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Abstract

Background: Different from herbaceous plants, the woody plants undergo a long-period vegetative stage to
achieve floral transition. They then turn into seasonal plants, flowering annually. In this study, a preliminary model
of gene regulations for seasonal pistillate flowering in hickory (Carya cathayensis) was proposed. The genome-wide
dynamic transcriptome was characterized via the joint-approach of RNA sequencing and microarray analysis.

Results: Differential transcript abundance analysis uncovered the dynamic transcript abundance patterns of flowering
correlated genes and their major functions based on Gene Ontology (GO) analysis. To explore pistillate flowering
mechanism in hickory, a comprehensive flowering gene regulatory network based on Arabidopsis thaliana was
constructed by additional literature mining. A total of 114 putative flowering or floral genes including 31 with
differential transcript abundance were identified in hickory. The locations, functions and dynamic transcript abundances
were analyzed in the gene regulatory networks. A genome-wide co-expression network for the putative flowering or
floral genes shows three flowering regulatory modules corresponding to response to light abiotic stimulus, cold stress,
and reproductive development process, respectively. Totally 27 potential flowering or floral genes were recruited which
are meaningful to understand the hickory specific seasonal flowering mechanism better.

Conclusions: Flowering event of pistillate flower bud in hickory is triggered by several pathways synchronously
including the photoperiod, autonomous, vernalization, gibberellin, and sucrose pathway. Totally 27 potential flowering
or floral genes were recruited from the genome-wide co-expression network function module analysis. Moreover, the
analysis provides a potential FLC-like gene based vernalization pathway and an ‘AC’ model for pistillate flower
development in hickory. This work provides an available framework for pistillate flower development in hickory, which
is significant for insight into regulation of flowering and floral development of woody plants.

Keywords: Co-expression network, Carya cathayensis Sarg, Floral development, Seasonal flowering, Hickory,
High-throughput data analysis
Background
Flowering is a vital event in plant growth and development
through which alternation of generations from vegetative
growth to reproductive growth is accomplished [1]. It is an
intricate biological and morphological process which is reg-
ulated by a large number of genes. Most studies of flowering
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mechanisms have focused on herbal model plants
(e.g. Arabidopsis thaliana and Antirrhinum majus) [2-9].
Five pathways in flowering process have been designated i.
e., the photoperiod pathway, the autonomous pathway,
the vernalization pathway, the gibberellin pathway and the
sucrose pathway [10,11]. Each route responds to endogen-
ous or environmental cues relatively independently but
acts jointly during late stages and intertwines a compre-
hensive network via floral integrators such as Flowering
Locus T (FT), SUPPRESSOR OF OVEREXPRESSION OF
CONSTANS 1 (SOC1) and AGAMOUS-LIKE 24 (AGL24).
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Subsequently, these floral integrators trigger floral meri-
stem identifying genes LEAFY (LFY) and APETALA1
(AP1) and promote flowering [12,13]. Recently, compre-
hensive insights of first flowering and seasonal flowering
were obtained from studies in perennial plants e.g. Arabis
alpine. The differences in histone modifications at
Flowering Locus C (FLC) and PEP1 (the orthologue of the
A. thaliana gene FLC) in A. thaliana and A. alpine may
be one of the mechanisms by which these alterations in
gene expression patterns occur, thereby allowing diversifi-
cation of rapidly evolving traits such as life history charac-
ters [14]. TERMINAL FLOWER 1 (TFL1) in A. alpine
(AaTFL1) blocks flowering by setting a threshold for a
flowering pathway and prevents LEAFY in A. alpine ex-
pression when young plants are exposed to vernalization.
Vernalization of the older A. alpine plants reduces expres-
sion of floral repressor PEP1 and activates AaSOC1 and
AaLFY, then promotes flowering [15]. This developmental
transition in perennials is probably more complex than in
other plants and the molecular mechanisms are less well
understood. In addition, once perennials become adult
and capable of reproduction they still keep some meri-
stems in the vegetative state that contribute to their
polycarpic growth habit. Juvenility and polycarpy, al-
though considered as two different processes in peren-
nials, might be related [16].
Woody plants need a long vegetative period to achieve

transition to the reproductive stage [17,18]. After this
transition, trees begin to form flower buds in the spring
of each growing season [19]. Each seasonal flowering
period is interrupted by a long vegetative period [20]. As
a famous nut tree in China, hickory (Carya cathayensis
Sarg.) is similar to the model woody plant poplar in sev-
eral biological aspects. Both species are woody, decidu-
ous and catkin-bearing plants with a long juvenile stage.
Their pistillate flowers are naked without perianth. On
the aspect of biological characteristics, the pistillate
flower in hickory initiates from a terminal bud which
grows in short pod-branches as a young hickory tree
lives at a reproductive age. Generally, the pistillate flower
bud differentiates morphologically from late March each
year after hibernation release. Previous research suggests
that the morphological turning point from vegetative to
productive stage emerges in late March as male inflores-
cence buds are dehiscent (Figure 1a; [21]). In advance,
CcLFY (GenBank accession number: DQ989226), which
is a homolog of LFY in hickory, was applied as a land-
mark to explore the turning point of flower-bud deter-
mination at molecular level.
However, knowledge about the molecular genetics of

flowering time results from studies in A. thaliana [10,18].
It is still poorly understood about which genetic factors
control first-time and seasonal flowering, about how many
pathways take part in the process in poplar [22]. In recent
years, a few researchers set out to study the molecular
mechanism of first-time and seasonal flowering and
made some process. It is reported that FT duplication
coordinates reproductive and vegetative growth in poplar
[19]. CONSTANS (CO) and FT are involved in the initi-
ation of photoperiod-dependent dormancy [23]. The CO/
FT regulatory module controls timing of flowering and
seasonal growth cessation in trees [24].
Taken together, A. thaliana was chosen as a contradis-

tinctive material to study the flowering network of pistil-
late flower development in hickory. In this paper, the
joint-approach of RNA sequencing and microarray ana-
lysis was employed to discover new flowering or floral
genes and to show the regulation of the seasonal flowering
mechanism in hickory. Microarray is considered a ‘close’
platform because only the genes spotted on the arrays can
be analyzed. In contrast, the ‘open’ platform of 454-
sequencing of cDNAs can give transcript profiles without
prior knowledge of the genes to be identified and thus en-
able the discovery of new expressed genes [25]. As a re-
sult, ten thousands of abundant transcripts during hickory
flower development were identified, and the kinetics of
the patterns in pistillate flower ontogeny was determined.
Even more momentously, a gene seasonal flowering co-
expression network in hickory was constructed. Under-
standing the process of flowering or floral development in
hickory helps to understand the flowering mechanisms of
woody plants in general.

Results
Characterization of transcriptome dynamics associated
with hickory flower ontogeny
454 sequencing data
To determine the hickory transcriptome during flower
development, two mRNA libraries (SampleA and SampleB)
were designed for RNA-seq. More than 800,000 reads pro-
duced from 454 sequencing were assembled into 25,339
contigs for SampleA and 26,935 for SampleB, respectively.
After blast analysis between SampleA and SampleB, 4,951
SampleA specific contigs and 5,887 SampleB specific
contigs were identified. A large number of common
contigs with e value ≤ 1e-10 were obtained as well, in-
cluding 20,388 from SampleA and 21,048 from SampleB
(Additional file 1: Table S1). Thereafter, probes were
designed based on assembled 454 contigs and 109 floral
core genes of A. thaliana. Microarrays for the time points
S1-S8 were hybridized as pistillate flowering transcript
abundance profiles.

Transcriptome dynamics and function enrichment analysis
The hickory microarray slides were used to investigate
the transcript abundance profiles of hickory flowering
and floral development during S1-S8 stages. The distri-
bution of the differentially transcribed probe sets over
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Figure 1 (See legend on next page.)
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Figure 1 Experimental design. (a) Floral developing process by morphological and ultrastructure (scanning electron microscopy, SEM)
observation. White arrows in short-pod-branches indicate apical meristem where pistillate floral buds initiate. Eight samples in timing order,
namely S1, S2, S3, S4, S5, S6, S7, S8. Mixed pistillate flower buds of S1-S5 and S6-S8 namely SampleA and SampleB, respectively. M, meristem. LP,
leaf primordia. FP, flower primordia. BP, bract primordia. CP, carpel primordia. SampleA and SampleB were carried out to do 454 transcriptome
sequencing, respectively. Sequenced reads were assembled to contigs. Microarrays were designed which probes came from all of contigs.
Microarrays are hybridized with cDNA at eight time point of S1-S8, respectively. (b) Ambient temperature record of at each stage. (c) CcLFY
expression by QRT-PCR as a reference to explore the turning point of floral determination at the molecular level. (d) Number of genes differential
expression over flower development.
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pistillate flowering is illustrated in Figure 1d. The kinet-
ics of the transcripts abundance shows that there are ra-
ther few significantly differentially transcribed probe sets
in the first four samples, S1-S4, while there is a consider-
ably higher amount of differentially transcribed probe sets
in the later samples S5-S8. This is probably due to the fact
that the terminal buds in the short pod-branches of hick-
ory are going through a dormant period before entering
an active growth stage. In addition, the number of differ-
entially transcribed probe sets at the point of S5 increases
strikingly compared to the points before S5. The result
suggests that S5 is a turning point from the vegetative to
reproductive stage at the molecular level in hickory. This
is also in accordance with the quantitative expression of
CcLFY which peaked at the point of S5 (Figure 1c). It is
suggested that S5 stage is the critical point of pistillate
flower bud differentiation at the molecular level and oc-
curs at least four days earlier than that at morphological
or anatomical level at S6 stage (Figure 1a). The number of
down-regulated probe sets is larger than up-regulated
genes at the second time point, indicating that the onset
of flower development is accompanied by the repression
of many genes. The ratio between up- and down-
regulated genes shifted subsequently after the second
sample, as considerably more genes were activated than
repressed after the S2. These cases are similar with the
A. thaliana transcriptome profile during early flower
development [26,27]. The sample clustering as shown
in Figure 1d, identifies two major categories. One clus-
ter relates to the stage of flower bud undifferentiation
whereas alternately cluster biases the period of flower
bud differentiation. In addition, S1 and S2 are highly
similar in transcript abundance patterns, with more
down- than up-regulated genes in order to maintain
bud dormancy (Figure 1d). However, S3 and S4 have
more up- than down-regulated genes to prepare for
breaking the dormancy and to enter the active growth
period. Interestingly, the result indicates that S6 and
S8 are clustered to a group rather than S7 and S8. One
possible reason is that the minimum temperature sud-
denly drops from 10°C at S6 to 5°C at S7, however the
temperature is almost equal at S6 and S8 (Figure 1b).
Lower temperature probably influences the normal
metabolism and molecular regulation and consequently
decreases the number of differential transcripts.
Furthermore, to characterize the transcriptome dynam-

ics of flower ontogeny from vegetative to reproductive
stage, a total of 8,937 significantly differential transcripts
were identified using an arbitrarily fourfold change criter-
ion. K-means clustering of the 8,937 differential tran-
scripts identified nine major types of patterns (Figure 2a).
These clusters reflect the general trends and key transi-
tional states during pistillate flowering. Cluster III, II, I
and IX comprise genes that were down-regulated at differ-
ent time points and reached their lowest transcript level at
S2, S3, S4 and S6, respectively. The genes in cluster IV
and VI were up-regulated at S4 and S5, respectively, and
then retained the same transcript level in the later sam-
ples. Cluster V kept genes up-regulating in the first sam-
ples and then down-regulating after S3. Genes in Cluster
VII showed a minor decrease in transcript abundance,
while Cluster VIII genes exhibited a minor increase during
flower development.
The gene ontology (GO) annotation, corresponding to

cellular component, molecular function and biological
process, is applied to assign each cluster to statistically en-
richment functional categories (Figure 2b). First, probe
sets in cellular component category mostly attribute to
Cluster VII, and a little to Cluster IV. In detail, cell div-
ision patterns are regulated differently at different stages
of flowering time and floral development [28]. For in-
stance, XAANTAL1 (XAL1), an upstream regulator of
SOC1, FT and LFY, regulates cell proliferation of addition-
ally aerial meristems [29]. Actin-depolymerizing factor
(ADF) regulates dually flowering and cell expansion and
organ growth [30]. The FRUITFULL (FUL) gene mediates
cell differentiation during A. thaliana fruit development
[31]. Their homologs in hickory could play similar roles as
in A. thaliana during flowering.
Moreover, it is reported that some protein complexes in

A. thaliana, such as DDB1-CUL4 ASSOCIATED FAC-
TOR1 (DCAF1) and DDB1 binding WD40 (DWD) com-
plexes function in photoperiod pathway [32]. The RNA
polymerase II associated factor (PAF) and the SWR1 com-
plex (SWR1c) function in autonomous pathway [33,34].
PLANT HOMEO DOMAIN-POLYCOMB REPRESSIVE
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Figure 2 (See legend on next page.)
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Figure 2 Dynamic expression pattern of different clusters during flower development and GO function enrichment analysis. (a)
Dynamic expression pattern of different clusters. Transcriptome profiling in pistillate flower buds of hickory shows highly coordinated expression
during flower development. Nine major type patterns were identified, which were denoted as different color, respectively. The number of genes
for each cluster represents in each panel. (b) Functional categorization of genes from different clusters. The color sets for each cluster are in strict
accordance with part (a).
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COMPLEX2 (PHD-PRC2) and DELLA complexes func-
tion in vernalization and gibberellin pathway, respectively
[35,36]. It is speculated that these protein complexes have
some functions during hickory flowering as well.
In the molecular function category, major functions as-

sociated with pistillate flowering were identified by GO en-
richment analysis (shown in Figure 2b). Enzyme inhibitor,
for example, plays vital roles in flowering. For instance,
overexpression of a trypsin inhibitor AtKTI1 causes early-
flowering in A. thaliana [37]. Aminooxy acetic acid (AOA)
and L-2-aminooxy-3-phenylpropionoic acid (AOPP) func-
tion as phenylalanine ammonia-lyase (PAL) inhibitors in-
hibit stress-induced flowering [38]. Transcription factors
attribute solely to one cluster i.e. cluster VII, which trend
down-regulates slowly in entire flowering process. The re-
sult implies that most transcription factors acts as negative
floral regulators to regulate flowering in hickory. Especially
members of MADS domain transcription factors are key
floral genes. For example, FLC encodes a MADS domain
protein that acts as a repressor of flowering [39]. In
addition, other transcription factors such as SBP-box tran-
scription factors, NAC-domain transcription factors, bZIP
transcription factors, CCAAT-binding transcription fac-
tors, KNOX transcription factors, NF-Y transcription fac-
tors, Myb-like transcription factor, zinc finger transcription
factors, bHLH transcription factors, GATA-type transcrip-
tion factors, are essential in flowering.
In the biological process category, vegetative to repro-

ductive phase transition, positive regulation of biological
process, regulation of developmental process, regulation
of multicellular organismal process, reproductive devel-
opmental process, reproductive process attribute to Clus-
ter VI. In detail, putative flowering time genes such as
homologs of COLD, CIRCADIAN RHYTHM, AND RNA
BINDING 2 (CCR2), FLOWERING LOCUS D (FLD),
FPA, protein arginine methyltransferase 10 (AtPRMT10),
with no lysine kinase 8 (WNK8), glucose-1-phosphate
adenylyltransferase (ADG1), CONSTITUTIVE PHOTOM-
ORPHOGENIC 1 (COP1), EARLY FLOWERING 4 (ELF4),
MADS AFFECTING FLOWERING 1 (MAF1), methyl‐
CpG‐binding domain (MBD9), cullin4 (CUL4) and CIR-
CADIAN CLOCK ASSOCIATED 1 (CCA1) attribute to
vegetative to reproductive phase transition. In the re-
productive developmental process, several putative flowering
genes such as homologs of squamosa promoter-binding-like
protein 3 (SPL3), AGL24, EARLY FLOWERING 8 (ELF8),
EMBRYONIC FLOWER 1 (EMF1), MAF1, FLD, FPA,
PHYTOCHROME AND FLOWERING TIME 1 (PFT1)
play important roles particularly in morphological floral
transition. In addition, cluster VII shows a minor decrease
in transcript abundance mostly involved in positive regu-
lation of response to stimulus, regulation of biological
process, response to chemical stimulus, response to en-
dogenous stimulus, response to stress. For example, some
putative flowering genes in Cluster VII such as homologs
of CCA1, ELF6, AGL24, RGA-Like 2 (RGL2), SPINDLY
(SPY), CULLIN4 (CUL4), VITAMIN C DEFECTIVE 1
(VTC1), PFT1 belong to GO function of response to en-
dogenous stimulus, while some putative flowering genes
such as homologs of AtSUC3, SYD, EBS, COP1, CUL4,
FVE, AGL24, SHK1 KINASE BINDING PROTEIN1 (SKB1),
MAF2, PFT1, CCA1, CCR2, VERNALIZATION INSENSI-
TIVE 3 (VIN3), VTC1 belong to GO function of response
to stress. Both categories of flowering genes regulate
flowering negatively. Moreover, negative regulation of
cellular process, negative regulation of biological process,
cellular response to stimulus, regulation of response to
stimulus, negative regulation of response to stimulus,
gamete generation, attribute to Cluster II. Response to
external stimulus attributes mainly to Cluster I, which
down-regulates until S4 and subsequently up-regulates
after S5, while a little to Cluster VI. Genes involving in
meristem determinacy attribute to Cluster I, III and VI
and genes involving in sexual reproduction attribute
dispersedly to Cluster II, III, VI and IX. The GO anno-
tation analysis provides system-level insights into the
pistillate flowering.

Towards a hickory dynamic flowering network
For identifying the flowering and floral genes in hickory,
BLASTN searches for all of the contigs from SampleA
and SampleB have been done against a local A. thaliana
cDNA sequence database. As a result, a total of 84
hickory flowering or floral relative genes were identi-
fied, including 21 SampleA specific genes, 31 SampleB
specific genes and 32 genes common for both samples
(see Additional file 2: Table S7 for the blast results and
corresponding sequence information). In addition, 109
flowering or floral core genes of A. thaliana consulted
from more than 1000 literatures were designed to con-
struct part of the whole probe pool, of which 31 genes
have reliable hybridization signal value with hickory.
Finally, 114 flowering or floral relative genes in hickory
were identified (See Additional file 3: Table S3 for a
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complete list of the identified flowering or floral rela-
tive genes in hickory).
Due to lack of previous functional studies in hickory,

the flowering network in hickory was grounded on fore-
going reports of flowering and floral development in A.
thaliana. A total of 390 genes related to flowering were
acquired from the published literatures since 1990s. By
exploring their functions and the regulations, a comprehen-
sive flowering network in A. thaliana was reconstructed
(Figure 3, Additional file 4: Table S2), which showed 3
stages latitudinally (signal transduction, signal integration,
floral organ development) and 5 pathways (designated
UV-A Red-Light FR-LightBlue-Light Age Nutrien

Photoperiod
   Pathway

Autonomous
   Pathway

Signal Transduction

Signal Intergration

Floral Organ Development

Figure 3 Flowering network in hickory based on that in Arabidopsis I
integration, floral organ development) or 5 pathways (photoperiod, v
pathways) longitudinally to flowering. Circle in gray presents a flowerin
hickory. Rectangle in reddle presents a common flowering or floral gene in
flowering or floral gene in SampleA, while Rectangle in pink presents that
expressed flowering or floral gene. Circle in dotted line presents a protein
as the photoperiod, the autonomous, the vernalization,
the gibberellin, and the sucrose pathways) longitudinally
[10,11]. A total of 114 putative flowering or floral genes,
including 31 differentially transcribed putative flowering
or floral genes were found homologous genes in hickory
and mapped to the comprehensive flowering regulatory
network shown in Figure 3. These putative flowering or
floral genes are distributed in all latitudinal stages and
pathways in the network. It is suggested that the flowering
event of pistillate flower bud in hickory keeps intricate
and involves several pathways synchronously including
the photoperiod, the autonomous, the vernalization, the
ts Cold Sucrose

Vemalization
    Pathway

Gibberellin
  Pathway

 Sucrose
 Pathway

GA

Others

Activate Repress

Interact

Floral genes in Sample A and B

Sample A specific floral genes

Sample B specific floral genes

Foral genes in Arabidopsis thaliana

Differentially expressed floral genes

Protein complex

t shows 3 stages latitudinally (signal transduction, signal
ernalization, autonomous, gibberellic acid (GA), and sucrose
g or floral gene lies in A. thaliana but hasn’t been discovered in
both SampleA and SampleB. Rectangle in green presents a specific

in SampleB. Rectangle with blue border presents a differentially
complex.
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gibberellin, and the sucrose pathways. That is, flowering
in hickory is a comprehensive phenomenon with internal
and external stimuli, the former includes age, nutrients,
endogenous hormones, and the later includes light, day-
length, temperature, stress, etc.

Differentially transcribed putative flowering or floral core
genes
A total of 31 differentially transcribed putative flowering
or floral core genes were captured in hickory (Figure 3,
Additional file 3: Table S3). They regulate or are regu-
lated by other putative flowering or floral genes and play
vital roles in hickory flowering (Figure 4). Of them, 3
genes, homologs of PHYTOCHROME A (PHYA), COP1
and CRYPTOCHROME-INTERACTING BASIC-HELIX-
LOOP-HELIXs (CIBs), are involved in the photoperiod
pathway in A. thaliana. PHYA-like shows a decrease in
transcript abundance during the early stages in hickory.
It reaches lowest transcript levels at S6 and then stays at
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Figure 4 Transcriptional regulations of differentially expressed genes
appropriate for a gene in solid line, while right Y-axis is for a gene in dotte
relatively low levels in the subsequent stages of hickory
floral development. Compared to the PHYA-like, the
transcript abundance of COP1-like fluctuates narrowly
in hickory. CIB5-like attributes to Cluster II, whereas
CRYPTOCHROME 2 (CRY2)-like is rather constantly
transcribed throughout S1-S8.
Several flowering genes WNK1, WNK8 (EIP1), EMF1,

PSEUDO-RESPONSE REGULATOR 7 (PRR7) and CCA1
act as circadian clock genes in photoperiod pathway in
A. thaliana. Their homologs are differentially transcribed
in hickory. In detail, the WNK8-like and EMF1-like
genes have similar transcript abundance patterns dur-
ing flowering in hickory. Both genes show a decrease
in transcription level from S1 to S2, remain at a low
level from S3 to S5 and then become up-regulated at
the later stages. The transcript abundance of SKB1-like
fluctuates while its downstream gene CcFLC (GenBank:
JQ829074.1) goes down during flowering. The result
shows that their transcript abundance patterns are
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different from each other because FLC is a key target
of many upstream genes including SKB1, which is a weak
suppressor and whose minor effect also indicates further
redundancies in the repression of FLC in A. thaliana [40].
A VIN3 relative is suggested to negatively regulate CcFLC
during flowering in hickory based on flowering regulatory
network in A. thaliana and the transcript abundance pat-
tern comparison with A. thaliana. It is reported that ELF7
(VIP2) is required for a high level of FLC expression in A.
thaliana [41]. However in hickory, the ELF7-like gene cor-
relates negatively CcFLC during flowering (Figure 4). Both
putative floral repressors MAF1 and MAF2 homologs
transcribed synchronously during hickory flowering. GI is
a light-dependent negative regulator of SPY in A. thaliana
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Figure 5 Timing expression of flowering or floral genes in hickory co
phase in hickory versus A. thaliana depending on morphological ontogeny
dataset from A. thaliana in which there is no morphological change. Phase
flower primordia of hickory and sepal primordia of A. thaliana are initiated.
pistillate flowers of hickory are developed and stamen of A. thaliana is initi
carpel development is initiated in both plants.
[42], as the homolog is the same with the results in hick-
ory. In A. thaliana, direct interaction of AGL24 and
SOC1 integrates flowering signals [43]. In hickory, both
homologs work simultaneously except at S2.

Timing transcript abundance of putative flowering or floral
genes in hickory compared with that in A. thaliana
To obtain more insight into the hickory flowering mech-
anism, a comparison for flowering or floral core gene
transcript abundance patterns was made between hick-
ory and A. thaliana (Figure 5) [26]. Comparative micro-
array data of A. thaliana was downloaded from the
website (http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?
acc=GSE4594). Because of the different sampled time
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points of the two datasets from hickory and A. thaliana,
the stages were firstly unified according to morpho-
logical comparison and totally four phases were cap-
tured. Phase 1 indicates Stage 1–5 of the dataset from
hickory and Stage 1–2 of the dataset from A. thaliana in
which there is no morphological change. Phase 2 indi-
cates Stage 6 for hickory and Stage 3–4 for A. thaliana
during which flower primordia of hickory and sepal
primordia of A. thaliana are initiated. Phase 3 includes
Stage 7 for hickory and Stage 5–6 for A. thaliana, in
which pistillate flowers of hickory are developed and sta-
men of A. thaliana is initiated. Phase 4 denotes Stage 8
for hickory and Stage 7 for A. thaliana, in which carpel
development is initiated in both plants [26].
Some flowering or floral genes or their homologs, e.g.

ADG1, AGAMOUS (AG), FT, HISTONE ACETYL TRANS-
FERASE OF THE CBP FAMILY 1 (HAC1), CUL4, SU-
CROSE TRANSPORTER 3 (AtSUC3), DAMAGED DNA
BINDING PROTEIN 1 (DDB1), CASEIN KINASE II BETA
SUBUNIT 3 (CKB3), PFT1, SENSITIVE TO FREEZING 3
(SFR6), FCA, are transcribed abundantly at the same way
in both plants. For example, FT, a florigen in A. thaliana,
and the homolog CcFT (GenBank: FJ858260.1) in hickory,
express in a similar way in both plants. The expression of
FT or the homolog shows an increase in the early stages
and then maintains a high level through the later stages of
floral development. AG specifies stamen and carpel iden-
tities. The homolog in hickory is designated as CcAG
(GenBank: FJ858261.1). AG or CcAG shows a steady
increase in transcript levels to promote pistillate flower
initiation from Phase 2 in either A. thaliana or hick-
ory. FCA or its homolog reaches a maximum in Phase
2 and decreases subsequently. PFT1 might act down-
stream of phyB to promote flowering in response to
shade in A. thaliana [44]. While in the plant materials,
PFT1 or its homolog keeps transcribing during flowering
in both plants.
However, some other transcripts are disparately abun-

dant between in hickory and in A. thaliana. For ex-
ample, in A. thaliana, expression of CONSTANS-LIKE 9
(COL9) falls down sharply in Phase 2 and then maintains
a low level in Phase 3 and 4. However, its homolog is
opposite in hickory to that in A. thaliana. One possible
reason is that the gene plays different roles in different
plants. Another is that they are analogues but antagonize
each other. Besides COL9, opposite patterns of other
genes including FLD, EXORIBONUCLEASE 2 (XRN2),
SPLAYED (SYD), SKB1, WNK8, INDETERMINATE-DO-
MAIN 2 (IDD2) or their homologs were identified based
on transcript abundance comparison of those genes be-
tween A. thaliana and hickory.
In short, flowering or floral gene abundance in hickory

is partly similar but partly particular to that in A. thaliana.
Phase 2 (Day 1–3 after treatment in A. thaliana [26], and
Stage 6 in hickory), is probably an important turning point
from vegetative to generative phase in A. thaliana and
hickory.

Potential genes involved in hickory flower development
From co-expressed network
In order to identify potential novel genes associated with
flower development, a co-expression network was constructed
from a genome-wide co-expresser search for each flowering
or floral core gene. The final network encompasses 295
nodes (genes) and 500 edges (co-expression interactions),
corresponding to 232 contigs co-expressed with 62 putative
flowering or floral core genes. GO enrichment analysis
shows a significant enrichment of 42 GO terms for the co-
expressed genes (Additional file 5: Table S4). A total of 27
contigs were strongly co-expressed with putative flowering
or floral core genes (MR ≤ 30 and PCC ≥ 0.8) and involved
in flower development based on GO annotation, which
were selected as the potential genes involved in flower de-
velopment (Additional file 6: Table S5). For instance,
s1_contig16966 co-expresses with hypothetical flowering
genes CCR2 and ELF4. In hickory flowering, ELF4-like
and CCR2-like show an opposite transcript abundance
pattern (Additional file 7: Figure S1). The trajectory of
s1_contig16966 transcript abundance is synchronous
to CCR2-like but opposite to ELF4-like. It is inferred
that s1_contig16966 possibly participates in photoperiod
pathway and involves in photoperiodic perception and cir-
cadian regulation and alters GI-like expression to influ-
ence flowering time.

From function modules
To discover unknown contigs as potential flowering or
floral genes from the co-expression network, totally
eight function modules was finally constructed including
three modules (3, 6 and 7) directly associated with
flower development (Figure 6).
Module 3 is enriched in the function of reproductive de-

velopment process and the anatomical structure develop-
ment including three unknown genes. Of them, two
unannotated contigs (s1_contig18947 and s1_contig05229)
strongly co-express with homologs of EMF1 and COL9
(Figure 6, Additional file 6: Table S5). It is suggested that
the two contigs are possibly potential genes involving in
flowering even keeping close relationship with homologs of
EMF1 and COL9 in photoperiod pathway.
Module 6 which is enriched in “response to stress”

contains three putative core flowering genes (MAF1,
CCA1 and FLC homologs). MAF1 represses flowering
response to cold stress [45]. CCA1 also responds to
coldness (GO: 0009409). In this module, there are seven
contigs including two unknown contigs (s1_contig12100
and s1_contig12885) that co-express with the either one
or both of homologs of core flowering genes.
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Figure 6 Model of co-expression network with flowering function modules in hickory. Model 1: Metabolic Process: Macromolecule
metabolic process (36.36%), Cellular metabolic process(36.36%); Module 2: Mulitcellular organismal development (48%); Model 3: Development
process: Reproductive development process (58.33%), Anatomical structure development (66.66%); Model 4: Regulation of biological process
(64.29%); Module 5: Macromolecule metabolic process (60%); Model 6: Response to stress (44.44%); Module 7: Response to stimulus: Response to
abiotic stimulus (80%), Response to stress (80%); Module 8: Cellular metabolic process (76.2%).
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Module 7 including 8 hypothetical core flowering genes
(homologs of COP1, VTC1, CRY, CUL4, GI, CO, FT and
FLC) is significantly enriched for the GO terms “response
to abiotic stimulus” and “response to stress”. Three contigs
(s1_contig09426, s1_contig06693 and s2_contig25763) co-
express with the two homologs of core flowering genes of
COP1 and VTC1. The s1_contig09426 shows hom-
ology to plant serine/threonine-protein phosphatase 5
in plants. The s1_contig06693 shows sequence similar-
ity of homogentisate geranylgeranyl transferase (HGGT).
The s2_contig25763 is an unknown gene. These three
contigs transcribe in same way as both core flowering
genes do. It is predicted that these three contigs are pos-
sibly related to flowering in hickory.
Of the 21 potential genes captured from the co-

expressed networks described above, total of 17 potential
genes are assigned in the eight modules. Then, eight po-
tential genes attribute in three flowering modules. Only
four contigs have not been attributed to any modules
(Figure 6, Additional file 6: Table S5). In addition, 6
unannotated contigs were recruited from flowering re-
lated modules which strongly co-expressed with homo-
logs of well-known flowering or floral core genes into
the potential gene group. These contigs are possibly
new flowering or floral genes that are even unknown
(Figure 6, Additional file 6: Table S5).

Validation of microarrays and the co-expression network
for potential genes
To validate microarray measurements and further to
verify the reliability of constructed hickory floral devel-
opment gene network, total of 59 contigs including
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some identified potential floral genes and their co-
expressed floral homologous genes were selected from
the model of floral development gene network in hickory
to perform quantitative-real time-reverse transcription
PCR (Q-RT-PCR) which is one of the most robust and
common approaches. The Q-RT-PCR verifications suggest
that the microarrays can give the considerable results
and the constructed co-expressed network is reliable
(Additional file 7: Figure S1). For instance, s1_contig09426
is regarded as a potential gene captured from module 7,
which co-expresses with one of hypothetical floral core
genes COP1. The transcript abundance pattern of potential
gene s1_contig09426 and COP1-like has a considerable fit-
ness between Q-RT-PCR and microarray measurement
(Additional file 7: Figure S1). The similar results with many
other co-expressed gene pairs such as s2_contig22884 vs.
CCR2-like, and s1_contig18947 vs. COL9-like, etc. are con-
cluded (Additional file 7: Figure S1). The Q-RT-PCR verifi-
cation further proved that the identified potential genes are
reasonable and probable. These potential genes were
regarded as candidate floral relative genes whose biological
functions need to confirm in further research (Additional
file 6: Table S5).

Discussion
A hickory flowering model
Flowering in hickory is triggered by several pathways
synchronously including the photoperiod, autonomous,
vernalization, gibberellin, and sucrose pathways (Figure 3).
Recently, a new flowering pathway i.e. ambient-temperature
pathway was mentioned [46,47]. Nevertheless, the genes in-
volved in the ambient-temperature pathway such as FVE,
FCA, FLC, FT and SHORT VEGETATIVE PHASE (SVP)
and so on were also known as the genes in the five path-
ways. Current flowering network based on A. thaliana could
response to the ambient-temperature influence, although
the ambient-temperature pathway was not considered as an
independent in the current flowering gene regulatory net-
work. These environmental signals and internal cues from
various pathways are possibly integrated by hypothetical
floral integrators such as CcFT, FD-like, CcLFY, CcAP1
(GenBank: EU155118, an AP1 homolog in hickory) and sub-
sequently initiate floral organ development.
Co-expression network in hickory includes eight function

modules in which three are directly associated with flower
development (Figure 6). In module 1, s1_contig13083 co-
expresses with SPY-like and CUL4-like and involved in
macromolecule metabolic and cellular metabolic processes
based on GO annotation. This contig is an ubiquitin acti-
vating enzyme E1 (UBA1) via the blast result. A recent re-
search shows that CUL4-DDB1 may function in the
photoperiod pathway by interacting with SPA-COP1 com-
plex [48]. It is possible that s1_contig13083 plays a role in
the photoperiod pathway correlated with CUL4-like and
SPY-like in hickory. In module 2, s1_contig16966 co-
expresses with CCR2-like and ELF4-like. The contig is a
homolog of glycosyltransferase in A. thaliana or Populus
trichocarpa through NCBI blast. It has been identified that
glycosyltransferase promotes flowering [49].
Moreover, s1_contig10248 co-expresses with MAF1-

like and CCA1-like. In A. thaliana, MAF1 and CCA1 re-
press flowering response to cold stress [45]. It is inferred
that s1_contig10248 is possibly a gene responding to
coldness and functions in the vernalization pathway. The
fact of s1_contig04635 co-expresses with CcAP1 shows
that the contig possibly plays a role in floral meristem iden-
tity and development in hickory. And, s1_contig22514,
which co-expresses with FD-like, is a promising gene pos-
sibly functioning in floral signal integration in hickory.
Furthermore, 6 unannotated contigs co-express with cor-

responding flowering or floral genes respectively in flowering
modules. Three of them, s1_contig11921, s1_contig05229,
s1_contig18947 belong to module 3 whose GO function oc-
curs in reproductive development process or in anatomical
structure development. The s1_contig11921 co-expresses
with WNK8-like and EMF1-like. It is speculated that
s1_contig11921 might regulate flowering in photo-
period pathway together with WNK8-like and EMF1-
like in hickory. The s1_contig18947 and s1_contig05229
co-express with flowering time genes COL9-like and
EMF1-like. This shows that both contigs perhaps delay
flowering by repressing GI-like, CO-like, or FT-like genes
in hickory. The s1_contig12885 and s1_contig12100 are
other two unannotated contigs in flowering module 6
which is involved in response to stress. Both contigs co-
express with an MAF1 relative. MAF1, similarly in amino-
acid sequence to FLC, represses flowering response to
cold stress [45]. All these suggest that both contigs play a
role in cold stress in hickory as MAF1 does in A. thaliana.
The last one unannotated contig s2_contig25763 belongs
to module 7 which responds to abiotic stimulus and stress.
It co-expresses with COP1-like and VIC1-like. COP1, a
down-regulated gene of PHYA, is activated by PHYA.
Various photoperiodic and autonomous flowering path-
way mutants are epistatic to the vtc1-1 mutant [50]. These
results suggest that unannotated contig s2_contig25763
likely responds to stimuli or stress such as FR-light in
hickory.

Floral integrators in hickory flowering
Crosstalk among pathways by floral integrators such as
FLC, FT, SOC1, LFY, AP1 might explain how the mul-
tiple signals affecting flowering are coordinated. How-
ever, there is currently no direct evidence to illustrate
that these genes are with similar functions in trees. FLC
is less influenced by external environmental transient
change during flowering in A. thaliana [51], while tran-
script abundance of its homolog is dropping down slowly
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in hickory. FT is mainly influenced by a photoperiod and
circadian clock [23]. The transcript abundance of CcFT is
sensitive to subtle environmental change and accumulates
continuously and maintains a high level consequently in
hickory. FD is a FT downstream and forms a FD-FT com-
plex to initiate transcription of floral specification genes
(e.g. LFY, AP1) [52]. However in hickory, FD-like keeps
transcribing and reaches a maximum at S5 and drops down
subsequently. It is suggested that FD-like is regulated not
only by CcFT but also directly by other genes such as
CcFLC1, TFL1. CcLFY transcribes more strongly and
reaches a maximum at S5 and reduces steeply later. It is
speculated that CcLFY acts as a switch to flowering in hick-
ory and is possibly regulated not only by the analogous FT-
FD complex but also by several up-stream genes such as
homologs of FWA, GAMYB, GCR1, LD, PNF, PNY, SIN1,
SPL, SYD, TFL1, AGL19, AGL24, AtMYB3, EMF, etc. Simi-
lar to that in A. thaliana, as CcLFY level is accumulated to
a critical value, the floral organ development is initiated
[53]. Nevertheless, CcAP1 keeps fluctuating in a narrow
area possibly because it is crucial to initiate floral organ de-
velopment but is not necessary to form sepal or petal for
naked pistillate flower (Additional file 8: Figure S3).

FLC-like gene-based vernalization system in hickory
FLC encodes a MADS domain protein that acts as a
flowering repressor in A. thaliana [38]. It is also a key floral
integrator in both the autonomous and vernalization path-
ways in flower development in A. thaliana [54]. In this
study, two contigs (s1_contig20110 and s2_contig24845)
with the same complete ORF obtained from different sam-
ples (SampleA and SampleB, respectively) have top blast
hits with a FLC-like protein in Pyrus pyrifolia var. culta,
and also with those in Vitis vinifera, Coffea arabica, Citrus
trifoliata, Vitis labrusca ×Vitis vinifera, Citrus trifoliata,
and Beta vulgaris.
To validate whether the FLC-related gene (s1_contig20110

and s2_contig24845) exists in hickory or not, their primers
was designed and the corresponding full-length CDS was
cloned from a mixture of cDNAs of developing floral buds
(Additional file 9: Figure S2). Then, the 3 terminal flanking
sequence including polyA were cloned (Additional file 9:
Figure S2). It is thus proven that the FLC-related gene
can be transcribed during flowering in hickory. In
addition, the timing transcript abundance pattern of the
FLC homolog during flowering was characterized by real-
time RT-PCR and in situ hybridization. It has been shown
that transcript abundance of the FLC homolog steadily de-
creased during flowering, which is in accord with the
microarray data (Additional file 9: Figure S2). Moreover,
the FLC homolog was mainly transcribed in SAM, axillary
bud primordia and procambia (Additional file 9: Figure
S2). These results are all in conformance with those in A.
thaliana [55,56]. Finally, the complete CDS and its
predicted protein sequence were submitted to NCBI data-
base and are designated as CcFLC1, a homolog of
flowering locus C in hickory (accession number:
AFM31223.1).
Interestingly, FLC homologs were also detected in

such other species as pyrus pyrifolia var. culta (NCBI ac-
cession number: BAI99733.1), Vitis vinifera (accession
number: ACZ26524.1), Coffea arabica (accession num-
ber: ADU56823.1), Vitis labrusca ×Vitis vinifera (acces-
sion number: ABR68644.1, AEG19540.1) and Populus
simonii × Populus nigra (accession number: JQ714386.1)
except those of Brassica family. Reeves et al. [57] showed
that BvFL1, an FLC homolog in sugar beet, function as a
flowering repressor in transgenic A. thaliana and is
down regulated in response to cold stress. In Poncirus
trifoliata, PtFLC is regulated by alternative splicing and
experiences seasonal fluctuation at transcriptional level,
which might be an FLC candidate gene in Poncirus tri-
foliate (citrus) [58]. With RNAi interference and CHIP
analysis, it has been shown that PtFLC functions as a
flowering repressor in citrus. Chen (2008) [59] reported
that over-expression of a poplar FLC-like MADS-box re-
sponds to low-temperature during vegetative bud dor-
mancy. These results suggest possible existence of an
FLC-like gene in hickory.
Besides the FLC-like gene, several other hypothetical

flowering time genes were also involved in the vernalization
pathway, such as homologs of SIRTUIN (SRT), VIN3, HIS-
TONE B2 (H2B), CURLY LEAF (CLF), NUCLEAR PORE
ANCHOR (NUA), PHOTOPERIOD-INDEPENDENT EARLY
FLOWERING 1 (PIE1), ACTIN-RELATED PROTEIN 4
(ARP4), ARP6, ELF7, ELF8, HAC, UBIQUITIN CARRIER
PROTEIN (UBC), VERNALIZATION INDEPEDENCE (VIP),
MAF, and MBD9, which are upstream genes of the FLC in
A. thaliana. For example, VIN3 functions as a transient re-
pressor of the FLC that involves histone deacetylation after af-
fected by cold stress, and this VIN3-mediated process is
required for the establishment of FLC silencing [60].
H2B deubiquitination is required for transcriptional
activation of FLC and proper control of flowering in A.
thaliana [61]. AtUBC1 and AtUBC2 play redundant
roles and are involved in activation of FLC transcript,
consequently resulting in repression of flowering [62].
FLC is regulated by these genes and subsequently regu-
lates the transcript of its downstream genes, which
lead to delayed or early flowering.
Furthermore, pistillate flower buds in hickory differen-

tiate in late March while the leaves initiate in early April
and stretch fully in mid-April. The observations that the
pistillate flower initiates between dormancy break and
leaf stretch demonstrate that temperature might be a
main environmental factor in pistillate flower initiation.
The nature of the pistillate flower bud differentiation
provides a potential vernalization pathway.
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‘AC model’ for hickory pistillate flower development
In hickory flowering network, ABC model homologous
genes CcAP1 and CcAG (but lack of class A gene AP2-like,
class B genes AP3-like and PI-like) are possibly activated
by some floral integrators and consequently initiate floral
organ development. As we know, AP1 is an essential floral
meristem identifying gene combined with a switch gene
LFY and initiate floral organ development. On the other
aspect, AP1 and AP2 both belong to class A genes and
specify sepal identity [12]. However, hickory pistillate
flower is naked without sepal, petal, or stamen but
wrapped by bracts. It is inferred that the class A gene
CcAP1 is indispensable for floral organ ontogeny, and
class C gene CcAG is essential for carpel initiation.
Nevertheless, based on BLASTN searches for A. thaliana
genes, homolog genes of class B genes (AP3 and PI) could
not be identified in hickory. One possible reason is that
pistillate flower of hickory is lack of perianth and stamens,
which indicate the dispensable of AP3 and PISTILLATA
(PI) genes. Hence, here we propose an ‘AC model’ for
hickory pistillate flower development.

Comparison of flowering regulatory network in
four species
The molecular basis for flowering was studied using an
annual Long-day plant (LDP) A. thaliana [22,63,64], an
annual Short-day plant (SDP) Oryza sativa [65,66], a
perennial poplar tree [17,20] and a perennial hickory.
The comparison of the flowering network across these
four species may provide a better understanding of the
regulatory pathways and molecular mechanisms regulat-
ing flowering.
Many major genes regulating flowering detected can be

identical among all the four species by the common or ho-
mologs of the flowering genes (Additional file 10: Table
S6). Several signal transduction, signal integration and
floral organ development genes in this case have also been
reported from the other three species [17,20,63-66]. In sig-
nal transduction stage, there are 48 hypothetical flowering
or floral genes detected in hickory, including 12 SampleA
specific genes, 19 SampleB specific genes and 21 common
genes for SampleA and SampleB. While in signal integra-
tion stage and floral organ development stage, there are
17 hypothetical flowering or floral genes detected in hick-
ory, including 2 SampleA specific genes, 8 SampleB spe-
cific genes and 7 common genes for SampleA and
SampleB (Figure 3).
In the photoperiod pathway of hickory, light receptors

such as PHYA-like perceive light, and several circadian
clock genes (e.g. EMF, TIMING OF CAB EXPRESSION 1
(TOC1), CCA1, LATE ELONGATED HYPOCOTYL (LHY),
ELF3, ELF4, CCR2) respond to circadian rhythm. Subse-
quently, down-regulated genes, including DCAF1 complex
(CUL and DDB1), DWD complex (CIBs, SPA, CRYs,
COPs) are expressed and alter GI expression and impel
a florigen gene FT transcription and translation [32].
In LDP A. thaliana, the regulatory module for photo-
periodic flowering consists of GI-CO-FT signaling
pathway, which is active only during LD. The GI up-
regulates the expression of CO and in turn CO acti-
vates expression of FT [23,67,68]. However, in SDP O.
sativa sativa, the regulatory pathway is composed of
OsGI-Hd1-Hd3a, which is active only in SD [69,70]. In
poplar, FT orthologue expression is influenced by CO
orthologue and increased in LD, which may be in-
volved in the juvenile to adult transition [24]. In the
vernalization pathway, VIN3 functions as a transient
repressor of FLC by cold stress in A. thaliana [60]. In
hickory, VIN3-like correlates negatively CcFLC during
flowering, and numerous relative floral genes involved
in this pathway are identified. These suggest that VIN3-
like perceives low temperature and transmits subsequently
cold signal to downstream genes such as FRIGIDA-like
(FRI-like) complex, PAF-like complex (ELFs-like; VIPs-
like), SWR1C-like complex (PIE1-like; ARPs-like), MBD9-
like, MAF-like and UBC-like which alter CcFLC transcript
[55]. In A. thaliana, it is clearly illustrated that FRI sup-
presses flowering by increasing the levels of FLC mRNA
[39]. FLC represses expression of SOC1, which prevents
up-regulation of FD in the meristem. FLC also inhibits
transcription of FT in the leaf [56]. In Oryza sativa,
Komiya et al. [71] reported that OsMADS50 acts in leaves
upstream of RFT1 and the OsMADS50 mutation abolishes
Ehd1 and RFT1 expression in leaves, causing a non-
flowering phenotype during LD. In poplar, Bodt et al. [63]
postulated that several FLC homologs regulate the
seasonal time of flower initiation in adult trees and
overexpression of PtFD1 induced extremely early flowering
in poplar when plants were grown under LD photoperiods.
In hickory, the transcript abundance of FY, FLD, FPA,
FVE, LSD1-LIKE (LDL) and MULTICOPY SUPRESSOR
OF IRA (MSIs) homologs is accumulated or decreased by
age and nutrients in autonomous pathway [72]. They
might further repress CcFLC transcript and initiate
flowering. In gibberellin pathway, SPY-like could com-
mit GA signal to CcFT or CcFLC integrators. In the
sucrose pathway, ADG1-like, SUC-like related to su-
crose synthesis may alter the integrators such as CcFT,
AGL24-like or CcFLC transcript abundance to pro-
mote flowering. In A. thaliana, the autonomous path-
way acts upon the expression of FLC. Several genes act
additively to suppress the expression of FLC [39]. The
GA pathway also actively promotes flowering in A.
thaliana. Under SD conditions, GA4 up-regulates LFY
[73] and SOC1 [64], leading to flowering. In O. sativa,
Rao et al. [74] reported that RFL promotes flowering and
RNAi suppression of RFL strongly delays flowering. How-
ever, in poplar, constitutive expression of PTLF does
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induce solitary flowers and PTLF was less effective for in-
ducing early flowering [17,75].
In conclusion, the study has showed for the first time

the gene regulation model for pistillate flower develop-
ment in hickory via the joint-approach of RNA sequen-
cing and microarray analysis. A total of 114 putative
flowering or floral genes including 31 differentially tran-
scribed ones were discovered in hickory and exhibited in
the network. Although the genome-wide co-expression
network for the putative flowering or floral genes was
proposed, further physiological and biochemical research
on the functions and the relationships of these putative
flowering or floral genes might show their biological
roles in the pistillate flower development in hickory.

Conclusions
Transcription dynamics of pistillate flowering correlated
genes and their involved major functions were character-
ized based on the k-means clustering and GO annotation
analysis of differentially transcribed genes, which provides
system-level insights into the pistillate flowering. A total
of 114 putative flowering or floral genes including 31 dif-
ferentially transcribed ones were identified in hickory,
whose location, function and dynamic transcript abun-
dance analysis based on the constructed flowering net-
work of A. thaliana predicts that flowering event of
pistillate flower bud in hickory is triggered by several path-
ways synchronously including the photoperiod, autono-
mous, vernalization, gibberellin, and sucrose pathway.
Totally 27 newly potential flowering or floral genes were
recruited from the genome-wide co-expression network
functional module analysis. Moreover, the analysis pro-
vides a potential FLC-like gene based vernalization path-
way and an ‘AC’ model for pistillate flowering in hickory.
This study provides an available framework for pistillate
flower development in hickory, which is significant for
insight into regulation of flowering and floral development
of woody plants.

Methods
Plant material and experiment design
Terminal buds from short-pod-branches in a 15-year-old
hickory tree were sampled in Lin’an (30˚N, 119˚W),
China every 2 or 3 days from the beginning of March to
the early April in 2009.
The floral developing process was tracked through

morphological, anatomical, and ultrastructure observa-
tion, combined with molecular identification in order to
grasp the floral process and the critical point from vegeta-
tive growth to reproductive growth. The morphological
characteristics were photographed and the temperature in
the field was recorded. Using paraffin section method, the
buds were dissected longitudinally. And, using scanning
electron microscopy (SEM), the ultrastructure of buds
was studied. CcLFY was cloned and the temporal tran-
script abundance pattern was carried out to identify the
critical point of floral initiation (Figure 1). As a result,
March 18th in 2009 is the critical point of pistillate flower
bud differentiation. And, initiation of floral bud differenti-
ation at molecular level is about 4 days earlier than that at
morphological or anatomical level.
Based on previous results, 8 samples were chosen

namely, S1-S8 (Figure 1), representing 5 different flower
ontogeny stages. Samples S1, S2, S3 and S4 were
obtained before March 18th corresponding to the flower
bud undifferentiated stage. Sample S5 on March 18th

represents the critical point of floral developmental tran-
sition at a molecular level. Sample S6 on March 22th is a
critical point of floral differentiation at a morphological
level. S7 and S8 represent bract generation and carpel
initiation, respectively.
The pistillate flower buds of S1-S8 were collected re-

spectively. Each frozen sample was ground in a stainless
stell blender, and then in a stainless steel grinder, to give
a fine powder. Total RNA extraction was performed as
described by Wang et al. [76]. Isolated RNA was quanti-
tated using a Nanodrop spectrophotometer. The equal
amounts of RNA of pistillate flower buds of S1-S5 were
mixed as SampleA and those of S6-S8 were mixed as
SampleB. The total RNAs of SampleA and SampleB
were used to transcriptome sequencing, respectively. Se-
quenced reads were assembled to contigs which were
able to search ones related to flowering via blast analysis.
Then microarrays were designed, in which probes came
from all of contigs. Five micrograms RNA was used for
cDNA synthesis using oligo dT-primer and Superscript II
Rnase-Reverse Transcriptase (Invitrogen) according to the
manufacturer’s instructions. Microarrays were hybridized
with cDNA from S1 to S8 stage, respectively. Using tran-
script abundance pattern cluster analysis, Gene Ontology
analysis and pathway analysis, the map of flowering net-
work in hickory was constructed.

454 Sequencing and data analysis
SampleA and SampleB were sequenced with Roche 454
transcriptome sequencing technology (Shanghai Biotech-
nology Co., Ltd.) respectively as follows: Preparation and
sequencing of the 454 sequencing library was essentially
performed. After filtering the adapter sequences and low
quality sequences, the clean reads were assembled using
CAP3 software at the default parameters (overlap 40 bp,
identity 80%). For identifying the flowering or floral
genes of hickory based on 454 contigs, local BLAST
database was created with the A. thaliana cDNA library
obtained from the TAIR10 database (http://www.
arabidopsis.org). BLASTN searches for A. thaliana
genes were performed, which was chosen because it
had a best study in flower development among the

http://www.arabidopsis.org/
http://www.arabidopsis.org/
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plants and it belongs to the angiosperms, dicotyledon-
ous class which is the same with hickory. Throughout
this study, it was considered that the top BLAST hit
for each contig with e value < 10e-5, identity percent-
age ≥ 80% and coverage percentage ≥ 50%, which were
retrieved using a Perl script.

Probe preparation and chip analysis
To characterize the transcriptional hallmarks and molecu-
lar mechanism of flower ontogeny, RNA transcript abun-
dance profiles extracted from progressively flowering and
floral development including eight samples and three de-
velopmental stages were analyzed. Probes were designed
on the basis of assembled 454 contigs and 109 flowering
or floral core genes of A. thaliana consulted from more
than 1000 literatures. Labeled cRNA was prepared and hy-
bridized to Alligent GeneChip according to the manufac-
turer’s guidelines.
Signal and transcript values of each gene were obtained.

Genes with normalized signal values of ‘A’ (absent) in all
samples were discarded from further analysis. An arbitrar-
ily fourfold change criterion among the eight samples was
selected as the differentially transcribed genes modified
with flower development. Normalization of gene tran-
script abundance values was performed by dividing each
transcript abundance value by the mean transcript of this
gene across all samples and then taken the logarithm with
2 as the base. The total of differentially transcribed genes
was divided into nine clusters by a k-means algorithm
with MultiExperiment Viewer (MeV) (version 4.6.2) and
Pearson Correlation as the default distance metric for
KMC in MeV software was used for similarity distance
computing. Further the GO analyses of whole microarray
probe sets were performed against AmiGO (http://amigo.
geneontology.org/cgi-bin/amigo/go.cgi). Then the signifi-
cant enrichment GO terms for each cluster were exam-
ined using hypergeometric test with P-value ≤ 0.01 based
on the whole microarray probe sets GO analysis results.

Construction of hickory flowering co-expression network
A total of 30,029 genes with at least one ‘P’ signal value
among the eight samples were used as the data sets to
construct flowering and floral gene co-expression net-
work. Instead of constructing a network based on the
whole data sets, it was simply considered that the genes
co-expressed with flowering or floral key genes as a
more robust approach to survey the gene regulatory rela-
tionship over flower ontogeny, which made further efforts
help us to detect validated genes involving flower develop-
ment. To quantify the similarity of the gene transcript
abundance profiles, Pearson’s correlation coefficients (PCC)
of each gene pair, was calculated following the formulas of
the online help page (http://atted.jp/help/coex_cal.shtml)
and further transformed into Mutual Rank (MR) value with
the method descripted (http://atted.jp/help/mr.shtml). The
genes having the MR ≤ 50 with the flowering or floral genes
were selected to generate the co-expression networks.
Three width of edges are used to draw the networks, that
is, bold edges (MR ≤ 5), normal edges (5 <MR ≤ 30) and
thin edges (30 <MR ≤ 50).

Transcript abundance pattern verification
Real-time RT-PCR was performed to validate the transcript
abundance pattern of CcLFY and candidate co-expression
genes. Five micrograms RNA was used for cDNA synthesis
using oligo dT-primer and Superscript II Rnase-Reverse
Transcriptase (Invitrogen) according to the manufacturer’s
instructions. Amplification of cDNA was performed in the
presence of gene-specific primers and the SYBR Green
PCR master mix (Applied Biosystems, Foster City, CA,
USA) in MicroAmp Optical 96-well reaction plates with
optical covers using an ABI Prism 7500 Sequence Detector
(Applied Biosystems). Each sample was analyzed in bio-
logical triplicate, using individual plants and treatments to
test for reproducibility. The reaction conditions were 50°C
for 2 min, 94°C for 10 min, and then 40 cycles of 94°C for
15 s and 60°C for 1 min. All cDNA samples were included
in triplicate in all assays. Primers were designed using Pri-
mer express software (Applied Biosystems). Relative quan-
tification of gene transcript abundance data was carried
out with the 2-ΔΔCT or comparative CT method [77],
where the threshold cycle (CT) indicates the cycle number
at which the amount of amplified transcript reaches a fixed
threshold. Transcript levels were normalized with the CT
values obtained for the internal standard hickory actin.

Availability of supporting data
The raw data of RNA-seq and microarray analysis has
been submitted to the website: http://www.cls.zju.edu.
cn/binfo/hickory/.
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