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Abstract

Background: Genomic and transcriptomic sequence data are essential tools for tackling ecological problems. Using an
approach that combines next-generation sequencing, de novo transcriptome assembly, gene annotation and synthetic
gene construction, we identify and cluster the protein families from Favia corals from the northern Red Sea.

Results: We obtained 80 million 75 bp paired-end cDNA reads from two Favia adult samples collected at 65 m
(Fav1, Fav2) on the Illumina GA platform, and generated two de novo assemblies using ABySS and CAP3. After
removing redundancy and filtering out low quality reads, our transcriptome datasets contained 58,268 (Fav1) and
62,469 (Fav2) contigs longer than 100 bp, with N50 values of 1,665 bp and 1,439 bp, respectively. Using the proteome
of the sea anemone Nematostella vectensis as a reference, we were able to annotate almost 20% of each dataset using
reciprocal homology searches. Homologous clustering of these annotated transcripts allowed us to divide them into
7,186 (Fav1) and 6,862 (Fav2) homologous transcript clusters (E-value ≤ 2e-30). Functional annotation categories were
assigned to homologous clusters using the functional annotation of Nematostella vectensis. General annotation of the
assembled transcripts was improved 1-3% using the Acropora digitifera proteome. In addition, we screened these
transcript isoform clusters for fluorescent proteins (FPs) homologs and identified seven potential FP homologs in Fav1,
and four in Fav2. These transcripts were validated as bona fide FP transcripts via robust fluorescence heterologous
expression. Annotation of the assembled contigs revealed that 1.34% and 1.61% (in Fav1 and Fav2, respectively) of the
total assembled contigs likely originated from the corals’ algal symbiont, Symbiodinium spp.

Conclusions: Here we present a study to identify the homologous transcript isoform clusters from the transcriptome
of Favia corals using a far-related reference proteome. Furthermore, the symbiont-derived transcripts were isolated
from the datasets and their contribution quantified. This is the first annotated transcriptome of the genus Favia, a
major increase in genomics resources available in this important family of corals.

Keywords: K-mer, Contig, Open reading frame, Fluorescent protein, Blast, Clustering, High-throughput sequencing,
Illumina paired-end, Coral
Background
With the advent of Next-Generation Sequencing (NGS)
technology, genomic data acquisition has become much
easier, especially for non-model organisms [1]. The gen-
eration of transcriptomes from non-model organisms
has also benefitted from NGS advances. Transcriptomic
datasets can facilitate genome annotation, single-nucleotide
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polymorphism (SNP) analysis [2], marker development for
population genetic and adaptive evolutionary studies [3],
as well as functional classification [4] in non-model
species. The application of transcriptome deep sequencing
in metabolic pathway reconstruction and gene marker
development has already shown great promise in Camellia
sinesis [5], Cicer arietinum [6], Sphenodon punctatus [7],
and Anopheles funestus [8].
This method is also valuable for relatively understudied

species, such as Favia corals. Though corals are high in
economic and ecological value, limited genomic resources
are available, largely because samples are difficult to obtain.
Because NGS requires only small amounts of animal tissue,
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it is possible get large amounts of information from very
small samples (1–2 coral polyps). Recently, anthropogenic
threats such as climate change, metal pollution and oceanic
acidification [9] have led to rapid declines in worldwide
coral populations, lending increased urgency to
the need for genomic data. Detailed understanding at
the genomic and transcriptomic level will allow for the
development experimental studies to assess how the
intensity and frequency of disturbances affects coral health
and abundance.
Several studies have reported NGS long reads transcrip-

tome sequencing of coral species such as Acropora
millepora [10,11] and Pocillopora damicornis [12]. In
addition, other recent studies have used the Short
Sequence Reads (SSR) platform [13], or combined SSR
and long reads approach to explore whole transcriptome
modulation in response to low pH in adult Pocillopora
damicornis [13], and in early life stages of Acropora
millepora [14]. Yet, these coral clades are quite phylo-
genetically divergent from Favia [15].
This Favia genus is one of the most widely and uni-

formly distributed of all coral genera and is phenotypically
presented as massive, dome-shaped and flat. In many
cases Favia species exhibit cryptic species complexes and
their phylogeny has been parodied as being a “Bigmessidae”
[16]. Favia are in the Faviidae family that contains
twenty-four genera, more than any other coral family
[17]. Faviidae is one of the highly fragmented families
and Indo-Pacific members appear to be distinct from
Atlantic counterparts. Therefore, adding more molecular
markers to resolve their phylogeny will add further
resolution to coral systematics.
We sequenced and assembled 58 Mbp of Illumina cDNA

reads from two coral Favia samples, termed “Fav1” and
“Fav2,” that were collected at 65 m in the northern Red
Sea (Figure 1). Reads were assembled into contigs and
annotated to: 1) identify protein family clusters using
the proteome of Nematostella vectensis as a reference;
2) assign functions to the protein family clusters using
Nematostella vectensis GO, InterPro and KOG functional
annotation; 3) identify homologous proteins in Acropora
digitifera using sequence-based similarity searches; 4)
identify symbiont-derived contigs in our assembly; and 5)
conduct phylogenetic assessment using three molecular
markers (Cytb, COI, 28S) and eleven full-length fluorescent
proteins. The resulting data provide a valuable resource for
future studies in Faviids and other corals.

Results and discussion
De novo assembly
Holobiont cDNA libraries were synthesized from the RNA
of two individual adult Favia sp. collected from the Gulf
of Eilat in the Red Sea. Illumina runs performed on each
separate, normalized, cDNA pool generated approximately
80 million reads per sample with average quality scores >
Q20 at each base. The first step of assembly was carried
out with ABySS [18,19], a de Brujin graph assembler. In
order to recover transcripts across a range of expression
levels, we carried out assembly across a range of k-mer
values. Transcripts with low depth (i.e. weakly expressed)
are best recovered with low k-mer values, while high
depth (i.e. highly expressed) transcripts are best recovered
with high k-mer values [20]. Using a range of k-mer values
also allows for the identification of expressed splice variants
arising from a single gene. As the Illumina read length was
set to 75 bp, we chose initial k-mer values ranging from
29 to 45 bp for each sample run.
We evaluated various assembly parameters (e.g., total

number of contigs, contigs longer than 100 bp, N50 length,
and average contig length) as a function of k-mer length.
The three k-mer values (35, 39, 45 for Fav1 and 31, 35, 39
for Fav2) with the highest N50 length [21] were selected as
being most informative. In each sample, we eliminated
contigs shorter than 150 bp [20] in the two k-mer assem-
blies with the shortest median contig length, but kept all
the contigs in the assembly with the longest median
contig length in order to retain any information useful
for bridging in the subsequent assembly steps. Within each
sample, the three k-mer assemblies were then combined,
and the combined contigs were assembled with CAP3
(using default parameters), which computes overlaps to
correct errors in constructing contigs and generates
consensus sequences for contigs [22], thus eliminating
redundant contigs. It has been suggested that assembly of
ABySS followed CAP3 yield better contigs [19]. As a
result, the N50 length distribution improved after using
CAP3, and the best N50 values increased from 1027 to
1665 in Fav1, and 742 to 1439 in Fav2 (Figure 2). The final
assembled datasets, which were used for all subsequent
analyses, contained 58,848 sequences in Fav1 and 62,469
sequences in Fav2. The N50 values of these two datasets
were higher than previous short-read publications [5,7,23]
(675 bp, 1438 bp, 506 bp, respectively), suggesting that the
quality of our data was comparable to results in other
non-model species (For all commands and parameters,
see Additional file 1: File S1).

Homologous clustering of expressed coral transcripts
After using the EMBOSS package [24] to generate all pos-
sible open reading frames (ORFs) from stop to stop for
each assembled contig, the resulting predicted ORFs were
searched for sequence similarity against the N. vectensis
proteome [25], using reciprocal BlastP (E-value ≤2e-30)
[26] (Script 1). For the 519,766 predicted ORFs longer than
150 bp, 12,141 unique ORFs in Fav1 showed considerable
sequence similarity to 7,186 existing protein sequences
in N. vectensis. Similarly, 12,425 unique ORFs in Fav2
showed similarity to 6,862N. vectensis protein sequences



Figure 1 White light and fluorescent macrophotography of scleractinian coral samples. Samples of Favia sp. were placed in a narrow
photography tank against a thin plate glass front. Fluorescent macro images (13.1 megapixel; Nikon D300S) were produced in a dark room
by covering the flash (Vivitar 185) with interference bandpass excitation filters (Semrock, Rochester, NY). Longpass and bandpass emission
filters (Semrock) were attached to the front of the camera. A) White light image; B) ex. 450–500 nm; em. 514LP; C) ex. 500–550 nm,
em. 555 LP.
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(Additional file 2: File S2, Additional file 3: File S3). The
top Blast hits for each sample were saved in a pre-
clustering list using a Perl script (Script 2; Output files
reported in Additional file 4: File S4, Additional file 5:
File S5). These lists were then used in TRIBE-MCL [27]
to identify homologous protein family clusters in a com-
prehensive and uniform way (Additional file 6: File S6,
Additional file 7: File S7). The main clustering parameter,
inflation value (r), was selected as default (r = 2.5). Fav1
and Fav2 had similar numbers (7,186 and 6,862, respect-
ively) of protein family clusters homologous to unique N.
vectensis proteins. These clusters were subjected to further
functional annotation.
In order to evaluate the completeness of our annotation

using N. vectensis as the reference as opposed to using
another available Cnidarian non-annotated proteome
(A. digitifera), we applied a newly-developed completeness
metric [28] (In prep.) to determine the proportion of
the reference proteome covered by our sets of assembled
transcripts. Only those ORFs with length coverage ≥80% of
the matched protein from the N. vectensis or A. digitifera
proteome were included. Completeness measurements in
Fav1 and Fav2 compared to N. vectensis were 29.54% and
28.20%, respectively; when the same procedure was car-
ried out using the unannotated proteome of A. digitifera
as a reference (23,677 ORFs downloaded from http://
marinegenomics.oist.jp/genomes/downloads?project_id=3.
This showed an improvement of only 1-3%, thus validating
our usage of N. vectensis as a reference proteome (Additional
file 8: Table S1).

Functional annotation and characterization of the isoform
clusters in Fav1
To identify the putative function of 7,187 isoform clusters,
Gene Ontology (GO) and protein domain (KOG, InterPro)
searches were performed using the functional annotation
of the N. vectensis. (Data downloaded from the JGI genome
project http://genome.jgi-psf.org/Nemve1/Nemve1.down-
load.html). The clusters were assigned gene names based
on the gene name annotation of the best Blast match for
the sequences (Additional file 9: File S8). This process
successfully assigned gene names for 6,632 (92.27%)
clusters using GO term, KOG description, and InterPro
description. Among 12,141 annotated best hits, 11,411
(93.98%) gene names were assigned to sequences. These
provide a rough estimate of the number of different
genes expressed in Fav1 libraries. Broadly, the putative
homologs of genes involved in various cellular processes
and pathways found to be functionally conserved.
Based on GO terms assignment to clusters, a total of

4,678 (65%) clusters were assigned at least one GO term,
among which 11% were assigned at least one GO term in
biological processes, 48% in molecular function and 6% in
cellular component category (Additional file 10: Figure S1).
Among the various biological processes, protein metabol-
ism, and electron transport were mostly highly represented

http://marinegenomics.oist.jp/genomes/downloads?project_id=3
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Figure 2 Contig length improvement after using CAP3. N50 (50% of the length of the assembled sequences) is a parameter to assess the
contig length distribution (A) Fav1 contig length and N-values relationship. The thin lines represent the values for k-mer 35, 39, 45. The N50
length values were 1027, 1009, 949 bp, respectively. The line with cross represents the N-values after using CAP3, with N50 length of 1665.
(B) Fav2 contig length and N-values relationship. The N50 length values for k-mer 39, 45, 49 were 453, 408, 391 bp, respectively. The N50 length
values for k-mer 29, 31, 35 were 742, 734, 721 bp, respectively. The line with cross represents the N-values after using CAP3, with the N50 length
of 1439 bp.
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(Table 1). Protein metabolism is also highly represented in
other transcriptome characterization studies [6,7,29].
According to assigned KOG descriptions to Fav1 clusters,

a total of 6,326 (88%) clusters were assigned at least one
KOG description. However, this was 4,489 (62.45%)
with InerPro description assignment. This implies that
the KOG description was most useful in assigning
domain description to our dataset compared to InterPro.
The top most frequently detected domain, associated with
KOG and InterPro assignment, include conserved domain
associated with predicted E3 ubiquitin ligase, fibrillins and
related proteins containing Ca2 + −binding EGF-like do-
mains, FOG: Zn-finger, GPCR Rhodopsin, and Ras GTPase
superfamily. One of the utilities of domain annotation is



Table 1 Top 30 frequent annotated functions of
homologous protein clusters in Fav1

Top frequent GO-annotated homologous protein clusters in Fav1

Go categories/Description Count Percentage

Total clusters 7,187

Total (GO-annotated) 4,677 65.1%

Molecular function 3,477 48.37%

1-Nucleic acid binding 241 5.15%

2-Protein kinase activity 218 4.66%

3-DNA binding 208 4.45%

4-Catalytic activity 173 3.70%

5-Calcium ion binding 158 3.38%

6-ATP binding 129 2.76%

7-Protein binding 119 2.54%

8-GTP binding 114 2.44%

9-Transporter activity 96 2.05%

10-Structural constituent of ribosome 82 1.75%

Biological process 776 16.59%

1-Metabolism 122 2.61%

2-Electron transport 88 1.88%

3-Intracellular signaling cascade 54 1.15%

4-Proteolysis and peptidolysis 48 1.03%

5-Protein folding 47 1.00%

6-Protein modification 31 0.66%

7-Cell adhesion 29 0.62%

8-Intracellular protein transport 26 0.56%

9-Carbohydrate metabolism 21 0.45%

10-Regulation of cell cycle 18 0.38%

Cellular component 424 6%

1-Ubiquitin ligase complex 68 1.45%

2-Integral to membrane 58 1.24%

3-Membrane 58 1.24%

4-Nucleus 46 0.98%

5-Intracellular 41 0.88%

6-Cytoplasm 26 0.56%

7-Cytoskeleton 24 0.51%

8-Nucleosome 16 0.34%

9-Chromatin 10 0.21%

10-Extracellular region 8 0.17%

Top 30 high frequent annotated homologous protein clusters under cellular
component, molecular function and biological processes. Full annotation
included in Additional file 9: File S8.

Table 2 Intracellular signaling pathway genes annotated
in Fav1

Intracellular signaling pathway proteins annotated in Fav1

Pathway Protein name Sequences (n)

Hedgehog Patched 27

Sonic 2

Fused 1

Receptor activity (IFRD-C) 1

DUF699 2

Smoothened 12

JAK/STAT STAT protein 1

NFKB/Toll Nuclear factor NF-kappa-B 1

Intermediate in Toll-signaling 1

Toll-like receptor 1

NHR Hepatocyte nuclear factor 4 2

Notch Notch 4

TACE 3

RTK RTK signaling protein 1

TGF-beta Activin-like kinase 8

SMAD 9

TGF-beta-receptor 1

WNT Frizzled 9

Wnt 2
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that it provides quick access to homologs of genes with
known roles in intercellular signaling pathway. The
representation of genes involved in intracellular signaling
pathway was very similar to that of A. millepora [10].
However, a few families showed the events of expansion
(for example, Patched, Hepatocyte nuclear factor 4
and Activin-like kinase) and contraction (for example,
Notch-delta, Frizzled, Wnt etc.) indicating their functional
significance (Table 2).
Further, we identified major transcription factors encoding

transcripts. In comparison to A. millerpora [10], the
represented genes were somewhat similar. However, a few
families were newly reported in our dataset (For example,
HMG box, T-box, ETSDomain, MADS) (Table 3).

Annotation of Symbiodinium-derived contigs
Holobiont coral tissues also contain eukaryotic dinoflagel-
late endosymbionts of the genus Symbiodinium [30,31].
We therefore determined the contribution of symbiont-
derived transcripts in our analysis. First, we extracted the
regions of cDNA contigs that corresponded to each indi-
vidual annotated ORF in two datasets (For commands, see
Additional file 1: File S1). Furthermore their similarity
search against two Symbiodinium transcriptomes (http://
medinalab.org/zoox/) was performed using BlastN. In order
to define an E-value as a cutoff threshold, a reciprocal
BlastN search between the N. vectensis genome and the
two Symbiodinium transcriptomes showed an average
E-value of e-80. Thus all contigs with similarity higher
than this threshold to Symbiodinium were defined as
likely to be symbiont-derived. Based on these results,
9% of the annotated ORFs (1.34% of the total assembled

http://medinalab.org/zoox/
http://medinalab.org/zoox/


Table 3 Major transcription factor families identified by
conserved domain annotation

Transcription factors identified by KOG/InterPro/GO annotation
in Fav1

Sequence description Sequences(n)

CBF 1

Transcriptional Coactivator P50 1

Transcriptional Coactivator P100 6

Transcriptional Coactivator CAPER 2

Homeobox domain 7

HSF-type DNA-binding 1

P53 DNA-binding domain 2

NF-X1-type zinc finger protein 3

Dimerization partner (TDP) 2

Fork head 15

Basic region leucine zipper & bZIP 6

Helix-loop-helix DNA binding domain 12

Myb-like DNA-binding domain 3

Zinc finger C2H2 type 3

Zinc finger MIZ type 1

HMG box 12

TBOX 5

ETS domain 12

MADS domain 4
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contigs) of Fav1 were labeled as symbiont sequences, and
8.7% (1.61% of total assembled contigs) of Fav2. FASTA
files of these non-symbiont transcripts are reported
(Additional file 11: File S9, Additional file 12: File S10). Fi-
nally, we performed BlastX (E-value equal to at least e-30)
on the non-symbiont derived cDNA fragments against the
N. vectensis proteome to confirm correct initial annotation
by BlastP. All the cDNA sequences matched to the same
N.vectensis IDs that were predicted using BlastP.

Phylogenetic assessment
Molecular markers are essential tools for population
genetic studies. Typically, combination of mitochondrial
and nuclear markers are used to examine the species rela-
tionships. In order to generate a Favia molecular marker
dataset, we downloaded Favia related sequences from
NCBI. Similarity searches were carried out against this
Favia dataset. Among various molecular markers, we
chose COI, Cytb and 28S. Individual sequence regions
were identified and extracted from the cDNA contig
files in both samples. DNA alignments for each locus
were generated using ClustalW2 with default parameters
[32] (Additional file 13: File S11, Additional file 14: File S12,
Additional file 15: File S13). Consequently, a matrix of
these three loci was generated using FASconCAT [33]. A
Maximum likelihood phylogenetic analysis (RaxML)
was carried out [34]. Maximum likelihood phylogen-
etic analysis using three loci (COI, Cytb, 28S) suggests
that these Favia samples belong to Faviids (Additional
file 16: Figure S2). Morphological analysis places them
as F. albidus [17], a species that is not yet represented in
NCBI. For example, out of 18 Favia species that have been
described morphologically, only 15 of them have molecular
data in NCBI. F. albidus, F. helianthoides, and F. marshae
lack molecular markers in NCBI. Based on geological
distribution [17] and morphology, we suggest these two
species belong to F. albidus. In fact, F. helianthoides has
no morphological similarities with our samples, and F.
marshae habitat has never been reported in Red Sea
[17]. However, further skeletal samplings are required for
final validation [35,36]. Regardless, this study increases the
protein information of the Faviids from 496 proteins to
over 12,000 proteins in NCBI.
Characterization of one exemplary homologous
protein cluster
From the protein clustering results, we chose to characterize
a protein family with a natural fluorescent property. One
of the benefits of utilizing scleractinian corals as our
model organism is that they posses genes for fluorescent
proteins (FPs), a rare characteristic in most other Phyla’
besides Cnidaria [37-40]. In N. vectensis, six protein IDs
encode for FPs [41]. A search among the homologous
sequence clusters with E values of at least 2e-30 in each
transcriptome led to the identification of one protein
cluster group per sample representing potential fluor-
escent proteins (FPs). A total of 11 new potential FPs
were identified, six belonging to the Fav1 sample and four
belonging to the Fav2 sample. One additional sequence,
s23Contig9635-2 was found by increasing the E-value
to 2e-10 in Fav1. The alignment of these sequences with
N. vectensis fluorescent protein sequences (JGI ID:205348,
ID:206334), Branchiostoma GFPa1 [42] and GFP of
Aequorea victoria (GI:17943301) showed a considerable
homology (Figure 3). The conserved chromophore re-
gion is located at the residues 303 to 305 based on the
top sequence. Our data shows that one of the newly
identified potential fluorescent protein sequences (Fav1
s23Contig16657-5) is 185 amino acids longer at the N-
terminus (416 amino acids in total) and two of them
were shown to be 49 (Fav2 s62Contig19888-6) and 41
amino acids (Fav2 s62Contig41210-3) longer than the
consensus length of reported sequences in NCBI (wild-
type GFP from Aequorea victoria is 236 amino acids)
(Additional file 17: Figure S3). This extended region
does not seem to interfere with the proper folding and
expression of FP, however further studies are required
to reveal the function of these upstream domains.



Figure 3 (See legend on next page.)
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Figure 3 Overlapping region of amino acid sequence alignment of one exemplary cluster of identified homologous protein clusters.
This gene family belongs to naturally expressed fluorescent protein. Conserved chromophore region (XYG) is located at the position 303–305. The
newly identified sequences with extended N-terminal are s23Contig16657-5, s23Contig40465-7 in Fav1, s62Contig19888-6, and s62Contig41210-3
in Fav2. The full-length alignment is reported in Additional file 17: Figure S3.
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Furthermore, the maximum likelihood trees were
generated from the alignment of 156 fluorescent sequences,
including the 11 newly identified sequences (Additional
file 18: Figure S4, Additional file 19: File S14 contains all
the accession numbers). There was a strong bootstrap
support for basal clade relationships within tree. This
includes the order Ceriantipatharia, and Pennatulacea,
although low bootstrap support for FPs within order
Scleractinia. Ctenophore FP clustered with hydrozoan FP,
therefore the cnidarian clade was not monophyletic. Others
have shown that incongruence with taxonomy is not un-
usual in fluorescent proteins [43]. For better visualization,
a smaller maximum likelihood sub-tree was generated
from 46 scleractinian FP sequences (Figure 4). Although
the bootstrap values improved compared to Additional
file 18: Figure S4, some branches still exhibited low boot-
strap values. Nonetheless, using RaXML [27], we catego-
rized the newly identified sequences into four clades and
using ProtTest [44] we identified “PROTGAMMAWAGF”
as the best-fit model.
In order to evaluate our assembly method and the

possible impact of ABySS-specific errors on the annotation
accuracy of the long candidate FP sequence, we performed
both Trans-ABySS [20] and Trinity [45] on reads from
Fav1. Both assembly programs led to the generation of se-
quences identical to Fav1 s23Contig16657-5 as predicted
using ABySS and CAP3. (Additional file 20: File S15).

Validation of the identified protein clusters as fluorescent
proteins
The intrinsic fluorescence of FPs includes a unique
chromophore that is formed post-translationally within
the protein upon autocatalytic cyclization and oxidation
of residues X-Tyr-Gly [46]. The fluorophore is located
almost at the center of the cylinder and is inaccessible to
outside enzymes [46,47]. The GFP fluorophore is capable
of forming under a wide range of conditions and once
formed is highly stable. The entire structure is very resistant
to denaturation by heat and denaturants. The three se-
quences with longer N-terminal domains (s23Contig16657-
5, s62Contig19888-6 and s62Contig41210-3) were cloned
into mammalian expression vectors. We used Kozak ana-
lysis [48] to pick the best potential start codon, and reading
frames were generated using gene synthesis. The start co-
dons are underlined in red in Additional file 21: Figure S5.
The synthesized sequences were optimized for expression
in mammalian cell lines. The synthesized sequences
showed fluorescence when expressed in HEK-293
mammalian cells, thus validating them as genuine FPs
(Figure 5).

In Silico quantification of Faviids transcripts
In order to rule out the possibility of promiscuous domain
assembly, we assessed the quality of the de novo assembly
of FP sequences, as well as all other transcripts, by mapping
reads on assembled contigs for each sample. Such read
alignment to contigs is necessary to provide support for
new transcript identification as well as for determining
gene expression levels [49,50]. In order to measure the
Reads Per Kilobase of exon model per Million mapped
reads (RPKM) [50], a sub-fasta cDNA region, correspond-
ing to each ORF, within each contig was generated. Reads
were aligned to these annotated cDNA regions. Coverage
(RPKM) measurements were determined using a Perl
script (Script 3). The results are reported (Additional
file 22: File S16, Additional file 23: File S17). The mapping
of all the reads onto the annotated Faviids transcript
showed that the number of reads corresponding to each
transcript ranged from 10 to 47,189, with an average of
850 reads per transcript in Fav1, and 10 to 29,222, with an
average of 766.37 reads per transcript in Fav2, indicating a
wide range of expression level of Faviids transcripts. It
also indicates that very low expressed annotated Faviids
transcripts were also represented in our assembly. The
minimum coverage (RPKM) of an annotated Fav1 tran-
script was 3.89 and maximum of 6,919.20 with an average
of 68.61. The RPKM ranged from 3.60 to 8,576, with an
average of 72.64 in Fav2. The average and the range of
RPKM per transcript is similar and somewhat higher (25.7)
than other whole transcriptome studies [26].
All the cDNA regions annotated for fluorescent prop-

erty had reasonable coverage, including the long candidate
cDNA sequence (Fav1 s23Contig16657-5) (Additional
file 21: Figure S5). Based on the calculated RPKMs for
each of the identified fluorescent protein in both samples,
s23Contig19691-3 in Fav1, and s62Contig57475-7 in Fav2
had the highest coverage level (Figure 6).

Conclusions
In this study, we demonstrate a gene clustering strategy
and utilize this in conjunction with NGS contig assem-
bly, sequence conservation measurements, annotation
and expression quantification for de novo assembled
transcriptomic data. Working with two uncharacterized



Figure 4 Maximum likelihood tree of 46 known fluorescent proteins and 11 newly identified fluorescent protein sequences using
RaxML. The alignment was 1,000 times bootstrapped and one FP sequence from N. vectensis was the out-group. The newly identified FP
sequences are colored blue. Other colors represent different coral families; Faviidae, red; Acroporidae, orange; Oculinidae, brown; Pectiniidae, dark
green; Meandrinidae, dark purple; Mussidae, pink; Poritidae, green; Node labels are bootstrap supports. See Additional file 19: File S14 for
information on alignment.
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Faviid corals, we report 120,000 non-redundant transcripts
to a genus whose sequence data was previously limited to
496 in public databases. These results provide greatly
enhanced access to the expressed genes in Faviidae reef
building corals, a potentially valuable resource of genetic/
functional markers for population structure and functional
genomic studies. We also took advantage of the optical
properties of these corals expressed fluorescent proteins to
validate our annotation methods to show that these se-
quences were indeed bonafide fluorescent protein genes.
These methods reported in this study are available via Open
Source software programs as well as our provided scripts.
Methods
Coral collection and total RNA isolation
This study was conducted during the period of May–June
2009 on a coral reef on the northern tip of the Gulf of
Eilat, in the northern Red Sea (29º30′N, 34°55′E).
Samples were collected at 65 m, using closed-circuit

trimix rebreather system (Megalodon™). The organisms
were identified under water to the family level, Faviidae,
and brought to the surface in a black mesh bag to avoid
sun exposure. The organisms were immediately
photographed and vouchered with white light and fluor-
escent photography as described in [51] and stored in a



Figure 5 Expression of an assembled contig in HEK293 mammalian cells yields fluorescence. An open reading frame of contig 19888
from Fav2 was synthesized using mammalian preferred codon usage (887 bases of s62Contig19888) and subcloned into pcDNA 3.1, and
transfected into HEK293 mammalian cells using Fugene (Boehringer-Mannheim). The left panel depicts a phase contrast image of
transfected HEK293 cells, and the right panel depicts fluorescence (using FITC excitation and emission) from the same field. Scale
bar = 100 microns.
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shaded running-seawater facility. Within 1–2 hours of
collection, samples were rinsed in sterile-filtered artificial
seawater and processed for RNA and DNA. The tissue
of the coral was extracted from the skeleton using
QiaShredder (Qiagen). For RNA, the TriZol method was
used and stored as an ethanol precipitate for travel back
to the US. DNA was extracted using Qiagen DNAeasy
kit according to manufacturer’s protocol and stored in at
4°C. The specimens have been photo vouchered and
their genomic and transcriptomic raw materials are
stored in the American Museum of Natural History Am-
brose Monell Cryo Collection.
Figure 6 In silico coverage plot of the read-to-contig alignment meas
protein coverage measurements.
Preparation and screening of cDNA library
Illumina sequencing using the GAII platform was
performed at the Yale University W.M. Keck Biotech-
nology Resource Laboratory according to manufac-
turer’s instructions (Illumina, San Diego, CA) (Additional
file 24: File S18) and using high quality RNA with a
28S rRNA band at 4.5 kb that is at least twice the in-
tensity of the 18 s rRNA band at 1.9 kb. The cDNA li-
brary contained 77,804,306, 75-mer length reads. The
sequencing data are deposited in NCBI Sequencing
Read Archive [52]. (The BiosampleIDs = SAMN01761696,
SAMN01761695).
urements. The cDNA fragments with annotation for fluorescent
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De novo assembly
De novo assembly was carried out using ABySS with
default settings across multiple k-mer values [18]. After
assessing different k-mer values, the three best k-mer
assemblies (35-mer, 39-mer, 45-mer for Fav1 and 31-mer,
35-mer, 39-mer for Fav2) were selected and concatenated
for the second step of assembly. To evaluate the N50
length and the number of assembled contigs using differ-
ent k-mer values, we used a Perl script. CAP3 [22] was
used to remove redundancy across ABySS assemblies and
to merge contigs into longer sequences. All assembled
contigs were subjected to annotation and further protein
homology searches. Trans-ABySS [20] and Trinity [45]
were used to confirm the long ORFs, homologous to
fluorescent proteins, which were identified with ABySS
and CAP3.

Gene annotation and analysis
A set of possible Open Reading Frames (ORF), stop to
stop from assembled sequences, was generated using
EMBOSS [24]. To annotate the de novo assembled se-
quences, a similarity search against N. vectensis prote-
ome was conducted using BLASTP with two E values of
2e-10 and 2e-30. The resulting data (E-value of 2e-30) was
filtered and clustered using TRIBE-MCL [27]. Each
homologous group was annotated using GO and KOG
annotated N. vectensis data (http://genome.jgi-psf.org/
Nemve1/Nemve1.download.html). For Symbiodinium pep-
tide annotation, a homology search using BLASTN with E
values of 2e-80 against the Symbiodinium transcriptome
(http://medinalab.org/zoox/) was carried out. The final
non-symbiont FASTA cDNA fragments were reported.

Completeness measurement
The BlastP (E-value of 2e-30) output list generated from
homology search of both samples against N. vectensis [41]
and A. digitifera [53] was organized for completeness
measurements. The completeness formula according to
[28] was implemented into a Perl script (In prep) to deter-
mine the percentage of the reference proteome that is
covered by each of our sets of assembled transcripts.
Length coverage of each of these reference ORFs by a hit
from our data set had to be at least 80%.

Phylogenetic analysis of FPs
The maximum likelihood tree of identified fluorescent
protein was generated using RaXML [34] under PROT-
GAMMAWAGF amino acid substitution model, selected
based on the results from ProtTest [44]. The alignment
was generated using MAFFT [54] and CLUSTALW2
[32] with minor adjustment at the N-terminus region,
when long gaps were inconsistent with other isoforms.
Bootstrap values were estimated based on 1,000 replicates
and were given for all presented branches. The variant
sites were visualized with geneious (http://www.geneious.
com). Dendroscope was used for visualization [55].

Phylogenetic assessment
Molecular barcodes for all the Favia related sequences
were downloaded from NCBI. A similarity search with
sequences from our annotation was carried out against
this Favia dataset. Cytb, COI and 28S sequences were
identified and extracted from the cDNA contig files in
both samples. DNA alignments for each locus were
generated using ClustalW2 with default parameters [32].
Consequently, a matrix of these three loci was generated
using FASconCAT [33]. A Maximum likelihood phylogen-
etic analysis (RaxML) was carried out [34]. Bootstrap
values were estimated based on 10,000 replicates and were
given for all presented branches. Dendroscope was used
for visualization [55].

Cloning of fluorescent proteins
The three cDNA sequences (Fav1 s23Contig16657, Fav2
s62Contig19888-6 and Fav2 s62Contig41210-3) were syn-
thesized and propagated in pUC57 (GenScript USA Inc.).
Kozak [48] analysis was used to determine the location of
the potential start codon. The genes were subcloned
from pUC57 into the NotI-BamHI site of the mammalian
expression vector pcDNA 3.1 (Invitrogen, Inc.) using
standard recombinant techniques [56].

In Silico gene coverage measurements
Gene coverage levels were determined using a Perl script
(Script 3). This script implements Bowtie [57] to map
reads to an annotated reference cDNA, and calculates
the RPKM according the formula used in [50]. For
visualization, BWA [58] was used to generate the read-
to-contig alignment. The annotated cDNA from individual
samples were used as the reference contig, and SAMtools
[59] was used to generate binary files to be visualized
in the IGV [60] genome viewer (For commands, see
Additional file 1: File S1).
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Additional file 3: Files S3. BlastP parsed output files against N. vectensis
proteome for sample Fav1 and Fav2 with 2e-30.

Additional file 4: Files S4. TRIBE-MCL input files.

Additional file 5: File S5. TRIBE-MCL input files.

Additional file 6: Files S6. Homologous protein clusters (TRIBE-MCL)
output for sample Fav1 and Fav2.

Additional file 7: File S7. Homologous protein clusters (TRIBE-MCL)
output for sample Fav1 and Fav2.
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Additional file 8: Table S1. Completeness metrics for two samples
compared to N. ventensis and A. digitifera.

Additional file 9: Files S8. GO,KOG, InterPro annotation for
homologous protein clusters in Fav1.

Additional file 10: Figure S1. Distribution of Fav1 transcript clusters in
different GO categories.

Additional file 11: Files S9. FASTA files for cDNA region encoding for
non-symbiont annotated ORFs in Fav1 and Fav2.

Additional file 12: File S10. FASTA files for cDNA region encoding for
non-symbiont annotated ORFs in Fav1 and Fav2.

Additional file 13: File S11. Alignment of Fav1 and Fav2 Cytb
nucleotide sequences, including other Favia species.

Additional file 14: File S12. Alignment of Fav1 and Fav2 COI
nucleotide sequences, including other Favia species.

Additional file 15: File S13. Alignment of Fav1 and Fav2 28S
nucleotide sequences, including other Favia species.

Additional file 16: Figure S2. Maximum likelihood tree of three loci
(COI, Cytb, 28S). Data matrix was generated from 15 Favia species and
Fav1 and Fav2. Nucleotide sequences were aligned using clustalw2 with
default parameters, the 3 loci matrix was generated using FASconCAT,
and the tree was constructed using RaxML (See methods). Montastrea
cavernosa is selected as the out-group.

Additional file 17: Figure S3. Amino acid sequence alignment of full-
length fluorescent protein isoforms.

Additional file 18: Figure S4. Maximum likelihood tree of 156 known
fluorescent proteins, including our 11 newly identified sequences using
RaxML. Shows the relationships of the major groups of known
fluorescent proteins. Major lineages cluster together, although
Ctenophore and Hydrozoa do not form a monophyletic group. Within
Anthozoa class, order Ceriantharia (orange); Actinaria (red); Pennatulacea
(dark green); and Scleractinia (black); Hydrozoa (purple); Copepoda (light
green); Ctenophora (blue); Chordata (turquoise blue), most basal group;
Newly identified sequences are colored blue within Scleractinia. The
alignment was 1,000 times bootstrapped and B. floridae was the out-group.

Additional file 19: File S14. Alignment of 156 known fluorescent
proteins, including the 11 newly identified FP sequences.

Additional file 20: File S15. Search result in Trans-ABySS and Trinity
assembly output for homologous contig, similar to identified Fav1
s23Coting16657-5 produced by ABySS and CAP3.

Additional file 21: Figure S5. Read-to-contig alignment. 75 bp read
alignments to the coding region of s23Contig16657-5, 1,377 bp total length.

Additional file 22: Files S16. RPKM measurement for all annotated
cDNA regions from Fav1 and Fav2.

Additional file 23: File S17. RPKM measurement for all annotated
cDNA regions from Fav1 and Fav2.

Additional file 24: File S18. Protocol for preparing samples for
sequencing of mRNA.Scripts: Script 1: Perl script for performing blast
search. Script 2: Perl script for pre-clustering the blast parsed file. Script 3:
Perl script to calculate RPKM for the assembled file. Script S1: Perl script
to shuffle short read sequences. Script S2: Perl script to measure the N50
statistics. Script S3: Unix shell script to remove Fasta files shorter than a
threshold. Script S4: Generate the sub-Fasta file. Script S5: Extract the
cDNA sequences corresponding to ORF files.
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