01–0.09. This can be
derived from the normal approximation, given that the
estimate of type-1 error rate is distributed as an observed

http://www.1000genomes.org/
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Figure 2 Power as a function of significance level for the four similarity-based tests and two rare variants pooling strategies when
common variants are excluded from the analysis. Panel 1: “Risk Rare” Scenario; Panel 2: “Risk Both” Scenario; Panel 3: “Risk Common” Scenario;
Panel 4: “Mixed Rare” Scenario.
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probability of success for a binomial random variable with
a success probability of 0.05 under no inflation of type-1
error and the sample size of 200, which is the number of
phenotype replicates. As can be seen, the empirical type-1
error for GAW17 data was within the 99% confidence
interval.
Figure 3 depicts the results of the analysis of the causal

genes with the respective phenotypes (ARNT-VEGFC
with Q1, and BCHE-VWF with Q2). For the majority of
genes with rare causal variants, the weighting strategy,
on average, performed better than collapsing (except for
MDMR). For example, the weighing strategy resulted in
substantial power improvement for the genes ARNT,
SIRT1, VNN3 and VWF. All of these genes contained
multiple causal rare variants with a moderate or high
effect size. However, collapsing yielded a much higher
power for ELAVL4 and VNN1 genes. Closer examin-
ation revealed that the two most common SNPs in the
VNN1 gene were causal, whereas association with the
ELAVL4 gene could be explained by association of the only
two common SNPs that were non-causal. To show this, we
analyzed these two common SNPs with the four similarity-
based tests and found that the power to identify an associ-
ation with a phenotype was as follows: MDMR – 0.6,
SKAT – 0.585, KBAT – 0.135, U-test – 0.095. The results
of the dichotomous phenotype analysis are presented in
the Additional files 5 and 6. Among genes with maximum
achieved power of greater than 40% for at least one of the
tests, weighting was advantageous for the ARNT gene,
whereas collapsing yielded higher power for FLT1 and
PRKCA, which both contained common causal SNPs. So,
the results of the GAW17 data set support the conclusion
derived from population genetics simulations concerning
pooling strategies. We also considered the maximum
absolute difference in power between weighting and col-
lapsing for each statistical test and each GAW17 pheno-
type (Q1, Q2 and dichotomous trait) over the respective
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Figure 3 Power to identify association with dichotomized adjusted qu
with Q1, and BCHE-VWF with Q2).
causal genes. As can be seen from Table 2, the maximum
absolute power difference ranged from 14.5% (U-test) to
84% (MDMR). The average maximum power differences
across phenotypes were 73.8%, 45.6%, 35.6% and 40.5%
for MDMR, SKAT, KBATand U-test, respectively. This ob-
servation confirms the results obtained from our popula-
tion genetics simulations and highlights the importance of
the right choice of rare variants pooling strategy in sequen-
cing association studies.

Discussion
In this article, we compared the performance of the four
similarity-based tests together with two rare variants
pooling strategies using population genetics simulations
and the GAW17 real data set. The results suggest that
weighting may be a much better strategy than collapsing
under the assumption of strong effect from rare variants,
and moderate or low effect from common variants. Col-
lapsing, in turn, showed much better performance when
common variants possessed a strong effect. The absolute
power difference of a statistical test when applied with
collapsing and weighting pooling strategies may be sub-
stantial. From our study, it follows that if researchers are
inclined to believe in the association of rare variants
within a region, weighted pooling should be applied with
similarity-based tests, whereas collapsing is more appro-
priate if common variants are suspected to be associated
with phenotype. Additionally, under strong rare variants
effect size in one direction when common variants were
excluded from the analysis, collapsing performed equally
good or better than weighting. Finally, both SKAT and
KBAT had consistently high power compared with other
considered similarity-based tests when applied with the
appropriate pooling strategy.
Recently, Basu and Pan [24] compared the perform-

ance of multiple statistical tests to identify an association
with rare variants. The authors included SKAT with
KBAT Collapsed U-test Collapsed 
KBAT Weighted U-test Weighted 

antitative trait in GAW17 data set for causal genes (ARNT-VEGFC



Table 2 The maximum absolute difference in power (over the respective causal genes) between weighting and
collapsing pooling strategies for different tests and phenotypes in GAW17 data set

Scenario/Test MDMR SKAT KBAT U-Test

Q1 0.84 (KDR) 0.45 (ARNT) 0.22 (ARNT) 0.145 (HIF3A)

Q2 0.605 (VNN1) 0.5 (VNN1) 0.42 (VNN1) 0.535 (VNN1)

Dichotomous 0.77 (FLT1) 0.42 (PRKCA) 0.43 (PRKCA) 0.535 (FLT1)

The genes at which the maximum difference was achieved are in brackets.
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unweighted linear and quadratic kernels as one of the
testing strategies. Based on the results, Basu and Pan
[24] concluded that SKAT was powerful compared with
other methods when only rare variants were considered.
However, the authors found that the method lost its high
power when neutral common variants were added. Our
results suggest that using weighted kernels in SKAT may
preserve high power to identify an association with rare
variants even if multiple neutral common variants are
included into the analysis. However, since we compared
the performance of similarity-based tests, additional inves-
tigation is required to compare weighted similarity-based
tests with other statistical strategies, including those con-
sidered in Basu and Pan [24].
From our results, the MDMR test does not seem to

perform well when applied with weighting pooling strat-
egy. To have a more detailed picture, we applied
weighted MDMR test to the “Risk Rare” data sets with
modified weights wl

p
, l = 1, . . . L, where the power value

p varied from 0 to 1. So, p = 1 corresponded to the beta
weights applied in our study, whereas p = 0 corre-
sponded to the analysis without weights. Additional file
7 shows the power surface as a function of significance
level and a value of p. It is clear that for all significance
levels, the power of MDMR monotonically decreased
with higher values of p, which corresponded to higher
relative weights for rare variants. In the Additional file 1,
we proved that when the number of cases equals the
number of controls (like in our simulations), SKAT and
MDMR test statistics are equivalent to the sum of, and
the sum of squares of dissimilarities for all case–control
pairs respectively. When weighting pooling strategy is
applied, dissimilarity tends to be relatively large for pairs
of individuals whose genotypes differ in multiple rare
minor alleles. Squaring dissimilarity measure puts much
more emphasis on pairs with a larger dissimilarity. Thus,
the magnitude of the MDMR test statistic may be com-
pletely defined by the number of case–control pairs whose
genotypes differ by at least two rare minor alleles. We
suppose that pairs with a difference of one rare allele may
not have sufficient dissimilarity to significantly influence
the MDMR test statistic, which leads to a loss of power.
To illustrate our reasoning, let us have two rare variants
with only eight observed minor alleles each across 500
cases and 500 controls. To simplify the description, as-
sume that individuals have either zero or one copy of a
minor allele across the two variants. Also, we will use the
equivalence of the MDMR test statistic to the sum of
squared case–control dissimilarities. Consider the follow-
ing cases under the null and alternative hypotheses, re-
spectively: cases and controls have four minor alleles for
each variant, and cases have all minor alleles. Under the
alternative hypothesis, we have zero case–control pairs
with a difference of two alleles across genotype, whereas
under the null hypothesis, we have 32. However, under
the alternative hypothesis, there are 16 × 500 case–control
pairs with a difference of one minor allele, whereas under
the null hypothesis, there are only 16 × (500–8). Now it
becomes clear that if the dissimilarity of pairs of indivi-
duals with a difference of two alleles is large enough rela-
tive to the dissimilarity of pairs of individuals with a
difference of only one allele, the MDMR test statistic may
become lower compared to the null test statistic. The con-
sideration above explains the low performance of MDMR
with weighted similarity and the fact that for the “Risk
Rare” scenario, the power of MDMR test was below type-
1 error rate.
One limitation of the current study is that the mini-

mum significance level in population genetics simulations
was 0.001. For genome-wide significance, the number of
permutations needed to reliably estimate the significance is
very large. This makes the comparison of the similarity-
based tests at the genome-wide level prohibitive. In real
GWAS studies, only few highly-significant genes will re-
quire a very large number of permutations to estimate p-
values, as many genes with low or no association signal can
be dropped out after a few thousand permutations. For
highly significant genes, permutation procedure can be split
into several parts and performed in parallel on a cluster.
Conclusions
The performance of similarity-based tests applied with two
rare variants pooling strategies was investigated. Popula-
tion genetics simulations and sequencing data set analysis
showed consistently high power of two similarity-based
tests and a substantial difference in performance of the
two rare variants pooling strategies.
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Methods
Similarity-based tests
Assume that an association study involves N individuals
(NA cases and NU controls), and within a genomic re-
gion L SNPs (both common and rare) were called. Let
us denote the genotype matrix G = {gnl, n = 1,. . .,N l = 1,
. . .,L} coded as minor allele counts, and the phenotype
vector Y = {yn, n = 1,. . .,N} with the elements valued 1 for
cases and −1 for controls (except when otherwise speci-
fied). The N ×N similarity matrix is defined as K = {s(gn,
gm)}n,m = 1

N, where gn is a multi-site vector of genotype
{g1n,. . .,gLn} for nth individual, and s (x,y) is a similarity
function. There is a variety of examples of similarity
functions published in statistical genetics literature (for
examples, see Wu et al. [11], Wessel and Shork [14], and
Mukhopadhyay et al. [25]). However, it is desirable for
the similarity matrix K to be symmetric positive semi-
definite as this is “the key to its use in many statistical
analyses” [26]. Thus, we consider only those similarity
measures that result in a positive definite similarity
matrix. Examples of such similarity measures are the
weighted linear kernel s(gn, gm) =

P
l = 1

Lwlgnlgml for
some fixed weights wl,l = 1,. . .,L the weighted quadratic
kernel s(gn, gm) = (1 +

P
l
Lwlgnlgml)

2, and the weighted IBS
kernel s(gn, gm) =

P
l = 1

Lwl(2 − |gnl − gml|). For our analy-
sis, a popular exponential similarity measure [27] was used:

s gn; gmð Þ ¼ exp �
XL

l¼1
gnl � gmlð Þ2

n o
ð2Þ

The choice of similarity was motivated by the need to
analyze quantitative genotype obtained as a result of
population stratification adjustment (see Results section).
As the exponential similarity is a function of the Euclidean
distance between two multi-site genotypes, we consider this
similarity to be more appropriate compared with, for ex-
ample, another popular similarity measure, identity-by-state
[17], which was designed to be applied to genotype codes.

Weighting and collapsing
Here we consider the two major ways of rare variants
pooling: weighting and collapsing. The SNP weights will
be denoted as w = {wl, l = 1,. . .,L}. In general, they may
be derived from observed minor allele frequency (MAF)
or prior information. Here, we adopted the weights pro-
posed by Wu et al. [11]: wl = Beta(mafl; 1, 25)

2, where
mafl is MAF of lth SNP, Beta (a; b, c) is the beta density
distribution function with parameters b and c evaluated
at point a. The weight function monotonically increases
as MAF decreases, while, as noted by the authors, “put-
ting decent nonzero weights for variants with MAF 1%–
5%”. As noted by Wu et al. [11], setting 0 ≤ b ≤ 1 and c ≥
1 allows for an increase in the weight of rare variants
and a decrease in the weight of common variants. Thus,
any values of parameters and from the specified range
are acceptable. For the three tests (SKAT, MDMR and
U-test), the weights are incorporated via the calculation
of similarity matrix. Specifically, the weights incorporat-
ing similarity function sw for the similarity matrix Kw is
as follows:

sw gn; gmð Þ ¼ exp �
XL

l¼1
wl gnl � gmlð Þ2=

XL

l¼1
wl

n o

ð3Þ

For the KBAT test statistic, the weights were incorpo-
rated differently (for details, see the description below) as
the test does not use the multi-site genotype similarity.
The collapsing of rare variants was performed as

described in Thalamuthu et al. [18], namely, by defining
a super-locus gn(L+1),n = 1,. . .,N as follows:

gn Lþ1ð Þ ¼ min 2;
X

l:mafl ≤0:01
gnlð Þ

n o
ð4Þ

In general, this type of collapsing preserves more in-
formation than an indicator of at least one rare variant
being present, as suggested by Li and Leal [28]. The
collapsed genotype is treated as a new SNP (super-locus)
gn(L+1),n = 1,. . .,N, and a similarity matrix is constructed
using common variants and the super-locus.

Multivariate distance matrix regression (MDMR)
Let us denote N x N identity matrix 1N and a vector of 1
of size N as 1N. Following Wessel and Schork [14], the
test statistic is calculated according to the algorithm:

1. Phenotype projection matrix H = Y(YTY)-1YT, where
upper T denotes transposition.

2. Dissimilarity matrix D = {dij}i,j =1
N = 1N1N

T− K, where
K is a similarity matrix defined above.

3. Gover’s centered matrix G = (1N − 1N1N
T/N)

A(IN − 1N1N
T/N), where A ¼ � d2ij

2

n oN
i;j¼1

.

4. The test statistic MDMR = tr(HGH)/tr((IN −H)
G(IN −H)), where tr is matrix trace.

Large values of the test statistic indicate a deviation
from the null hypothesis of no association of a genotype
with a phenotype.

Sequence kernel association test (SKAT)
For this test, the phenotype vector Y = {yn,n = 1,. . .,N}
is coded as 1 for cases and 0 for controls. The mean phe-
notype vector is defined as �Y ¼ NA1N=N . Following Wu

et al. [11], the test statistic is T ¼ Y � Y�ÞTKðY � �Y Þ=2
�

.

The SKAT test statistic under the null hypothesis is asymp-
totically distributed as the weighted sum of chi-squared
random variables with one degree of freedom. Thus, the
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significance level can be assessed theoretically. Permuta-
tions can also be used to estimate the p-value empirically.

U-test
The average similarity score between pairs of cases U1

and controls U0 is defined as follows:

U1 ¼
X

1≤n≤m≤N
n;m:Yn¼Ym¼1

2Knm=N
A NA � 1
� � ð5Þ

U0 ¼
X

1≤n≤m≤N
n;m:Yn¼Ym¼�1

2Knm=N
U NU � 1
� � ð6Þ

where Knm, n, m = 1,. . .,N are the elements of the K
similarity matrix (K = {Knm}n,m = 1

N). The U-test statistic
is defined as U = (U1 −U0)

2. Note that Shaid et al. [17]
considered the weighted sum of the single SNP U-test
statistics, where weights were derived from the asymp-
totic variance-covariance matrix of the U statistics vec-
tor. However, for the purpose of comparison of
weighting and collapsing rare variants pooling methods,
the statistic was modified as described above. The test
statistic U is similar to the single SNP U-test statistic pro-
posed by Shaid et al. [17], but it incorporates the similarity
information across multiple variants within a region. Per-
mutations need to be applied to assess the p-value.

Kernel-based association test (KBAT)
Let us denote Kl = {(Kl)nm}n,m = 1

N as a single SNPs simi-
larity matrix for lth variant. Similar to the notations of
the U-test subsection, Ul1 and Ul0 are the average simi-
larity scores for pairs of cases and controls, respectively,
calculated from Kl, and let Ul = (Ul1 +Ul0)/2. Following
Mukhopadhyay et al. [15], consider the within-group
and between-group sum of squares:

WSSl ¼
X

1≤n≤m≤N
n;mYn¼Ym¼1

Klð Þnm � Ul1
� �2

þ
X

1≤n≤m≤N
n;mYn¼Ym¼�1

Klð Þnm � Ul0
� �2

ð7Þ

BSSl ¼
NA NA � 1

� �
Ul � Ul1ð Þ2

2

þNU NU � 1ð Þ Ul � Ul0ð Þ2
2

ð8Þ

where the two groups are case-case and control-control
pairs. The test statistic is KBAT =

P
l = 1

LBSSl/
P

l = 1
LWSSl.

Since the test does not utilize the multi-site similarity
matrix, but only single SNP matrices Kl, the weighted test
statistic KBATW =

P
l = 1

LwlBSSl/
P

l = 1
LwlWSSl is used

here. A large value of the KBAT statistic indicates a
deviation from the null hypothesis. Permutations are used
to assess the significance.

Population genetics simulations
Population genetics simulations were performed based
on the code provided by King et al. [29] with demo-
graphic parameters from Boyko et al. [30]. A total of
1000 data replicates were generated for each of the four
phenotype models: “Risk Rare”, “Risk Both”, “Risk Com-
mon” and “Mixed Rare”. For a detailed description of
the simulations, see Additional file 1.
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