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Abstract

individuals.

Background: Measuring allelic RNA expression ratios is a powerful approach for detecting cis-acting regulatory
variants, RNA editing, loss of heterozygosity in cancer, copy number variation, and allele-specific epigenetic gene
silencing. Whole transcriptome RNA sequencing (RNA-Seq) has emerged as a genome-wide tool for identifying
allelic expression imbalance (AEl), but numerous factors bias allelic RNA ratio measurements. Here, we compare
RNA-Seq allelic ratios measured in nine different human brain regions with a highly sensitive and accurate
SNaPshot measure of allelic RNA ratios, identifying factors affecting reliable allelic ratio measurement. Accounting
for these factors, we subsequently surveyed the variability of RNA editing across brain regions and across

Results: We find that RNA-Seq allelic ratios from standard alignment methods correlate poorly with SNaPshot, but
applying alternative alignment strategies and correcting for observed biases significantly improves correlations.
Deploying these methods on a transcriptome-wide basis in nine brain regions from a single individual, we
identified genes with AEl across all regions (SLCTA3, NHP2LT) and many others with region-specific AEl. In
dorsolateral prefrontal cortex (DLPFC) tissues from 14 individuals, we found evidence for frequent regulatory
variants affecting RNA expression in tens to hundreds of genes, depending on stringency for assigning AEl. Further,
we find that the extent and variability of RNA editing is similar across brain regions and across individuals.

Conclusions: These results identify critical factors affecting allelic ratios measured by RNA-Seq and provide a
foundation for using this technology to screen allelic RNA expression on a transcriptome-wide basis. Using this
technology as a screening tool reveals tens to hundreds of genes harboring frequent functional variants affecting
RNA expression in the human brain. With respect to RNA editing, the similarities within and between individuals
leads us to conclude that this post-transcriptional process is under heavy regulatory influence to maintain an
optimal degree of editing for normal biological function.
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Background

Identifying cis-acting functional genetic and epigenetic
factors affecting RNA expression from trans-acting
influence remains challenging. Two approaches have
emerged to offset the influence of trams-acting factors,
in search of causative cis-acting factors. The first
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approach uses large sample sizes (hundreds to thousands
of tissues) to dissect the influence of trans- versus cis-
acting factors influencing expression by correlating
RNA transcript expression, as a quantitative trait, with
single-nucleotide polymorphisms (SNP) genotyped with
genome-wide arrays. Correlations between RNA expres-
sion levels and SNPs yield expression quantitative trait
loci (eQTLs) located in cis (cis-eQTLs) or trans (trans-
eQTLs) and have been examined across a variety of
tissues [1-7]. eQTL analysis still leaves some ambiguity
regarding the cis- or trams-acting nature of a poly-
morphism, as cis-acting factors can be hundreds of
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kilobases away from the genes they regulate [7]. As an
alternative to eQTL analyses, our group and others have
utilized allelic RNA expression imbalance (AEI), which
compares the relative expression of two alleles in the
same individual as a phenotype influenced only by cis-
acting genetic variants [8-10]. Because AEI is an accu-
rate and sensitive phenotype proximal to the functional
genetic variant, this approach facilitates the detection of
cis-acting regulatory polymorphisms affecting any me-
chanism that measurably changes RNA expression, even
when those polymorphisms reside at a distance from
the affected gene or in regions of high linkage dis-
equilibrium [11]. Allelic RNA expression ratios, when
measured specifically in splice variants or alternatively
expressed untranslated regions, can identify genetic
variants affecting RNA processing [12-14]. In addition
to identifying cis-acting regulatory variants, AEI is a
powerful phenotype for assessing the extent of RNA
editing [15,16], loss-of-heterozygosity or monoallelic
expression in cancer [17], and allele-specific epigenetic
programming [18]. For example, directly measuring
allelic-specific RNA expression in brain tumors revealed
a dramatic increase in monoallelic expression of mul-
tiple oncogenes, the extent of which correlated with
tumor progression and prognosis [19].

Genome-wide allelic RNA expression ratio measure-
ments are possible by adapting genotyping array tech-
nology for quantitative measurement, demonstrating
high sensitivity for detecting AEI in human cell lines
and peripheral blood cells [20,21]. Multiple researchers
have since used this genome-wide approach to uncover
cis-acting regulatory variants in a variety of tissues
[22-24]. However, array-based quantitative allelic ana-
lyses lacks the ability to measure AEI at rare or de novo
SNPs and yields limited information about transcript
isoform expression. The advent of massively parallel
DNA sequencing technologies presents an opportunity
to collect qualitative and quantitative aspects of gene
expression in a single experiment, including splice
isoform expression, genetic variants, cis-eQTLs, RNA
editing, and allelic ratios [10,14,16,25-28]. However,
significant experimental and analytic challenges need
to be addressed and results compared to traditional
methods before RNA-Seq is deemed a reliable com-
plement (or alternative) to existing allelic measure-
ment techniques.

Previous characterizations of allelic ratios using RNA-
Seq are subject to a number of caveats, most notably
high read depth requirements [29-31] and under-
representation of variant versus reference alleles [32,33]
resulting from alignment algorithms penalizing variant
alleles as mismatching errors when compared to the
reference genome. Bioinformatic attempts to correct
variant allele underrepresentation bring allelic ratios
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closer to unity and result in a higher number of mapped
reads [33], but may not increase reliability of allelic ratio
estimates [32]. Incorporating genomic information into
allelic ratio measurements, for example by normalizing
allelic RNA expression ratios to matched DNA ratios or
by constructing personalized reference genomes for
mapping, greatly improves allelic RNA ratio estimates
[14,26,27]. Still, allelic expression ratios measured by
RNA-Seq are yet to be systematically compared against
targeted allelic expression methods to determine the
reliability of RNA-Seq to measure allelic ratios. Here, we
measured allelic RNA expression ratios in 9 autopsied
brain regions from a single individual, using multiple
alignment strategies and comparing RNA-Seq derived
allelic ratios with a highly sensitive allelic quantitation
method (SNaPshot). After identifying factors affecting
allelic ratio estimates by RNA-Seq, we extrapolated our
methods with varying stringency to a new set of whole-
transcriptome RNA-Seq samples from the dorsolateral
prefrontal cortex (DLPFC) of 14 different individuals,
identifying tens to hundreds of genes displaying AEI in
more than one individual, indicative of frequent cis-
acting regulatory variants. A number of these genes have
evidence for harboring functional variants from cis-
eQTL studies. In addition to identifying genes harboring
likely cis-acting functional polymorphisms, we also
surveyed sites of known RNA editing, asking whether
we observed greater variability across brain regions in a
single individual or across multiple individuals in the
same brain region, shedding light on the degree to which
RNA editing is regulated in the brain.

Results and discussion

Allelic RNA expression ratios across different alignment
methods

Tissue characteristics and mapping statistics from 5500
SOLiD Sequencing (Life Technologies, Grand Island,
NY) in the 9 brain tissues are presented in Table 1. We
used the Ovation RNA-Seq System v2 (NuGen) for
c¢DNA synthesis, which provides coverage at non-coding
(ncRNAs) and non-polyadenylated RNA transcripts in
addition to protein-coding mRNAs while reducing ribo-
somal RNA conversion to ¢cDNA. Given the known
alignment biases in allelic RNA expression ratios in
RNA-Seq [14,26,27,32,33], we compared allelic ratios at
heterozygous exonic SNPs following three different
alignment methods: 1) alignment to the standard
NCBI Build 37/hgl9 reference genome, after which
reference allele counts were directly compared to vari-
ant allele counts, 2) a targeted allele-switching method
requiring construction of a new “reference” genome
whereby the wild-type nucleotide at 187 SNP locations
in 58 genes in NCBI Build 37/hgl9 were replaced with
the variant nucleotide (Additional file 1: Table S1),
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Table 1 Tissue characteristics and mapping statistics for 9 brain regions
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Brain region RIN*  Total
reads alignment)

Reads mapped (standard

Reads mapped (allele-switched

alignment)®

Reads mapped (IUPAC

alignment)

BA10 (frontopolar cortex) 59 36,449,577 30,223,143 (83%)
BA22 (superior temporal 7.1 34975593 29,506,035 (84%)

cortex)

BA24 (anterior cingulate 6.5 43,992,783 36,562,760 (83%)
cortex)

Insular cortex 50 38872288 32,777,310 (84%)
Amygdala 69 41,172,320 34,304,449 (83%)
Hippocampus 6.7 48277234 40,944,589 (85%)
Putamen 68 30,881,648 25,861,872 (84%)
Cerebellum 6.9 39047957 32,918,344 (84%)
Raphe nuclei 69 41,231,369 33,963,780 (82%)

30,222,857 (83%)
29,505,770 (84%)

36,562,530 (83%)

30,314,666 (83%)
29,594,225 (84%)

36,698,983 (83%)

32,777,059 (84%) 32,879,072 (84%)
34,304,246 (83%) 34,398,572 (83%)
40,944,279 (85%) 41,012,249 (85%)
25,861,690 (84%) 25,958,094 (84%)
32,918,093 (84%) 32,938,662 (84%)
33,963,585 (82%) 34,091,575 (83%)

RIN RNA Integrity Number, measured with Agilent Bioanalyzer 2100.

PAllele-switching only conducted on a limited number of SNPs listed in Additional file 1: Table S1.

remapped, and corresponding “reference” allele counts
from both alignments used to calculate allelic ratios,
and 3) a single genome-wide alignment using a
modified hgl9 reference genome that incorporates
International Union of Pure and Applied Chemistry
(IUPAC) ambiguity codes at SNP locations catalogued
in dbSNP Build 135, after which reference allele
counts were directly compared to variant allele counts.
Construction of an “enhanced reference genome” by
adding additional loci incorporating polymorphic sites
is also a viable alternative [33], as is the use of
personal genomes where polymorphic sites are known
[14,26], or directly sequencing the genomic DNA [27],
although these were not explicitly tested here.

Using either alignment method that was applied in
a genome-wide manner (standard or IUPAC), the
number of SNPs (or genes) available for allelic ratio
analysis diminishes exponentially, as higher allelic
depth is required (Additional file 2: Figure S1). We
limited comparisons across the three methods to
those heterozygous SNPs where allelic ratio measure-
ments were present in all three methods, for a total
of 800 independent measures across 183 SNPs in 57
genes, with depth ranging from 24 to 409 reads per
SNP (Additional file 3: Table S2). To estimate the
magnitude of allelic ratio correction, log-transformed
allelic ratios from both correction methods (IUPAC
or allele-switched) were regressed against the log-
transformed allelic ratios from standard alignment
(Figure 1). IUPAC and allele-switch corrected data
performed similarly, each reducing allelic ratio esti-
mates compared to standard alignment (i.e. a 3-fold
standard alignment allelic ratio corresponds to a 1.96-
fold IUPAC allelic ratio and a 2.03-fold allele-
switched allelic ratio).

Allelic RNA expression ratios across cDNA synthesis
methods measured with SNaPshot

The two c¢DNA synthesis approaches used here are
methodologically different. Gene-specific priming (GSP)
is a strand-specific strategy, while NuGen is strand-
independent and more similar to random hexamer
priming. Divergent allelic ratios between these two
methods can result from an admixture of plus and
minus strand-encoded RNA transcripts in the NuGen
c¢DNA, while GSP cDNA enriches for only one strand,
compelling a direct comparison between the two
methods. For this comparison, we individually measured
allelic RNA expression ratios at 36 different SNPs in 21
genes using SNaPshot, for a total of 186 comparisons
across the 9 tissues (Additional file 4: Table S3). Overall,
log-transformed allelic ratios using the two cDNA syn-
theses were highly correlated (+* = 0.68, Additional file 2:
Figure S2), although NuGen ¢cDNA tended to yield higher
allelic ratios, on average (i.e. a 3-fold allelic ratio in NuGen
c¢DNA corresponds to a 2.1-fold allelic ratio in GSP
¢DNA). Importantly, when AEI was indicated in the GSP
c¢DNA (>1.5-fold difference in expression between two
alleles), NuGen ¢cDNA also indicated AEI >1.5 for 17 of 21
SNPs. Similarly, when allelic ratios were <1.5 in GSP
¢DNA, NuGen cDNA AEI were also <1.5 at 155 of 165
SNPs. The general agreement in allelic ratios between the
two ¢cDNA synthesis methods indicates that the NuGen
c¢DNA synthesis method used to produce the RNA-Seq
libraries yields allelic ratios similar to those obtained with
gene-specific priming.

RNA-Seq allelic RNA expression ratios compared to
SNaPshot

Next, we compared allelic ratios resulting from any
of the three alignment methods (standard, IUPAC,
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Figure 1 Comparison of allelic RNA expression ratios for standard versus alternative mapping methods. On average, the IUPAC and
Allele-Switching mapping methods resulted in similar reduction of allelic RNA expression ratios (solid and dashed lines, respectively) as compared

O IUPAC vs. Standard

4 Allele-Switch vs. Standard
—Linear (IUPAC vs. Standard)

= Linear (Allele-Switch vs. Standard)

allele-switch) to the single-gene SNaPshot measures
of allelic expression (NuGen or GSP). Because we do
not know the haplotype phasing of our samples, all
allelic ratios were transformed to positive allelic ratio
values using the formula |Logo(ratio)|, which ensures
uniformity of SNPs with ambiguous strand alignment
(C/G and A/T) and allows multiple allelic ratios in
the same gene to be combined. For example, 2-fold
and 0.5-fold allelic ratios at different SNPs in the
same gene both represent a 2-fold relative difference
between alleles and yield a 2-fold allelic ratio when
combined within that gene.

Allelic ratios, when compared at single SNPs, were
similarly correlated between IUPAC- or allele-switch
ratios versus either NuGen or GSP SNaPshot mea-
sures, while standard allelic ratios from RNA-Seq
were much less correlated with either SNaPshot
measure (Additional file 2: Figure S3). These correla-
tions dramatically improved across all alignment
methods, when allelic ratios were averaged at mul-
tiple SNPs in the same gene, although allelic ratios
from the standard alignment were still much less
correlated with SNaPshot measures (Figure 2).

Attempts at linear modeling, performed as a meta-
analysis comparing ratios from the different methods

using the metafor R package [34], did not return the
theoretically expected level of agreement between ob-
served allelic ratios from any alignment methods when
compared against SNaPshot in either ¢cDNA synthesis
method (data not shown). Therefore, we considered
pairwise logistic models (Additional file 2: Table S4) as
an empirical meta-analytic approach for predicting
whether RNA-Seq allelic ratios by any alignment method
would meet a =1.5-fold threshold by our SNaPshot
method in either NuGen or GSP libraries. Comparisons
were only performed where corresponding data were
present for both methods. RNA-Seq allelic ratios were
converted into a logit score: log (greater number of
reads / smaller number of reads), which was used as a
predictor in each model [logit(AllelicRatio)]. Overall, the
IUPAC alignment produced the best predictions by
Akaike Information Criterion (AIC), while standard
alignment performed the worst (lower scores corres-
ponding to better model fit; Additional file 2: Table S4).
For IUPAC ratios compared to SNaPshot ratios in the
GSP library, the inclusion of two covariates with the
logit(AllelicRatio) gave the best AIC value: the number
of additional SNPs in in the gene times the logit
(AllelicRatio) (as an “interaction term”) and the hete-
rogeneity among the allelic ratios as reported by the
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Figure 2 Gene-wise allelic RNA expression ratio comparisons
measured by RNA-Seq (Standard, IUPAC, or Allele-Switch)
versus SNaPshot (NuGen or GSP). The two alternative mapping
methods (IUPAC and Allele-Switch) were similar and more highly
correlated with SNaPshot allelic ratio measures for both NuGen
cDNA (A) and GSP cDNA (B), whereas Standard mapping was much
less correlated (dotted line).

R meta-analysis. For IUPAC ratios compared to SNaP-
shot ratios in the NuGen library, these covariates did
not decrease the AIC, consistent with overfitting,
although they also do not result in a significantly differ-
ent AIC score when included in the model. Alternative
approaches, including incorporation of error estimates
or derivatives as covariates, did not improve the per-
formance of the predictor. Therefore, based on logistic
regression, IUPAC allelic ratios resulted in a better
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model fit for allelic ratios measured by SNaPshot in
either cDNA synthesis method.

Alignment correction applied across the whole
transcriptome

Given similar ratios between the two alternative
alignment methods and the results of our meta-analytic
approach, we employed the IUPAC method on a
transcriptome-wide basis in the 9 different brain regions
(mapping statistics in Table 1). After transcriptome-
wide IUPAC alignment, we compared any annotated
SNP in which both alleles had a depth of at least 3 reads
(6 total reads) and the lower expressed allele constituted
at least 5% of total reads at the SNP, for a total of 23,085
SNPs in 3247 genes across the 9 tissues. While 6 total
reads is well below the number necessary for deter-
mining statistically significant AEI at any one SNP [30],
at this point we are testing the implementation of the
IUPAC alignment across the entire dataset for obvious
bias. The magnitude of allelic ratio correction by IUPAC
alignment versus the standard alignment was similar to
that observed in the smaller dataset above (i.e. a 3-fold
uncorrected allelic ratio corresponds to a 1.96-fold
IUPAC-corrected ratio; Figure 3). In the IUPAC-aligned
dataset, fewer SNPs were above a given allelic ratio
threshold as compared to standard alignment (Figure 3
inset), decreasing in both datasets in an exponential
fashion as allelic ratios increase. This alone has signifi-
cant implications for examining allelic RNA expression
ratios following standard alignment. When comparing
the number of SNPs displaying allelic ratios >2 between
alignment methods, we see a 30-50% reduction in the
number of SNPs in IUPAC versus standard alignment.
Therefore, the number of SNPs displaying allelic ratios
with potential biological consequence is greatly over-
estimated just as a consequence of standard alignment
methods.

As before, we combined allelic ratios at multiple SNPs
in the same gene to attenuate error in single SNP allelic
ratios. Similar to the single SNP analysis, the overall
number of genes displaying allelic ratios above 2 is con-
siderably higher in the standard versus IUPAC dataset.
When only requiring one SNP, 13,786 gene x tissue com-
binations were represented in this analysis, with allelic
ratios ranging from 1- to 13.3-fold. Requiring more than
one SNP per gene reduces the number of gene x tissue
combinations for analysis to 4,667 and also reduces the
number of genes displaying major allelic ratios greater
than 5-fold (<1%). We observe 641 gene x tissue combi-
nations with >2-fold allelic ratios for IUPAC alignment,
as compared to 1255 combinations for standard align-
ment. Of the 641 IUPAC ratios >2, 422 (66%) were rep-
resented in the standard alignment dataset. Restricting
the analysis to SNPs with at least 10 counts per allele
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Figure 3 Standard versus IUPAC-aligned allelic RNA expression ratios in all 9 brain regions. [UPAC alignment systematically reduces allelic
ratios by approximately 0.3-fold per fold change in Standard alignment allelic ratios (i.e. a 2-fold Standard allelic ratio corresponds to a 1.4-fold
IUPAC allelic ratio). Inset: Following IUPAC alignment, fewer SNPs are above any given allelic ratio threshold compared to Standard alignment,
suggesting uniform reduction of allelic ratios across the spectrum of allelic values.

and genes with at least 2 measurements only marginally
increases coincidence of genes with allelic RNA expres-
sion ratios >2 between the two alignment methods
(69%). So, not only do the two methods give different
allelic ratio estimates, but they also produce gene pools
that are only 66% similar for allelic ratios >2. Increasing
stringency in this manner also does not appear to
improve the accuracy of estimated allelic ratios when
compared to SNaPshot. Five of the 26 genes that overlap
between IUPAC and standard alignment (DADI,
KCNQ3, NHP2L1, SCN1A, SCN4B) with allelic ratios >2
in the IUPAC dataset were measured with SNaPshot and
only one had allelic ratios >2 (NHP2L1I).

The variability of allelic RNA expression ratios across
multiple SNPs in a single gene is another metric that
can guide our search for allelic expression imbalance. To
further eliminate likely false-positives indicated by high
within-gene allelic ratio variability, we can ask whether
any gene-wise allelic ratio remains above a certain
threshold after adjusting by the standard deviation for

all SNPs within that gene. For example, 109 gene x tissue
combinations (98 genes) have an allelic RNA expression
ratio >1.5 after subtracting two standard deviations from
the original allelic ratio. Of those 109 genes x tissue
combinations, we measured allelic ratios in 8 using
SNaPshot, 7 of which displayed allelic ratios >2. These
strict requirements do exclude a number of samples
where SNaPshot allelic ratios are >2, demonstrating the
tradeoff between capturing AEI with greater probability
and allowing too many false positive allelic ratios.

Allelic RNA expression ratios across brain regions

Now that we have characterized the sensitivity of RNA-
Seq in detecting allelic ratios and have estimates of the
false discovery rate as compared to our single-gene
methods, we can begin to provide a meaningful inter-
pretation of the allelic ratios observed across the 9 tis-
sues. Taking into account the factors that best improved
concordance between RNA-Seq allelic ratios and those
measured by SNaPshot, we used IUPAC aligned gene-
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wise allelic ratios averaged at multiple annotated SNPs,
leaving us with the 4,667 gene x tissue allelic RNA
expression ratios, 641 of which were >2, as noted above.
We have chosen allelic ratios 22 in these IUPAC-aligned
samples as being indicative of AEIL This allelic ratio
value from IUPAC-aligned gene estimates should ap-
proximately correspond to a 1.5-fold allelic ratio by
SNaPshot, according to our analysis above.

One hundred forty-nine genes had allelic ratios meas-
urable in all 9 brain regions by our methods, none of
which displayed AEI in all 9 tissues. Two genes, NHP2L1
and SLCIA3, displayed AEI in 8 regions and were con-
sistent with SNaPshot allelic ratios. High allelic dif-
ferences were also observed in the ninth region for each
gene, but were not included in the overall analysis as the
excluded tissues had only one informative SNP for AEI
measurement. NHP2L1 encodes a protein that is a highly
conserved component of the spliceosome, but the bio-
logical significance of altered mRNA expression for this
gene is unknown. SLCIA3 is the high-affinity glial glu-
tamate transporter (also known as Eaatl or GLAST in
rodents). Clinical phenotypes are evident for altered
SLC1A3 function, including ataxia or epilepsy, but this
may be a consequence strictly resulting from protein-
coding mutations, as known disease-linked mutations
are presumed to act in a dominant negative fashion in
the assembled homotrimeric transporter [35]. Changes
only to mRNA expression, as seen in heterozygous
Slcla3 knockout mice, do result in some behavioral
abnormalities [36], but the applicability of these findings
to humans is unclear. The other genes exhibiting ubi-
quitous AEI where measured included ANKI, EDEM3,
FAMI164A, LOC338651, PTK2B, SCS5DL, SEC22B,
TUBAIC, and ZNF675.

Identifying common cis-acting regulatory variants in
DLPFC

A primary purpose for measuring allelic ratios is to iden-
tify common cis-acting regulatory polymorphisms. Ex-
trapolating our findings to a set of 14 DLPFC RNA-Seq
samples from different donors, which includes the
DLPFC of the donor of the other 9 brain regions, we
can begin to ask which genes exhibit evidence for har-
boring common cis-acting regulatory variants and fur-
ther ask which genes show the strongest evidence. Our
approach includes not only protein-coding mRNAs, but
also ncRNAs, which are gaining widespread appreciation
for their cis-regulatory roles in gene expression and
other important biological actions [37]. Considering the
high probability that SNPs alter the conformational
properties of RNA [38] and the already known impor-
tance of structure-function relationships in large classes
of ncRNAs (transfer RNAs, ribosomal RNAs, etc.), the
inclusion of ncRNAs here presents interrogation of an
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additional layer of cis-acting regulation absent when only
selecting protein-coding mRNAs for RNA-Seq or subse-
quent analysis.

Out of 14 samples, we expect to detect functional
variants with a minimum heterozygosity of ~15%, as-
suming that 2 samples displaying AEI in the same gene
suggests a shared cis-acting functional variant. This ana-
lysis carries many caveats, including the assumption that
only a single functional variant per gene is driving AEIL
that we are able to measure allelic ratios in the same
gene in all 14 samples, and that these samples do not
display batch effects or artifacts associated with the
library preparations or sequencing methods. Demo-
graphics and sequencing statistics are listed in Table 2.

With a cutoff of at least 3 reads per allele (6 total
reads) in annotated exonic SNPs following alignment
with the IUPAC reference, we calculated allelic ratios at
25,837 polymorphic sites across 7524 genes and ncRNAs
in the 14 samples, for a total of 53,107 SNP x gene com-
binations. Using permissive parameters, we asked which
genes had >2-fold AEI when averaged across multiple
SNPs in the same gene and therefore show evidence for
harboring a cis-acting regulatory variant. Over half (4083
of 7542) of all genes were excluded from further analysis
because none of the 14 samples had more than one
informative allelic ratio. In the remaining 3441 genes, we
observe AEI in more than one sample for 500 genes
(Additional file 5: Table S5). Specifically with respect to
ncRNAs, we calculated 838 allelic ratios in 285 unique
transcripts, of which, 49 exhibited allelic ratios >2 in two
or more samples. We expect that in this analysis, we are
likely overestimating the number of genes with AEIL
especially given the lack of power to detect statistically
significant AEI at low coverage [30]. In some cases, it is
possible that AEI observed in many samples for the
same gene is an artifact driven by the presence of a
pseudogene or another family member with high se-
quence homology. For example, the gene/pseudogene
SEC22B exhibits AEI in all 14 tissues and also displayed
AEI where measured in each of the 9 brain regions. Of
the 9 genes with AEI in 6 or more samples, only 2
(ANK3 and LMO?7) can be excluded from obvious inter-
ference by pseudogenes or highly homologous related
family members. Interference from homologous family
members assumes both genes are expressed in the same
tissue to a level detectable by RNA-Seq and does not
necessarily disqualify putative AEI without further study.

Given our permissive parameters for designating AEI
and the possibility that gene homology is contributing to
overrepresentation of AEI, we increased the stringency
for designating AEI based on the variability of allelic
ratios between SNPs in the same gene, to ask which
genes have strong evidence for harboring cis-acting regu-
latory variants. As above, we subtracted two standard
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Table 2 Tissue characteristics and mapping statistics for 14 dorsolateral prefrontal cortex samples

Sample name Age Race® Sex Cocaine use Smoker PMI® RIN® Sequencing platform Total reads Reads mapped (IUPAC alignment)

DLPFCT 32 AA M + + 18 73
DLPFC2 49 CH M + + 15 66
DLPFC3¢ 20 AA M - - 12 67
DLPFC4 34 M - + 15 68
DLPFCS 39 C M + - 12 82
DLPFC6 25 AA M + - 205 82
DLPFC7 42 C F + - 14 71
DLPFC8 28 C M 11 91
DLPFC9 35 C M - - 12 83
DLPFC10 28 C M + - 8 8l
DLPFC11 35 C F + + 11 64
DLPFC12 39 C M + mo 77
DLPFC13 3 C M - - 2 73
DLPFC14 32 BH F - - 16 94

SOLID 5500 94,129,888 71,736,257 (76%)
SOLID 5500 98,880,442 73,446,303 (74%)
SOLID 5500 92,458,538 69,487,318 (75%)
SOLID 5500 243,400,656 104,099,874 (43%)
SOLID 4 49,940,133 37,200,670 (74%)
SOLID 4 48,399,474 37,741,267 (78%)
SOLID 4 46,956,017 35,661,219 (76%)
SOLID 4 53,947,324 39,909,693 (74%)
SOLID 4 60,022,719 44,510,882 (74%)
SOLID 4 258,721,328 200,550,177 (78%)
SOLID 4 48215511 37,349,598 (77%)
SOLID 4 290,364,386 227,982,821 (79%)
SOLID 4 94,036,538 56,435,396 (60%)
SOLID 4 48,174,311 37,197,681 (77%)

?Race/Ethnicity: AA African American, C Caucasian, H Hispanic.

BPMI Post-mortem interval, in hours.

“RIN RNA Integrity Number, measured by Agilent Bioanalyzer 2100.
9DLPFC originates from same sample as the 9 brain regions in Table 1.

deviations of the within gene allelic ratios from the total
gene allelic ratio for each sample and used a 1.5-fold allelic
ratio as a cutoff for designating AEL This yielded only 52
genes in which AEI was observed in multiple samples
(Table 3). Three of the 52 genes were the same as those
identified by the permissive analysis as having associated
pseudogenes or homologous family members. Three of
the 52 genes are identified as ncRNAs, but we can only
exclude one ncRNA (LINC00461) from interference by
pseudogenes or RNA editing (see below). Cross-
referencing these 52 genes with cis-eQTLs identified by
another study [1], 14 of the 44 genes where data is
available exhibit evidence for harboring a common
functional SNP affecting RNA expression (Table 3). As
another approach, we excluded genes in which the
standard deviation between SNPs in the same gene was
greater than one-third of the total allelic ratio for that
gene, keeping a >2-fold threshold for AEIL This analysis
yielded 71 genes with putative AEI, 46 of which had no
significant homology with the rest of the transcriptome
(Additional file 6: Table S6). With respect to RNA
editing described below, only PAR-SN and PDIA3P
exhibited significant AEI (Table 3) and evidence for
RNA editing.

Surveying RNA editing within and across brain regions

From these single base allelic ratios we can readily
detect instances of RNA editing, as one type of post-
transcriptional modification, and survey the variability
of editing at single sites and the extent to which they

are edited across different brain regions and across dif-
ferent individuals in the DLPFC (Table 4). In this ana-
lysis, DLPFC3 is included with the other 9 brain
regions, as it originates from the same donor brain (see
Table 2). We are specifically interested in determining
whether RNA editing is more variable across brain re-
gions in a single individual or within a single brain re-
gion across many individuals. Answering this question
yields insight into the regulatory factors guiding this
process. For example, greater variability across regions
suggests that each region has a unique complement of
trans-acting proteins guiding this process that is stable
across individuals, while greater variability across indi-
viduals suggests that each region contains a common
complement of trans-acting factors that can vary across
individuals, among possible interpretations.
Cross-referencing our RNA-Seq data with known
RNA editing sites from the DAtabase of RNa EDiting in
humans (DARNED) [39], we find 2,358 and 3,249 sites
noted in DARNED where we observe expression of the
variant allele in the 10 different brain regions and 13
DLPFC, respectively (1,271 overlapping). We applied
stringent criteria (see Methods for more information) to
maximize the likelihood we are capturing true instances
of RNA editing and also required at least 5 of 10 regions
and 9 of 13 DLPEC to exhibit RNA editing at any one
site for comparisons, leaving only 12 RNA editing sites
in 8 genes (Table 4). The magnitude of editing at each of
the 12 sites is highly correlated (+° = 0.88) across the 10
regions and 13 DLPFC. In addition, the variability of
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Table 3 Genes with AEI >1.5-fold following stringent correction®

Page 9 of 15

Gene # Samples # Samples with  Max  Min Comments® cis-eQTL SNP from
measured AEl >1.5 AEI®  AEIP BrainCloud (p-val)®
AHNAK 6 2 1.69 246 protein-coding mMRNA rs9645690 (5.94 x 107)
ANKRD26 5 2 1.62 1.70 pseudogene associated 1512779247 (8.53 x 10°8)*
AP2M1 8 2 172 2.20 protein-coding mRNA 1s2668193 (2.77 X WO'3)
AP3S2 3 2 1.50 2.00 protein-coding mMRNA rs4932145 (461 x 109)*
APOL2 4 2 1.57 1.97 protein-coding mMRNA 158136336 (1.03 x 107)
ATP2B4 8 2 1.96 2.16 protein-coding mRNA rs3753036 (231 % 10’3)
SESN3 4 2 1.66 2.06 protein-coding mRNA rs684856 (3.79 X 10°)*
C12o0rf5 6 2 1.54 227 protein-coding mRNA rs10849038 (4.98 x 10°)
CASD1 6 2 1.53 161 protein-coding mMRNA 152374735 (2.83 x 107'8)*
CcbC2s 9 2 1.59 1.60 pseudogene associated rs17477326 (535 x 107)*
CCNT2 6 2 1.67 167 pseudogene associated 1512470730 (167 X 107)
CCPGT 8 2 193 2.01 protein-coding mMRNA rs11071185 (8.14 x 107%)*
CCT5 5 2 161 1.77 pseudogene associated rs606490 (5.66 x 107*
cLcct 7 2 167 1.70 protein-coding mRNA 157542414 (129 % 107)
CNOT1 7 2 1.85 1.85 protein-coding mRNA rs11866002 (4.24 x 10'7)*
DOCK4 6 2 1.57 1.72 homology with DOCK3 rs29465 (447 x 107)
EFNAS 3 2 1.70 2.00 protein-coding mMRNA 1352602 (1.04 x 104)*
GABRBI1 5 2 162 1.68 homology with other GABRB family members N/A
GLS 8 2 2.22 229 protein-coding mRNA rs13029532 (423 x 107
HIPK2 10 3 1.51 2.70 ambiguity in genome assembly rs11761839 (161x 107)
KALRN 10 3 1.67 267 protein-coding mMRNA rs9873910 (1.43 x 10°4*
KCNJ16 2 2 1.70 239 protein-coding mMRNA rs12940454 (1.89 % 10°7)
KDM5B 4 2 1.52 1.64 protein-coding mRNA N/A
KIAA1826 4 2 1.83 2.16 protein-coding mRNA 1s2249950 (9.68 x 10’3)
LINCOO461 4 2 1.62 2.50 long intergenic NcRNA N/A
LMO7 10 2 1.77 2.10 protein-coding mMRNA rs1323565 (191 x 107*
LOC729799 3 2 201 218 pseudogene associated N/A
MYCBP2 7 2 1.54 1.79 protein-coding mRNA rs1927405 (101 x 107
NGRN 2 2 1.59 3.09 pseudogene associated 151543116 (488 x 107)
NHP2L1 3 2 1.56 3.21 pseudogene associated $17377643 (941 x 107)
NIN 9 2 1.53 2.00 protein-coding mMRNA rs10483610 (3.61 x 107)
NIP7 2 2 172 1.75 pseudogene associated 127231 (2.02x107)
NRIP3 10 2 1.65 222 protein-coding mRNA 510840166 (1.17 x 1 )
NRSN1 5 2 1.71 1.98 protein-coding mRNA N/A
OSTM1 5 2 1.58 262 protein-coding mRNA N/A
PARG 10 2 1.61 1.66 pseudogene associated 152002273 (2.18 x 107
PAR-SN 2 2 2.87 323 imprinted and high homology with multiple genes rs2732020 (486 x 107)
and known RNA editing
PDIA3P 9 3 254 5.98 pseudogene associated N/A
PTARIT 4 2 1.70 2.00 protein-coding mMRNA rs11139519 (4.86 x 107)
RGMB 4 2 1.70 2.28 protein-coding mMRNA 12545680 (8.60 x 107 4)*
RPRD1A 4 2 1.52 1.59 pseudogene associated 1s9951407 (1.18 X 1072
SDCCAGS8 2 2 167 212 protein-coding mRNA rs2484639 (8.14 x 10°)*
SEC22B 14 5 442 1024 pseudogene associated N/A
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Table 3 Genes with AEI >1.5-fold following stringent correction® (Continued)
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SETD2 3 2 161 1.62
SLC25A12 3 3 1.79 240
SPOCK2 7 2 161 1.68
STRBP 3 2 1.50 1.52
SYBU 4 2 1.81 1.87
TBLIXRT 5 2 161 1.93
TP53BP1 7 2 1.51 2.25
uBB 9 2 1.51 1.54
WDRS82 3 2 1.53 1.92

protein-coding mMRNA and ncRNA

protein-coding mMRNA
protein-coding mRNA
protein-coding mRNA

protein-coding mRNA
pseudogene associated
protein-coding mMRNA
pseudogene associated

pseudogene associated

rs1979736 (4.36 x 10°%)*
rs4280427 (208 x 107
rs7894516 (6.53x 107
rs700085 (1.50 X 10
rs1954713 (507 x 10?)
rs6765337 (548 107)
rs12912505 (1.03 x 107)
rs11869614 (1.03x 10™)
rs730050 (1.53x 107

@Correction was performed by subtracting 2 standard deviations of the within-gene allelic ratio from the uncorrected allelic ratio.

PCorrected allelic ratio values reported.

“Pseudogene associations noted from NCBI Gene database. Homology noted where >50% coverage and >50% similarity with other annotated transcripts by Basic

Local Alignment Search Tool (BLAST).

4Most significantly-associated SNP with any probe for the corresponding gene reported in BrainCloud [1]. N/A = no data available for gene. * = significant cis-eQTL

association.

RNA editing is not significantly different within the 10
regions as compared to the 13 DLPFC, suggesting RNA
editing is tightly regulated at these 12 sites. These fin-
dings could be driven by our stringent criteria for
designating RNA editing sites, but other studies have
found similarly consistent levels of intra- versus inter-
individual adenosine-to-inosine editing [40] and at
greater depth in the brain [41].

RNA editing does impact some single-gene allelic
ratio estimates. A total of 43 genes had annotated
polymorphisms (with assigned rs numbers) where

RNA editing is also reported in DARNED, including
13 of the 574 genes exhibiting >2-fold AEI in our less
stringent analysis (Additional file 5: Table S5 Notes).
Four of these 13 genes would not meet criteria for
AEI analysis in one or more samples if the putative
editing site was excluded, lacking the minimum 2
sites we required for allelic ratio estimates. Four of
the 9 remaining genes have at least one sample pre-
viously exhibiting >2-fold AEI which now exhibits
allele ratios <2-fold after excluding the putative RNA
editing sites.

Table 4 RNA editing across brain regions and across individuals

Gene Genomic Position in gene Editing across regionsb Editing across individuals®
position®
# Regions Avg. Read % Edited # Individuals Avg. Read % Edited
displaying editing Depth (S.EM.) displaying editing Depth (S.EM.)
CcCcDC75/ chr2:37327702 intergenic 8 114 59.8 (8.0) 8 222 32.0(87)
EIF2AK2
CTSB chr8:11702542 3'UTR 10 16.8 994 (0.6) 8 11.0 873 (4.0)
FTX chrX:73499965  exonic (NCRNA) 9 62 31.8 (2.8) 10 116.3 27.1 (2.2)
GRIA2 chr4:158257875 exonic (non- 10 323 889 (4.6) 13 56.0 97.5 (0.6)
synonymous)
GRIA2 chr4:158257879 exonic 8 359 210 (27) 8 755 164 (0.8)
(synonymous)
GRIK2 chr6:102337689 exonic (non- 10 19.2 445 (3.9) 13 189 372 (3.8)
synonymous)
GRIK2 chr6:102337702 exonic (non- 9 182 62.0 (3.7) 13 17.1 639 (5.7)
Ssynonymous)
MTRNR2LT  chr17:22021971 intergenic 10 1595.7 98.0 (0.1) 10 1796.7 96.9 (0.5)
PAR-SN chr15:25227816  exonic (NcRNA) 9 11.6 67.8 (8.2) 13 296 794 (2.0)
PAR-SN chr15:25227838  exonic (NcRNA) 7 121 435 (5.3) 11 26.1 354 (26)
PAR-SN chr15:25227854  exonic (NcRNA) 5 144 254 (5.6) 8 266 22.1(2.8)
TRUB2 chr9:131071533 3'UTR 5 11.2 546 (9.9) 11 15.1 59.8 (4.6)

?According to GRCh37/hg19.
P10 regions from a single individual.
“Only the DLPFC from 13 different individuals.
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Conclusions

The current study provides assessment of allelic RNA
expression with RNA-Seq in human brain tissues
compared to a robust and accurate SNaPshot method
we routinely apply to single-gene studies of AEIL Our
two c¢DNA synthesis methods produced similar allelic
ratios, but large systematic allelic biases were evident
using standard alignment methods. We find considerable
variability in RNA-Seq derived allelic RNA expression
ratios, but also the ability to detect AEI of various mag-
nitudes, after adjusting for possible biases. Two factors
were crucial to improve allelic RNA expression ratio
measures by RNA-Seq; attenuating alignment bias and
requiring more than one SNP per gene when averaging
allelic ratios at regions of low depth. We tested two read
alignment methods for attenuating allelic bias, each with
a different strategy to account for variant alleles. Because
use of the IUPAC nomenclature for biallelic SNPs
yielded a closer to normal distribution of error than the
other methods and was readily implemented in a single
alignment strategy, we employed this technique on a
transcriptome-wide basis for subsequent analyses. One
potential drawback of alignment using the IUPAC refe-
rence genome is that it only provides ambiguity codes at
SNPs annotated in db135 and is not usable by the
widely-used Tuxedo Suite analysis package. However,
Novoalign http://www.novocraft.com/main/index.php),
MOSIAK  (https://github.com/wanpinglee/ MOSAIK/
wiki/QuickStart), and MIRA (http://sourceforge.net/
projects/mira-assembler/files/) are capable of align-
ments using genomes with ambiguity codes and are
compatible with other sequencing platforms. Given
the widespread recognition of allelic bias in RNA-Seq
data, the approach outlined here is one of many pos-
sibilities for alleviating this artifact [14,26,27,32,33],
but one particularly relevant for those utilizing LifeScope
software to map and analyze reads generated by SOLiD
sequencing,.

By either correction method, we can substantially
attenuate the reference alignment bias, showing that
RNA-Seq data aligned with standard methods requires a
much larger allelic ratio for confidently predicting AEL
Following standard alignment, only 468 annotated SNPs
in 181 genes across all 9 tissues meet a 2.15-fold thresh-
old (corresponding to a 1.5-fold allelic ratio following
IUPAC alignment) when requiring at least 10 reads per
allele. According to statistical inference, more than 100
reads are required to detect a 1.5-fold allelic ratio at
p<0.05 [30]. Considering that many of the genes we
previously studied demonstrating phenotypic changes
with allelic ratios of approximately 1.5 to 2-fold would
not meet this depth requirement, this level of stringency
is severely limiting but necessary if RNA-Seq is used as
the sole determinant of AEIL In fact, even with

Page 11 of 15

permissive read requirements, brain-expressed genes we
previously published as harboring cis-acting regulatory
variants with our SNaPshot method were absent from
our RNA-Seq analysis [11,13,42-46] due to a lack of
coverage, with the exception of HTR2A [12]. This illus-
trates an important, albeit obvious characteristic of
RNA-Seq based analyses of allelic expression — that the
ability to measure allelic ratios critically depends upon
read depth. At present, modest- to low-expressing genes
are more effectively interrogated by other means, such
as SNaPshot or highly-multiplexed amplicon rese-
quencing [10]. Nonetheless, when used in combination
with other methods, RNA-Seq is a valuable screening
tool for identifying common cis-acting functional
polymorphisms.

Our analysis of ncRNAs in this study found similar
percentages of transcripts exhibiting AEI across the
DLPFC as compared to protein-coding mRNAs, regard-
less of stringency. However, most of the ncRNAs identi-
fied in the more stringent analyses have evidence for
interference by pseudogenes, with the exception of
LINC00461. This ncRNA is up-regulated in a uniform
fashion in the brain relative to the rest of the body
according to microarray analysis [47,48], although a
brain-specific role for this transcript is yet to be
established. LINC00461 is alternatively spliced to pro-
duce at least 4 isoforms. Encoded on the same strand in
the 3" end of three spliceoforms is microRNA 9 (miR9-
2), which has been associated with neuron-specific ex-
pression and neuronal differentiation during develop-
ment [49,50]. AEI at this locus could indicate differential
processing of the alternative LINC00461 isoforms or
miR9-2, although these interpretations remain specula-
tive. In either case, the widespread and high expression
of this ncRNA in the brain and the role of miR9 in neur-
onal development impel further study.

Of particular importance to finding cis-acting functional
variants is the ability to reliably detect AEI at single SNPs,
rather than requiring averaging across multiple SNPs in
the same gene, as done here. Single SNP AEI resolution
allows interrogation of subtle aspects of gene regulation, if
the SNP resides in a differentially processed area of the
transcript, such as between two different polyadenylation
signals or in an alternative exon or untranslated region
[14]. In fact, our single-gene studies have now identified
two regulatory SNPs that are only detected by measuring
AEI in differentially expressed regions of the genes and
are not apparent when measuring AEI in constitutively
expressed regions of the genes [12,51]. At present,
multiple factors have improved the ability to measure
allelic ratios at single SNPs in differentially processed
areas of a transcript, including increasing read depth and
incorporating the genomic makeup of the sample into
statistical analyses [14,26,27,32,33]. The sensitivity of


http://www.novocraft.com/main/index.php
https://github.com/wanpinglee/MOSAIK/wiki/QuickStart
https://github.com/wanpinglee/MOSAIK/wiki/QuickStart
http://sourceforge.net/projects/mira-assembler/files/
http://sourceforge.net/projects/mira-assembler/files/

Smith et al. BMC Genomics 2013, 14:571
http://www.biomedcentral.com/1471-2164/14/571

RNA-Seq to detect AEI at single SNPs will likely continue
to improve as read length increases, sequencing error rate
decreases, and additional strategies are developed to
account for variant alleles.

Single SNP analysis is necessary to evaluate post-
transcriptional transcript modifications, such as RNA
editing. Our survey of RNA editing sites in the brain is
consistent with previous reports of RNA editing
conducted at much greater depth [41], suggesting that
single position resolution of allelic RNA expression
ratios can be reliably measured at lower depth using
RNA-Seq. Further, the lack of variable editing across
brain tissues and across individuals argues that RNA
editing in the brain is critically maintained at an optimal
level, supported by observations of dysregulated RNA
editing in cancer [52]. The most obvious candidates for
regulating this process globally are the adenosine deami-
nase enzymes, ADAR and ADARBI. Although we find
some correlation between mRNA expression of ADAR
or ADARBI and RNA editing at these 12 sites, a more
comprehensive analysis is necessary to further speculate
on this relationship across the brain. While our study
helps establish intra- and inter-individual differences in
RNA editing in the human brain, the speed and breadth
of genomic sequencing technologies is driving studies of
RNA editing beyond simple quantitative levels, even
revealing differences in subcellular editing events [53].
Our studies and others make it evident that RNA-Seq
advances our ability to interrogate multiple aspects of
the transcriptome in a single experiment, including
allelic RNA expression ratios, as compared to single-
gene approaches.

Methods

Tissue preparation and library construction

The 9 brain regions for this study were collected
12 hours post-mortem (pH 6.9) from a 20-year old
African-American male smoker with no known neuro-
logical or neuropsychiatric disorders. Individual brain
regions were dissected by a trained neuropathologist.
The additional 14 DLPFC samples were collected in a
similar manner (demographics and tissue characteristics
in Table 2). RNA from each of the brain regions was
TRIzol-chloroform extracted and purified with RNeasy
Mini Kit spin columns (Qiagen, Germantown, MD),
following standard protocol for on-column DNase treat-
ment. DNA was isolated from the tissues using a ‘salting
out’ method [54] supplemented with additional sodium
dodecyl sulfate for lipid-rich brain tissue. Following nu-
cleic acid isolation, 10 ng of total RNA was converted to
c¢DNA using the Ovation RNA-Seq System V2 (Nugen
Technologies, Inc., San Carlos, CA). This ¢cDNA was
used to construct libraries for massively parallel sequen-
cing using the NEBNext DNA Library Prep Set for
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SOLiD (New England Biolabs, NEB, Ipswich, MA) and
also for AEI measurements using SNaPshot, described
below. Gene-specific primed ¢cDNA used for SNaPshot
was reverse transcribed from 500 ng of total RNA,
using SuperScript III Reverse Transcriptase (Life
Technologies).

RNA-seq alignments and allelic counting

For the nine brain regions from the single individual,
paired-end sequenced reads from a 5500 SOLiD System
(LifeTechnologies) were mapped to the human genome
with LifeScope Genome Analysis Software v2.5.1
(Life Technologies) using three different methods. First,
all reads from each region were mapped to the NCBI
Build 37/hgl9 genome using the default LifeScope RNA-
Seq parameters. Single nucleotide variants were iden-
tified with Samtools v0.1.16 [55], which provides a count
of the aligned reads containing the reference or variant
allele. Identified SNP locations were annotated based on
UCSC annotation databases and dbSNP using annovar
annotation software [56]. Based on annotation, each
SNP was assigned to a location within a gene
locus—whether exonic, intronic, intergenic, UTR, or
upstream/downstream (within 1 kb of the coding
region). Exonic allelic counts, including UTRs, for each
polymorphic site were used to calculate allelic expres-
sion for this first alignment, yielding standard alignment
AEI values. Allelic ratios for multiple polymorphisms
residing within a 100 basepair window were averaged
and treated as a single observation, since they likely do
not represent independent observations they likely reside
on the same sequenced library fragment. Second, at 187
heterozygous polymorphisms from 53 genes expressed
in at least one brain tissue (800 total instances), we
built a custom reference genome by replacing the ref-
erence allele with the variant SNP allele in NCBI
Build 37/hgl9 using the GATK FastaAlternateReference
tool (http://www.broadinstitute.org/gatk/gatkdocs/org_
broadinstitute_sting_gatk_walkers_fasta_FastaAlternate
ReferenceMaker.html) and remapped all reads using
the same parameters as used for the standard reference
genome. AEI was then calculated as the ratio of the refer-
ence allele count from the standard alignment versus the
reference allele count at the switched alleles in the modi-
fied genome alignment. Finally, all reads from each brain
region were mapped to a third genome containing IUPAC
ambiguous nucleotide characters for each annotated SNP
in dbSNP 135, downloaded from the UCSC Genome
Browser (http://hgdownload.cse.ucsc.edu/goldenPath/hg19/
snpl35Mask/). IUPAC-corrected AEI was calculated as a
ratio of the reference versus variant alleles. The 14
DLPEC libraries were made from cDNA synthesized
by the NuGen Ovation RNA-Seq System, sequenced
with the SOLiD 4 System or SOLiD 5500 System
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(Life Technologies), and aligned to the IUPAC refer-
ences, as described above.

AEl measurement by SNaPshot

Allelic mRNA expression ratios were measured by SNaP-
shot in NuGen or GSP cDNA libraries in duplicate by first
PCR-amplifying a region surrounding the heterozygous
SNP in both ¢cDNA (5 ng of NuGen or 12.5 ng of GSP)
and 25 ng genomic DNA (gDNA) with 2x Taq Master
Mix (NEB) for 30 cycles in a 10 pl total reaction. Primers
(0.3 uM) used for AEI are within a single exon to allow
amplification of equivalent cDNA and gDNA molecules.
Following amplification, excess single-stranded primers in
the PCR reaction are digested by simultaneous Exonu-
clease I and Antarctic phosphatase (NEB) treatment. Sub-
sequently, 2 ul of the amplified product is added to a 5 pl
total SNaPshot reaction, consisting of 1.5 ul of SNaPshot
Multiple Kit reagent (Life Technologies), 1 ul of 2 uM
extension primer, and 0.5 pl of water. Extension primers
for the SNaPshot reaction are immediately adjacent to the
SNPs, which direct incorporation of a single fluorescent
dideoxynucleotide at the SNP position in the PCR
amplicons, with each nucleotide represented by a diffe-
rent fluorophore. Following SNaPshot, unincorporated
fluorescent nucleotides are digested by Calf Intestinal
Phosphatase (NEB) and the resultant fluorescent SNaP-
shot product is separated and detected by capillary elec-
trophoresis on an ABI3730 DNA Analyzer. Peak heights
for the different fluorescent products calculated using
GeneMapper 4.0 software (Life Technologies) in cDNA
and gDNA are used to calculate allelic ratios (reference/
variant allele). Finally, cDNA ratios are normalized to
gDNA ratios (representing a 1:1 relationship), yielding
estimated allelic mRNA ratios, which indicate AEI if
ratios significantly deviate from unity.

Survey of RNA editing

Following IUPAC alignment in all tissues, sites deviating
from the reference allele (i.e. SNPs) were cross-referenced
with known RNA editing sites from DARNED [39]. To be
included in the RNA editing analysis, we required at least
5 of the 10 regions and 8 of the 13 DLPFC to exhibit va-
riant allele reads and for the average depth across the re-
gions and individuals to be greater than 10 reads. We also
excluded locations with ambiguity in mapping due to
pseudogenes. After applying these filters, we observed
some instances where the reference allele used for map-
ping was likely incorrect relative to our population (i.e. all
samples demonstrate expression of only the variant
alleles). In these instances, locations where a 95% confi-
dence interval constructed from read count distribution
across samples encompassed complete (100%) mapping to
the variant allele were further excluded.
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Statistical analysis

All descriptive and correlative analyses were performed
using SPSS v19.0 (IBM Corporation, Armonk, NY).
Logistic and linear regression, and AIC calculations were
performed using R (v2.15.2) (http://www.r-project.org/).
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