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Abstract

Background: Agaricus bisporus is commercially grown on compost, in which the available carbon sources consist
mainly of plant-derived polysaccharides that are built out of various different constituent monosaccharides. The
major constituent monosaccharides of these polysaccharides are glucose, xylose, and arabinose, while smaller
amounts of galactose, glucuronic acid, rhamnose and mannose are also present.

Results: In this study, genes encoding putative enzymes from carbon metabolism were identified and their
expression was studied in different growth stages of A. bisporus. We correlated the expression of genes encoding
plant and fungal polysaccharide modifying enzymes identified in the A. bisporus genome to the soluble
carbohydrates and the composition of mycelium grown compost, casing layer and fruiting bodies.

Conclusions: The compost grown vegetative mycelium of A. bisporus consumes a wide variety of
monosaccharides. However, in fruiting bodies only hexose catabolism occurs, and no accumulation of other sugars
was observed. This suggests that only hexoses or their conversion products are transported from the vegetative
mycelium to the fruiting body, while the other sugars likely provide energy for growth and maintenance of the
vegetative mycelium. Clear correlations were found between expression of the genes and composition of
carbohydrates. Genes encoding plant cell wall polysaccharide degrading enzymes were mainly expressed in
compost-grown mycelium, and largely absent in fruiting bodies. In contrast, genes encoding fungal cell wall
polysaccharide modifying enzymes were expressed in both fruiting bodies and vegetative mycelium, but different
gene sets were expressed in these samples.
Background
Carbon catabolism serves fungi with energy in the form of
reducing equivalents and ATP, as well as essential precursor
metabolites for biosynthesis, such as glucose-6-phosphate
and fructose-6-phosphate [1]. In nature plant biomass
is the main carbon source for many fungal species. A.
bisporus (the white button mushroom) is commercially
cultivated on a composted mixture of lignocellulose-
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containing materials (mainly wheat straw and horse
manure), which is highly selective for this fungus [2,3].
The major constituents of the lignocellulose fraction

of compost are cellulose and the hemicellulose xylan
(70% of the biomass) [4] and lignin [5-7]. Due to their
diverse and complex polymeric nature, degradation of
plant cell wall polysaccharides to their monomeric
constituent requires a large range of enzymes [8,9]. Most
of these enzymes have been divided into families in a
classification system for Carbohydrate Active enZymes
(CAZy, www.cazy.org) [10]. It has been shown that
during mycelial growth and fruiting A. bisporus produces
a range of extracellular enzymes, which are involved in
the degradation of the lignocellulosic fraction in compost
[11-14]. A shift in fungal metabolism takes place during
development of the fruiting body of A. bisporus that is
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closely linked to an increased rate of cellulose and
hemicellulose degradation [15]. The production of laccase
and cellulase was suggested to be connected to the high
rate and flow of carbon metabolism during fruiting body
development [16,17]. Lignin degradation by A. bisporus
decreases towards the end of the mushroom production
cycle [18-20].
The major monosaccharide constituents of lignocellulose

are D-glucose, D-xylose, and L-arabinose, while smaller
amounts of D-galactose, D-galacturonic acid, L-rhamnose
and D-mannose are also present. These monosaccharides
are taken up by the fungal cell and converted through
specific pathways [21]. Both L-arabinose and D-xylose
catabolism are part of the pentose catabolic pathway [22],
which ends at D-xylulose-5-phosphate, an intermediate of
the pentose phosphate pathway (PPP). D-Glucose can
enter several biochemical pathways [9,23,24], but can also
lead to the synthesis of mannitol, trehalose and other
storage compounds, such as glycogen and fatty acids [25].
The minor components of polysaccharides present in
compost are converted through the galacturonic acid
catabolic pathway [26], the D-galactose catabolic pathways
(the Leloir pathway, the oxido-reductive pathway and the
DeLey Doudoroff pathway) [27] and the L-rhamnose
catabolic pathway [28].
Studies on carbon metabolism in A. bisporus have

mainly focused on mannitol and trehalose. Synthesis
of mannitol in A. bisporus is mediated by an NADPH-
dependent mannitol dehydrogenase using fructose as
substrate [29]. Metabolism trehalose involves either the tre-
halose synthase complex, [30], or trehalose phosphorylase
(EC 2.4.1.64), which catalyze the reversible hydrolysis of
trehalose into glucose-1-phosphate and glucose [30].
Remarkable differences were found in carbon metabolism
of fruiting body and vegetative mycelium [31-34]. Mannitol
functions as an osmolyte, which accumulates to high levels
during fruiting body growth while after sporulation the
level of mannitol decreases rapidly [35]. It might also serve
as a post-harvest reserve carbohydrate [31,33,36]. Trehalose
also serves as a reserve carbohydrate, which is present at
lower levels than mannitol that decline during fruiting
body development. It has been suggested that trehalose is
synthesized in the mycelium and translocated to the
fruiting body [16,32,34].
Gene expression analysis of genes encoding enzymes for

polysaccharide modification and sugar metabolism offers
an improved understanding of carbohydrate utilization
and the metabolic fate of monosaccharides in the litter
degrading fungus A. bisporus. Here, we identified genes
encoding enzymes involved in carbon metabolism using
the recently sequenced A. bisporus genome [37]. The
expression of these genes and genes encoding plant
biomass degrading enzymes was analyzed during different
stages of growth of A. bisporus, revealing significant
differences between mycelium grown on plates, in
compost or in casing-soil, and fruiting bodies.

Results
Identification and expression analysis of genes encoding
enzymes of central metabolism
The two sequenced genomes of A. bisporus var. bisporus
H97 and var. burnettii JB137-s8 were analyzed to
identify genes involved in central carbon metabolism.
Identification was performed using the confirmed
pathway genes from other fungi (Additional file 1).
Gene expression was assessed in mycelium grown

on defined medium, in casing layer and in compost,
and in fruiting bodies, using specific custom 60-mer
Agilent microarrays (see “Methods”). Only those genes
with > 2-fold differences and P-value <0.05 in gene
expression between compost/casing layer/fruiting body
and culture-grown mycelium were considered to be
differentially expressed (Additional file 2).

Glycolysis & gluconeogenesis
Most genes from glycolysis were moderately upregulated
in compost and casing compared to undifferentiated
mycelium grown on agar medium, while their levels
were similar or downregulated in the fruiting bodies
(Figure 1, Additional files 3 and 4). In contrast, the
gluconeogenic gene encoding phosphoenolpyruvate
carboxykinase (PEPCK) was 8-fold upregulated in
fruiting bodies.

Pentose phosphate pathway
Expression of most PPP genes is similar in casing,
compost and fruiting bodies compared to plate grown my-
celium, while only some genes are slightly up- (in compost
and casing layer) or down-regulated (in fruiting bodies)
(Figure 1, Additional files 3 and 4). There is no consistent
effect on either the oxidative or the non-oxidative part of
the PPP.

Pentose catabolic pathway
A significant increase in expression of most of the
pentose catabolic pathway genes were detected in
compost and to a lesser extent in the casing layer com-
pared to plate grown mycelium, while their expression was
reduced in fruiting bodies (Additional file 2). An exception
was the putative L-xylulose reductase encoding gene that
had reduced expression levels in compost and casing
compared to plate-grown mycelium.

Catabolism of D-galactose, D-galacturonic acid, L-rhamnose
and D-mannose
The putative A. bisporus genes of galacturonic acid
catabolic pathway are strongly upregulated in compost
and to a lesser extent in the casing layer, while they
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Figure 1 Schematic representation of the expression of genes of the different carbon metabolic pathways. Bars under the growth stages
indicate the percentage of genes that are 2-fold upregulated (red), between 2-fold upregulated and 2-fold downregulated (green), and more
than 2-fold downregulated (blue) in the sample compared to culture-grown mycelium.
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are down-regulated in fruiting bodies (Figure 2). Expression
of genes from the D-galactose Leloir pathway was similar
or elevated in all samples compared to plate-grown
mycelium (Additional file 2). In contrast, nearly all
genes of the D-galactose oxido-reductive pathway
were upregulated in compost and downregulated in fruiting
bodies (Additional file 2). Most genes from the rhamnose
and mannose catabolic pathways (Additional file 1) [28]
were similar or upregulated in compost, casing layer and
fruiting bodies, compared to plate-grown mycelium
(Additional file 2).

Mannitol and trehalose metabolism
The mannitol-1-phosphate dehydrogenase encoding gene
was similarly expressed in compost, casing layer and
fruiting bodies, while the mannitol dehydrogenase encod-
ing gene was similar in compost and downregulated in
casing layer and fruiting body (Figure 2).
Expression of most trehalose metabolism genes was

similar or upregulated in samples from compost and
casing layer in comparison to undifferentiated plate-
grown mycelium (Additional file 2). The exception was
the gene encoding the neutral trehalase (EC 3.2.1.28),
which was downregulated in compost. In samples from
fruiting bodies, a gene encoding a neutral trehalase was
slightly upregulated.
Organic acid metabolism
Oxalic acid and citric acid are among the two most com-
monly produced organic acids by fungi [38]. No specific
upregulation for oxalic acid metabolic genes was observed
in any of the samples. In contrast, several of the citric acid
metabolic genes were expressed at higher levels in fruiting
bodies than in compost or the casing layer.

Comparison of the expression of carbon metabolic genes
between A.bisporus and L. bicolor
Orthologs of A. bisporus carbon metabolic genes were
identified in the genome of a mycorrhiza species L. bicolor
S238N (Additional file 1), with the exception of genes for
L-rhamnose utilization genes for which no homologs
could be found in L. bicolor.
The gene expression differentiation pattern of fruiting

body versus mycelium was calculated for both fungi. In
contrast to the prevalent gene downregulation in glycolysis,
PPP and PCP pathways in A. bisporus, most of the genes in
these pathways showed constant expression in mature
fruiting bodies and free-living mycelium in L. bicolor.

Expression of genes encoding plant cell wall
polysaccharide degrading enzymes
Expression of genes encoding plant cell wall degrading
enzymes from A. bisporus active against all the major



Figure 2 Map of the central metabolism in A. bisporus. Gene products contributing to these pathways are indicated. EC numbers in pink
boxes indicate that genes encoding these enzymes are upregulated in compost (white numbers) or fruiting bodies (pink numbers) compared to
plate-grown mycelium.
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plant cell wall polysaccharides was detected (Table 1).
These genes are expressed at significantly higher levels
in compost than in the other samples. For xylan and
cellulose related genes, 90% and 64%, respectively, were
expressed in compost while in casing layer and fruiting
bodies less than 15% of these genes were expressed. In
compost, expression of genes encoding enzymes
targeting other polysaccharides (e.g. starch, pectin and
xyloglucan) was also observed. Some genes of families
GH5 and CE4, which contain enzymes acting on both
plant and fungal cell wall polysaccharides, were
upregulated in either compost or fruiting bodies.

Expression of genes encoding fungal cell wall
degrading/modifying enzymes
Fungal cell wall degrading and modifying enzymes have
received less attention than plant cell wall degrading
enzymes, resulting in a less well defined assignment of
function. During growth A. bisporus needs to synthesize
and modify its cell wall. As growth occurs in compost,
casing layer and fruiting bodies, genes encoding fungal
cell wall modifying enzymes need to be expressed in all
growth stages. However, as the morphology of these
stages is not identical, different genes may be expressed
in compost and fruiting bodies. A complete list of genes
encoding putative fungal cell wall modifying enzymes
can be found in Additional file 5, including their putative
function. Of all genes encoding putative fungal cell wall
modifying enzymes 36% were expressed in all three
samples, indicating a basal set of fungal cell wall
modifying enzymes. Only 20% of the genes were
upregulated in the compost, while about 30% were
upregulated in the fruiting bodies. None of the genes
were specifically upregulated in the casing layer.
Some CAZy families related to fungal cell wall modifica-

tion contain genes that were upregulated in compost as
Table 1 Percentage of plant degrading cell wall enzymes that
compost, casing layer or fruiting bodies grouped by polysacc

Polysaccharide CAZy families No. genes

Xylan GH10,11,43,115 19

CE1,5,15

Xyloglucan GH12,21,31*,74,95 5

Cellulose GH1*,5*,3,6,7,9,61 22

Chitin/xylan CE4* 11

Pectin GH2,28,35,51,53,78,88,105 26

CE8,12

PL1,3,4

Mannan GH1*,5*,27 5

Starch GH13,15,31* 15

*not all genes of the family are related to designated polysaccharide.
GH: Glycoside Hydrolase, CE: Carbohydrate Esterase, PL: Polysaccharide Lyase.
A detailed list of the genes of these CAZy can be found in Additional file 5.
well as genes that were upregulated in fruiting bodies. This
applies in particular to GH16 (endo-1,3(4)-β-glucanase),
GH17 (endo-1,3-β-glucosidase) and GH18 (chitinases).
Genes specifically expressed in compost were found in
GH5, GH55 and GH72. Most of the genes of GH92
(α-mannosidase) are upregulated in compost. Genes specif-
ically expressed in fruiting bodies were found in GH63
(α-glucosidase) and GT17 (glucan endo-1,3-β-glucosidase).
Most genes from GT2 (chitin synthase), GT48 (1,3-β-
glucan synthase), GT57 (α-1,3-glucosyltransferase) and
GT15 were also upregulated in fruiting bodies.

Carbohydrate composition analysis of mycelium grown
compost and casing layer and of fruiting bodies
Compost, casing layer and wheat straw were analysed
for lignin, ash, protein, total carbohydrates and carbohy-
drate composition. Results are presented in Table 2.
When the A. bisporus mushrooms have matured, compost
consists of lignin (41% w/w) and ash (36% w/w), carbohy-
drates (17% w/w) and proteins (13%). Significant amounts
of sandy particles and gravel are present in the compost
and casing layer and due to the Klason lignin determin-
ation method we expect that some of this sandy inorganic
material remained on the filter and is included in the
calculated lignin amount [39]. The main monosaccharides
released from compost by acid hydrolysis were xylose and
glucose (4.4% w/w and 8.4% w/w, respectively). The
composition of wheat straw was used as a reference for
the composition of carbohydrates in raw compost as
analysis showed that in raw compost the molar com-
position of carbohydrates is the same as in wheat
straw (data not shown). The wheat straw composition
determined in our study (Table 2) is in agreement
with previously reported composition [40]. The molar
composition of compost after mature mushrooms
have been formed differs from that of wheat straw.
are up regulated, number of genes expressed in
haride and their putative function

Compost Casing layer Fruiting bodies

89 5 5

100 0 0

64 9 14

36 9 27

96 12 4

60 40 0

31 0 19



Table 3 Concentration (mg/kg) of free (soluble)
monosaccharides, trehalose, mannitol and sorbitol

Component (mg/kg fresh material) Compost Casing
layer

Fruiting
body

Arabinose 37.4 3.0 3.5

Rhamnose 7. 9 1.5 1.1

Galactose 15.9 6.1 2.3

Glucose 819.9 224.3 149.4

Xylose 221.9 11.6 5.0

Mannose 23.8 10.2 7.9

Fructose 70.4 41.7 703

Sorbitol 7654 3160 5242

Mannitol 3994 1657 20298

Trehalose 397 140 1064

Table 2 Composition of wheat straw, compost and
casing layer

%w/w (based on dry matter) Wheat
straw

Compost Casing
layer

Lignin (Klason) 27 41 a 52a

Total carbohydrates 57 17 12

Ash 5 36 29

Protein (%N *6.25) 3 13 7

Carbohydrate composition (molar%)

Arabinose 6.0 5.6 1.6

Xylose 42.6 30 14

Mannose 0.89 4 6.1

Galactose 1.34 3.3 7

Rhamnose 0.8 1.4 2

Glucose 45 47 60

Uronic acids 3.9 8.6 9.2

Acetic acid (mol Ac/100 mol Xyl) 32 12 9
aSmall part of inorganic material is included.
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The casing layer is a mixture of calcium and peat that
consists mainly of lignin (52% w/w) and ash (29% w/w).
There are few carbohydrates present (14% w/w) and the
main monosaccharides released after acid hydrolysis
were xylose (1.4% w/w), mannose (0.6% w/w) and
glucose (7.5% w/w) [41]. As mentioned above, the actual
lignin amount is likely to be lower than measured due to
calcium and sandy particles that remain on the filter after
acid hydrolysis.
Aqueous extraction of compost, casing layer and

fruiting bodies revealed that more than 95% of car-
bohydrates are insoluble. A high performance anion
exchange (HPAEC) elution pattern of water extract
from mycelium grown compost, casing layer and fruiting
bodies was used to analyse the extract.
Changes in free soluble monosaccharides were observed

in these samples. Concentrations of arabinose, galactose
and xylose were high in compost, while only traces of
these monosaccharides were found in casing layer and
fruiting bodies (Table 3). High levels of glucose were
observed in all samples. Mannitol and trehalose levels
were significantly higher in fruiting bodies than in
compost and casing layer (Table 3), as were the levels
of citric acid (data not shown), while no oxalic acid
was detected in the samples. The very high level of
sorbitol in the compost samples could suggest a role
as a transportable carbon compound from the vegetative
mycelium to the fruiting body (Table 3).
Soluble oligosaccharides were detected in the compost,

while none were detected in the casing layer or fruiting
bodies (Figure 3). The peaks detected in the compost
were compared to standards of xylo- and cello-dextran
oligosaccharides (DP 2–6) and the elution pattern of the
well described endoxylanase I digest of wheat arabinoxylan
in order to identify them [42]. Mainly xylobiose (Figure 3 B),
xylotriose (Figure 3 D), and presumably xylo-oligomers with
attached glucuronic acid or its 4-O-methyl ether (Figure 3 F)
were found. In addition to xylo-oligomers, cellobiose was
detected. The small peaks that were detected are likely xylo-
and cello-oligomers of higher degree of polymerisation and
arabinose substituted xylo-oligomers.

Discussion
In this study, genes encoding carbon metabolic genes
were identified in the genome of A. bisporus and their
expression in different growth stages was compared to
the available carbohydrates and the expression of genes
encoding carbohydrate modifying enzymes.

Compost is mainly focused on degrading plant biomass
Analysis of the expression of genes encoding plant and
fungal polysaccharide modifying enzymes identified in the
A. bisporus genome [37] revealed correlation between
these genes and composition of carbohydrates. Expression
analysis of CAZy-genes demonstrated that in compost the
highest expressed genes are related to (hemi-) cellulose
and pectin degradation, while also some genes related
to β-1,3-glucan modification were expressed. A large
decrease of carbohydrate content and, therefore, poly-
saccharides was revealed in the compost after growth
of A. bisporus and fruiting body production. Expression
data supports that the decrease in carbohydrates observed
is partially caused by the growth of A. bisporus. About
90% of the genes encoding xylan degrading enzymes were
upregulated in the compost. This correlates well
with the detection of soluble xylo-oligosaccharides in
compost. Higher proportions of arabinose and xylose
in the water extracts of compost than in the water
extracts of casing layer and fruiting bodies (Table 3)
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are in good agreement with the expression of genes encod-
ing arabinofuranosidases, endoxylanases and β-xylosidases.
The presence of xylo-oligomers in compost suggests that
the β-xylosidase activity may be the limiting factor in xylose
release. The pentose catabolic pathway was strongly
upregulated in the compost and moderately upregulated in
the casing layer, while it was downregulated in the fruiting
bodies. This confirms the relevance of release and
conversion of these pentoses as a main carbon source
for A. bisporus during growth in compost.
Expression of genes encoding other plant polysaccharide

degrading enzymes that are not normally associated with
compost, e.g. starch, pectin and xyloglucan related genes,
was also detected. In nature A. bisporus can grow on
various substrates ranging from leaf litter and soil
under cypress in coastal California to manured soil,
composts of plant debris, and other horticultural and
agricultural situations reported in Europe [43]. Growth on
these different substrates is likely due to the ability of A.
bisporus to produce a wide range of plant polysaccharide
degrading enzymes and it may co-express genes aimed at
different polysaccharides. Such a system is well described
for the ascomycete Aspergillus niger, in which a single
regulator (XlnR) activates the expression of genes related
to cellulose, xylan and xyloglucan degradation [44,45]. For
this fungus six regulators involved in plant polysaccharide
degradation have been described and they usually respond
to the presence of the monomeric building blocks of the
polysaccharides [44,46-50]. While no homologs of these
regulators have been found in basidiomycetes (Todd and
de Vries, unpublished data), it is likely that basidiomycetes
have developed similar systems using different regulators.

The casing layer serves as an intermediate phase
In the casing layer, which is a mixture of peat and lime,
it is likely that the detected glucose and mannose at least
partially drive from the mycelial cell wall, in the form of
glucans and mannoproteins, respectively. While some
genes encoding putative plant cell wall degrading
enzymes were expressed in the casing layer, the level of
up-regulation compared to plate-grown mycelium is
much smaller than that in compost. In addition, expres-
sion of some chitinase encoding genes was detected.
The casing layer seems to be an intermediate phase in
which some genes related to plant biomass degradation
are expressed, but also modification of the A. bisporus
cell wall is an important process for the conversion
to fruiting body morphology. The lack of soluble poly-
saccharides indicates that the role of the mycelium in the
casing layer is mainly to supply carbohydrates to the
fruiting body.

The fruiting body focuses on modification of fungal
polysaccharides
For A. bisporus growth and development a basal set of
fungal cell wall modifying enzymes is needed and about
36% of the genes encoding such enzymes were expressed
in mycelium grown compost, casing layer and fruiting
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bodies. The other expressed genes encoding fungal cell
wall modifying enzymes are upregulated during specific
growth stages. This suggests that A. bisporus has specific
genes for mycelium development and growth and others
for fruiting body formation and modification. Some
genes from GH16 (encoding endo-1,3(4)-β-glucanase),
GH17 (encoding glucan endo-1,3-β-glucosidase) and GH18
(encoding chitinases) are upregulated in the compost while
others from the same families are upregulated in the
fruiting bodies. These results support the compositional
and morphological differences found between mycelium
and fruiting bodies [35]. Expression of different sets of
genes encoding fungal cell wall modifying enzymes has also
been described for other fungi. For example, in A. niger
different sets of genes encoding chitinases, chitin synthases
and alpha-1.3-glucan synthases were expressed in the
centre and the periphery of plate grown cultures [51].
Enzymes from families GH5 and CE4 have several

described activities, some of which are related to plant
cell wall polysaccharides, while others are related to fungal
cell wall polysaccharides (www.cazy.org). For some of the
enzymes from these families upregulation in compost was
observed, while others were upregulated in fruiting bodies.
A strong correlation was observed between the putative
function and the expression of genes from these families.
While genes encoding putative plant biomass degrading
enzymes were upregulated in compost, genes encoding
putative fungal cell wall modifying enzymes were
upregulated in fruiting bodies (Additional file 6).

Carbon metabolism is partially differentiated in
A. bisporus
Expression analysis demonstrated that the pentose
catabolic pathway and galacturonic acid pathway were
strongly upregulated in compost and moderately up-
regulated in the casing layer, while they were
downregulated in fruiting bodies. Most genes of the
oxido-reductive galactose pathway were also higher
expressed in compost than in fruiting bodies, which
correlates with a higher galactose level in compost
compared to fruiting bodies. In contrast to the pathways
described above, the glycolytic pathway and PPP are active
in all growth stages of A. bisporus. This correlates well
with the presence of free glucose in all samples, suggesting
that hexose catabolism is an important factor in all growth
stages of A. bisporus. The PPP has been described as the
major route of glucose catabolism in fruiting bodies of A.
bisporus [35,52,53] as well as Lentinula edodes [54] as a
greater proportion of glucose oxidation occurs via the PPP
in the fruiting body than in vegetative mycelium, while
glycolysis has been suggested to be the major pathway of
sugar metabolism during fruiting body development in
Pleurotus ostreatus, Coprinus cinereus and Schizophyllum
commune [55-57].
The concentration of mannitol in fruiting bodies was
six times higher than in compost. However, expression
of mannitol pathway genes was significantly lower in
fruiting bodies than in compost, suggesting that manni-
tol is synthesized in the vegetative mycelium and
transported to the fruiting body. Earlier studies observed
that mannitol functions as an osmoregulatory compound
and facilitates a continuous influx of water from
compost to the fruiting body to support turgor and
fruiting body development [58,59]. This would suggest that
mannitol is unlikely to be transported by diffusion from
the mycelium. Therefore, it should either be transferred by
active transport or alternatively, be synthesized in the
fruiting body. If the latter is the case, a possible explanation
for the observed expression of the genes could be that the
encoded enzymes are transported into the fruiting body.
Trehalase activity was reported to be highest during

the peak of each flush, while low activity was detected
during the interflush period [16], which correlates well
with the highest expression of a putative trehalase
encoding gene in fruiting bodies of our study. In
contrast, trehalose phosphorylase was found to increase
during the interflush period [34], which was also
confirmed by the expression analysis in our study.
No significant differences were observed in the expres-

sion of genes related to oxalic acid metabolism in the differ-
ent growth stages and the expression levels suggest that
oxalic acid formation occurs in all stages. The high expres-
sion of one of the putative oxalate decarboxylase encoding
genes could explain why no oxalic acid was detected in the
samples as this could imply that degradation of oxalic acid
occurs at least as fast as its synthesis. It should also be
noted that only free oxalic acid was analysed in this study,
while oxalic acid present in the form of calcium oxalate was
not included.
In contrast, several of the genes involved in citric acid

metabolism are higher expressed in the fruiting body
than in compost and casing layer, which correlates
well with the higher levels of citric acid that were
detected in these samples. As citric acid is known to
have preservative properties against bacteria in food
[60], it is tempting to speculate that the accumula-
tion of citric acid in fruiting bodies may also be
involved in the defence mechanism of the mushroom
against bacteria. Another explanation may be the
high respiration rates of the fruiting bodies, which
requires high expression of genes associated with the
citric acid/Krebs cycle and mitochondria in general
[54]. High expression of isocitrate lyase was also
reported in brown-rot fungi, where this enzyme produced
succinate and glyoxylate from isocitrate [61,62]. Pro-
gressive downregulation of this gene was observed in
the casing layer during the shift from vegetative mycelium
to fruiting body [63].

http://www.cazy.org/
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The difference in carbon metabolism between A. bisporus
and L. bicolor
Comparison of two basidiomycetes A. bisporus and L.
bicolor didn’t show any correlation in expression of
carbon metabolic genes. This could be explained by
the difference in life styles of these two species. As a
saprobe, A. bisporus is highly dependent on obtaining
carbon from its surroundings. In contrast, the mycor-
rhizae L. bicolor obtains carbon from its symbiotic partner
in the form of sucrose, placing a much lower demand on a
versatile carbon metabolism.

Conclusions
The data from our study demonstrates that overall there
is a clear correlation between expression of genes related
to plant and fungal polysaccharides and the ability of A.
bisporus to degrade these polysaccharides. We see a
clear difference in genes expressed within mycelium
grown compost and fruiting bodies supporting the
hypothesis that different genes are expressed in A. bisporus
mycelium and fruiting bodies. This supports previous
results that this fungus produces different enzymes during
its life cycle [64]. However, it should also be recognised
that gene expression is likely to be dynamic and here we
have examined it at the time point when first flush
was harvested (approximately 34 days after compost
was inoculated with spawn). Large oscillations of
cellulase activity in the compost have been observed
which co-ordinate with mushroom fruiting body pro-
duction and oscillations of activities of fruiting body
metabolic enzymes [16,17,65].
Moreover, our study demonstrates a clear correlation

between the expression of genes encoding plant and
fungal cell wall polysaccharides with the composition
of carbohydrates in compost, casing layer and fruiting
bodies. Genes encoding plant cell wall polysaccharide
degrading enzymes were mainly expressed in compost-
grown mycelium, and largely absent in fruiting bodies. In
contrast, genes encoding fungal cell wall polysaccharide
modifying enzymes were expressed in both fruiting bodies
and vegetative mycelium in the compost, but different
gene sets were expressed in these samples.
In the present study an in silico metabolic reconstruc-

tion of the central carbon metabolism in A. bisporus was
performed and combined with expression analysis of the
relevant genes in different growth stages of A. bisporus.
The analysis of metabolic pathways in A. bisporus may
provide information about the requirements of carbon
source and energy metabolism during commercial growth
of A. bisporus. We showed that during growth in compost
and casing a much larger variety of carbon sources was
used by A. bisporus than during growth on synthetic
medium. In contrast, carbon metabolism in fruiting bodies
appears to be mainly aimed at hexoses. This could indicate
that only these sugars are transported towards the fruiting
body from the vegetative mycelium, which implies
that carbon transport to the fruiting bodies is a highly
regulated and selective process.

Methods
Materials used
Compost, casing layer and fruiting bodies cultures were
harvested at the first flush stage of A. bisporus strain
A15 and were stored at −20°C. Samples (about 100 g)
were collected, freeze dried and milled (<1 mm) (Retsch
Mill MM 2000, Retsch, Haan, Germany). Duplicates
were mixed in ratio 1:1. Wheat straw was collected as
raw material and a representative sample was made by
mixing 16 different freeze dried and milled samples of
wheat straw in the same ratio. All chemicals, unless
stated otherwise were obtained from Sigma, Merck or
Fluka (Busch, Switzerland).

Water extraction
Milled compost, casing layer and fruiting bodies (0.4 g)
were suspended in millipore water (20 mL) and boiled at
100°C for 10 min to inactivate enzyme activity, shaken
vigorously and filtered (0.2 μm). The filtrate was used to
analyse water soluble carbohydrates.

Analytical and spectrometric methods
Neutral carbohydrate composition
Neutral carbohydrate composition of wheat straw, com-
post and casing layer was analysed according to Englyst
[66] using inositol as an internal standard. Samples were
treated with 72% (w/w) H2SO4 (1h, 30°C) followed by
hydrolysis with 1M H2SO4 for 3h at 100°C and the
constituent sugars released were derivatised and analysed
as their alditol acetates using gas chromatography (GC).
The amount of neutral carbohydrates was corrected for
mannitol, sorbitol and trehalose.

Uronic acid content
Uronic acids content of wheat straw, compost and casing
layer was determined as anhydro-uronic acid by an auto-
mated m-hydroxydiphenyl assay [67] using an autoanalyser
(Skalar Analytical BV, Breda, The Netherlands). Glucuronic
acid was used as a reference.

Lignin content
Samples of wheat straw, compost and casing layer were
analysed for acid insoluble (Klason) lignin. To each
sample of 300 mg (dry matter) 3 ml of 72% (w/w)
H2SO4 was added and samples were pre-hydrolysed
for 1 h at 30°C. After this pre-hydrolysis, 37 ml of
distilled water was added and samples were put in a
boiling water bath for 3 h and shaken every half
hour. Further, suspension was filtered over G4 glass
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filters (Duran Group GmbH, Mainz, Germany). The
residual part was washed until it was free of acid and dried
overnight at 105°C. The weight of the dried residual part
was taken as a measure of the acid insoluble lignin content.

Protein content
Nitrogen content of wheat straw, compost and casing
layer was analysed using the combustion (DUMAS)
method on a Flash EA 1112 Nitrogen Analyser (Thermo
Scientific, Rockford, IL, USA). Methionine (Acros
Organics, New Jersey, USA) was used as a standard
and protein content was calculated from the nitrogen
content of the material, using a protein conversion
factor of 6.25 [68].

Ash content
Samples of wheat straw, compost and casing layer (0.5 g)
were dried in the oven overnight (105°C), weighed and
put in the oven on 504°C overnight. Next day samples
were weighed and difference between the mass at 105°C
and 504°C was taken as ash content.

Chromatographic methods
Analysis of soluble carbohydrates, sorbitol, trehalose and
mannitol
High-performance anion-exchange chromatography (HPAEC)
was performed on an Ultimate 3000 system (Dionex,
Sunnyvale, CA, USA) equipped with a CarboPac PA-1
column (2 mm x 250 mm ID) in combination with a
CarboPac guard column (2 mm x 50 mm ID) and PAD
detection. System was controlled by the Chromelion
software (Dionex).
Separation and quantification of monosaccharides was

done at a flow rate 0.4 ml/min, and the mobile phase
consisted of (A) 0.1 M NaOH, (B) 1 M NaOAc in 0.1 M
NaOH and (C) H2O. The elution profile was as follows:
0–40 min 100% C; 40.1-45.1 min from 100% A to 100% B,
45.1-50 min 100% B, 50.1-58 min 100% A, 58.1-73 min
100% C. From 0 to 40 min and from 58 to 73 min post
column addition of 0.5 M NaOH at 0.1 ml/min was
performed to detect and quantify the eluted saccharides.
Soluble carbohydrates. sorbitol, mannitol and trehalose

were separated on the same system, including columns
and detection. The flow rate used to separate sorbitol,
mannitol and trehalose was 0.3 mL/min, and the mobile
phase consisted of (A) 0.1 M NaOH, (B) 1 M NaOAc in
0.1 M NaOH and (C) H2O. The elution profile was as
follows: 0–5 min 100% A, 5-25% 0-30% B, 25.1-30 min
100% B, 30–50 min 100% A.
Water soluble oligosaccharides were separated with a

combination of linear gradients from two types of eluents,
A: 0.1 M NaOH and B: 1 M NaOAc in 0.1 M NaOH. The
elution profile was as following: 0–35 min: 0-38% B,
cleaning step 3 min 100% B and equilibration step 12 min
100% A. As a reference for xylo-oligomers with
substitution, elution pattern of wheat arabinoxylan
(medium viscosity, Megazyme, Bray, Ireland) digest
with a pure and well described endoxylanase I was
used [42,69], while as a standard for cellulose and xylan
oligomers, cellodextrans and xylodextrans were used. Water
extract of compost and casing layer were injected on the
column without dilution and fruiting body water extract
was diluted 20 times before injecting it on the column.

Organic acid analysis
Oxalic acid and citric acid were determined with an
Ultimate system (Dionex, Sunnyvale, USA) equipped with
a Shodex RI detector and an Aminex HPX 87H column
(300 mm x 7.8 mm) (Bio-Rad, Hercules, CA, USA) plus
pre-column [70]. Elution was performed by using 5 mM
H2SO4 as eluent at a flow rate of 0.6 ml min-1 at 40°C.

Esterified acetic acid content
Samples of compost and casing layer (20 mg) were
saponified with 1 mL of 0.4 M NaOH in isopropanol/H20
(1:1) for 3 h at room temperature. The acetic acid content
was determined with an Ultimate system (Dionex)
equipped with a Shodex RI detector and an Aminex HPX
87H column (300 mm x 7.8 mm) (Bio-Rad) plus pre-
column [70]. Elution was performed by using 5 mM
H2SO4 as eluent at a flow rate of 0.6 mL min-1 at 40°C.
The level of acetic acid substituents was corrected for the
free acetic acid in the sample.

Genome annotation and comparative genomics
A. bisporus var bisporus (http://genome.jgi.doe.gov/Agabi_
varbisH97_2/Agabi_varbisH97_2.home.html), A. bisporus
var burnetti (http://genome.jgi.doe.gov/Agabi_varbur_1/
Agabi_varbur_1.home.html), Aspergillus niger, Aspergillus
oryzae, Aspergillus nidulans, Phanerochaete chrysosporium
or Postia placenta and Laccaria bicolor S238N genomes
(http://genome.jgi-psf.org/Lacbi2/Lacbi2.home.html) were
used to perform genomic comparisons. Full genome
clusters of orthologous genes were created by OrthoMCL
(http://www.ncbi.nlm.nih.gov/pubmed/12952885) with
E-value 1e-5 and sequence matching coverage 60% as the
cutoff (http://www.ncbi.nlm.nih.gov/pubmed/20152020).
Carbon catabolic genes of Agaricus and Laccaria were
identified by extracting the orthologous clusters containing
known carbon catabolic genes from Aspergulli, P.
chrysosporium or P. placenta.

Transcriptome analysis
Gene expression was profiled in the commercial (hetero-
karyon) strain A15. A. bisporus strain A15 was grown in
compost made from wheat straw, chicken litter and
gypsum in the proportions 10:6:0.5 w/w. The first
phase of composting was with regular mixing and

http://genome.jgi.doe.gov/Agabi_varbisH97_2/Agabi_varbisH97_2.home.html
http://genome.jgi.doe.gov/Agabi_varbisH97_2/Agabi_varbisH97_2.home.html
http://genome.jgi.doe.gov/Agabi_varbur_1/Agabi_varbur_1.home.html
http://genome.jgi.doe.gov/Agabi_varbur_1/Agabi_varbur_1.home.html
http://genome.jgi-psf.org/Lacbi2/Lacbi2.home.html
http://www.ncbi.nlm.nih.gov/pubmed/12952885
http://www.ncbi.nlm.nih.gov/pubmed/20152020
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took approximately 25 days. At phase II of composting
process compost was pasteurized with steam at 70°C for
7 days. Phase II compost was inoculated with 1–2%
w/w A. bisporus mycelium spawn, placed in 50 kg
growth trays, and incubated at 25°C, 95% relative humidity
for 21 days. The colonised compost was covered by 5 cm
peat-based casing layer and incubated for a further 7 days.
The culture samples refer to axenic culture and the media
used was compost extract medium [71]. Fresh pasteurised
compost was oven dried for 48 h at 80°C. Dried compost
was boiled in distilled water (7.5 g / l) for 1 h and cooled
to room temperature. After centrifugation (5000 rpm,
20 min), the supernatant was used to make the
medium [72]. Peptone (0.5% w/v) was added to the
extract and the medium buffered to pH 7 using potassium
phosphate buffer.
The fruiting body samples represent the mature

mushroom stage 2 with a stretched, unbroken veil
fruiting body (including the stipe, cap and pilei pellis
(skin) tissues) [35]. The casing samples consisted of a
mixture of mycelium aggregates, undifferentiated
primordia (1–2 mm circular with no differentiation
between stipe and cap tissues), differentiated primordia
(~ 7 mm diameter, oval with some evidence of cap
tissue differentiation). The compost samples represent
the mycelium growing in wheat straw compost. The
samples for RNA extraction were collected on separate
occasions from separate mushroom houses. Four bio-
logical replicates of each developmental stage were
analyzed [37].
RNA was prepared from fruiting body and culture

samples using a standard Trizol protocol. RNA was
extracted from compost and casing samples using a
method based on the FastRNA Pro Soil-Direct kit
(MP Biochemicals) [63]. RNA was quantified using a
NanoDrop-1000 spectrophotometer and quality was
monitored with the Agilent 2100 Bioanalyzer (Agilent
Technologies, Santa Clara, CA).
Custom arrays (Agilent ID 027120) were developed

using 10,438 CDS (filtered model set) from the H97 v2
gene annotation; 5 x 60-mer oligos per CDS and the 8 x
60K randomised format were designed using the Agilent
eArray software. Cyanine-3 (Cy3) labeled cRNA was
prepared from 0.6 ug RNA using the Quick Amp La-
belling kit (Agilent) according to the manufacturer’s
instructions, followed by RNAeasy column purification
(QIAGEN, Valencia, CA). Dye incorporation and
cRNA yield were checked with the NanoDrop ND-1000
Spectrophotometer. 600 ng of Cy3-labelled cRNA (specific
activity >10.0 pmol Cy3/ug cRNA) was fragmented at
60°C for 30 minutes in a reaction volume of 25 μl
containing 1x Agilent fragmentation buffer and 2x
Agilent blocking agent following the manufacturer’s
instructions. On completion of the fragmentation
reaction, 25 μl of 2x Agilent hybridization buffer was added
to the fragmentation mixture and hybridized to Agilent
arrays (ID 027120) for 17 hours at 65°C in a rotating
Agilent hybridization oven. After hybridization, microarrays
were washed 1 minute at room temperature with GE Wash
Buffer 1 (Agilent) and 1 minute with 37°C GE Wash buffer
2 (Agilent) then 10 seconds in acetonitrile and 30 seconds
in Stabilization and drying solution (Agilent). Slides were
scanned immediately after washing on the Agilent’s
High-Resolution C Scanner (G2505C US94100321)
using one color scan setting for 8 x 60K array slides
(Scan resolution 3um). The scanned images were
analyzed with Feature Extraction Software (Agilent)
using default parameters (protocol GE1_107_Sep09
and Grid: 027120_D_F_20100129) to obtain background
subtracted and spatially detrended Processed Signal
intensities. Features flagged in Feature Extraction as
Feature Non-uniform outliers were excluded [37]. Only
those genes with > 2-fold differences and P-value <0.05 in
gene expression between compost/casing layer/fruiting
body and culture-grown mycelium were considered to
be differentially expressed. Comparison of ratios of
compost/culture transcript profiles was used to identify
the most highly upregulated transcripts found in myce-
lium grown on compost during vegetative growth. The
comparison of compost/fruiting body transcript pro-
files highlights developmental stage differences during
mushroom formation [37].
The Laccaria bicolor S238N transcriptomes of 2 weeks

free-living mycelium (FLM) and mature fruiting bodies
were extracted from Gene Expression Omnibus (GEO)
by series number GSE9784. Gene expression profiles
were extracted, normalized and analysed as described
previously [73]. Only genes with 2-fold differences and
P-value <0.05 were considered significantly differentially
expressed.

Availability of supporting data
Micro array data from Agaricus bisporus and Laccaria
bicolor used in this paper is available at GEO, accession
number GSE39569 (http://www.ncbi.nlm.nih.gov/geo/query/
acc.cgi?acc=GSE39569) and GSE32559 (http://www.ncbi.
nlm.nih.gov/geo/query/acc.cgi?acc=GSE32559), respectively.
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Additional file 1: Genes encoding putative enzymes of carbon
metabolism in A. bisporus and L. bicolor. Genes in A. bisporus var.
bisporus were identified using orthologous clustering method based on best
bi-derectional hits of all-vs-all blast to the genomes included in analysis.

Additional file 2: Expression comparison of carbon metabolic
genes in different growth stages of A. bisporus var. bisporus and L.
bicolor. In the ratio between the values genes that are upregulated
compared to culture-grown mycelium are in pink, while genes that are
down regulated are in green.
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Additional file 3: Proportion of upregulated genes of the different
carbon metabolic pathways in compost, casing layer and fruiting
bodies. Venn diagrams represent different carbon metabolic pathways
indicating the percentage of genes that are 2-fold upregulated in the
samples compared to culture-grown mycelium.

Additional file 4: Proportion of downregulated genes of the
different carbon metabolic pathways in compost, casing layer and
fruiting bodies. Venn diagrams represent different carbon metabolic
pathways indicating the percentage of genes that are 2-fold
downregulated in the samples compared to culture-grown mycelium.

Additional file 5: Expression of genes encoding putative fungal and
plant polysaccharide modifying enzymes. Putative functions are based
on CAZy family assignment and homology to characterised enzymes. The
activity on plant of fungal polysaccharides is putative and not always
supported biochemically. The expression levels are the average of 4
biological replicates.

Additional file 6: Maximum likelihood tree showing the correlation
between plant biomass degrading and fungal cell wall modifying
enzymes and upregulation of genes encoding these enzymes in
compost or fruiting body. Phylogenetic tree of the members of CE4 (A)
and GH5 (B) families together with characterized enzymes was based on
maximum likelihood method with 1000 bootstraps replications and WAG
substitution model. Text in pink boxes shows that genes encoding
indicated enzymes are upregulated in compost/fruiting body.
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