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Transcription-factor occupancy at HOT regions
quantitatively predicts RNA polymerase
recruitment in five human cell lines
Joseph W Foley1,2* and Arend Sidow1,3

Abstract

Background: High-occupancy target (HOT) regions are compact genome loci occupied by many different
transcription factors (TFs). HOT regions were initially defined in invertebrate model organisms, and we here show that
they are a ubiquitous feature of the human gene-regulation landscape.

Results: We identified HOT regions by a comprehensive analysis of ChIP-seq data from 96 DNA-associated proteins in
5 human cell lines. Most HOT regions co-localize with RNA polymerase II binding sites, but many are not near the
promoters of annotated genes. At HOT promoters, TF occupancy is strongly predictive of transcription preinitiation
complex recruitment and moderately predictive of initiating Pol II recruitment, but only weakly predictive of
elongating Pol II and RNA transcript abundance. TF occupancy varies quantitatively within human HOT regions; we
used this variation to discover novel associations between TFs. The sequence motif associated with any given TF’s
direct DNA binding is somewhat predictive of its empirical occupancy, but a great deal of occupancy occurs at sites
without the TF’s motif, implying indirect recruitment by another TF whose motif is present.

Conclusions: Mammalian HOT regions are regulatory hubs that integrate the signals from diverse regulatory
pathways to quantitatively tune the promoter for RNA polymerase II recruitment.
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Background
Transcription factors (TFs) are proteins that regulate the
expression of genes by binding the DNA at their reg-
ulatory elements (promoters or enhancers) and either
preventing or facilitating the recruitment, in eukaryotes,
of the transcription preinitiation complex (PIC). The PIC
in turn recruits RNA polymerase II (Pol II) to the tran-
scription start site (TSS) to synthesize an RNA transcript.
This is a primary mechanism for the regulation of gene
expression in response to environmental stimuli or devel-
opmental programs.
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Promoters must integrate a multitude of signals that
converge on them in the form of activating or repress-
ing transcription factors. In invertebrates, some regula-
tory regions (“high-occupancy target”, or HOT, regions)
are occupied by a large number of transcription factors
[1-6]. However, less is known about the interactions
among TFs at HOT regions and how these interactions
contribute combinatorially to the regulation of transcrip-
tion, and until recently, insufficient data existed to search
for HOT regions in human cells.
The ENCODE data set [7,8] provides the first oppor-

tunity to study a large group of TFs together in
human cells. These data come from the chromatin-
immunoprecipitation sequencing (ChIP-seq) protocol:
chromatin is crosslinked to preserve DNA-protein and
protein-protein bonds, then a target-specific antibody is
used to capture the DNA proximally associated with a
given protein, and this DNA is sequenced and aligned to a
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reference assembly to create a genome-wide map of pro-
tein occupancy [9]. At each genome site occupied (though
not necessarily bound directly) by a protein, ChIP-seq
produces a tight cluster of read alignments, which can
then be detected by software with high resolution.
Previous ChIP-seq analyses have generally considered

a single experiment at once, and have treated TF occu-
pancy as a binary signal—present vs. absent. However,
the particular strength of the signal at any given site may
represent important biological information, such as the
persistence of occupancy within a cell or frequency across
all cells in the sample. We developed a new software
package, UniPeak, to analyze these data accordingly.
Using UniPeak to discover and quantify HOT regions,

we performed a comprehensive analysis of these regula-
tory hubs. In particular, we characterized HOT regions
with regard to other known markers of gene activity. We
also compared the occupancy profiles of different TFs to
predict novel interactions, and used mechanistic evidence
to infer which complex members directly bind DNA.
Finally, we quantified the relationship between TF occu-
pancy and several measures of gene expression at HOT
promoters.

Results
The human genome contains thousands of HOT regions
We obtained all publicly available ENCODE ChIP-seq
data from the 5 most studied human cell lines [8], which
assayed 96 DNA-associated proteins (Additional file 1:
Table S1). These cell lines are derived from a variety
of tissues and germ layers: GM12878 (lymphoblas-
toid/mesoderm), H1-hESC (embryonic stem cell), HeLa-
S3 (epithelium/ectoderm), HepG2 (hepatic/endoderm),
and K562 (leukocyte/mesoderm). We aligned the read
sequences from each experiment to the hg19 reference
genome, standardizing the read length and removing low-
confidence alignments in order to ensure accurate map-
ping without read-length bias.
UniPeak extends the peak-calling algorithm from

QuEST [10] to the parallel analysis of multiple samples
(Figure 1). Each aligned sequence read is considered one
hit at the 5′ end of its alignment to the reference assembly.
For each sample (i.e. a single replicate of a single exper-
iment), UniPeak estimates the base-pair shift between
strands, due to reading from opposite ends of sheared
fragments, by selecting a shift value that maximizes strand
correlations at the strongest regions. After shift correction
of individual samples, kernel density estimation is used
to compute a single smooth density profile for the com-
bined signal of all samples. UniPeak identifies enriched
regions where this profile exceeds a fixed threshold of fold
enrichment relative to a uniform background distribution.
The number of hits within each of these regions from each
sample is reported, yielding a regions × samples matrix

of hit counts. Unlike other peak-callers for ChIP-seq,
UniPeak does not directly use “input” or other negative
controls to filter enriched regions initially; rather, though
these samples do not contribute to the region-calling
step, negative-control reads (as well as histone-mark ChIP
reads) are counted within the regions called from ChIP
samples, and reported alongside read counts from TF
ChIP samples. We normalized the peak intensities from
discrete read counts to continuous occupancy values
with the variance-stabilizing transformation in DESeq
[11]. Performance validation of UniPeak is described in
Additional File 2.
From the full set of 96 proteins in 5 cells, UniPeak

detected 11,239 enriched regions (Table 1) of median
size 136 bp (Additional file 1: Figure S3). Many of these
appeared roughly evenly occupied by most proteins, with
notable exceptions (Figure 2A). In particular, a large frac-
tion of these regions were occupied only by the cohesin
complex (CTCF, RAD21, SMC3), which, unlike canonical
TFs, is known to bind insulator elements [12]. Cohesin-
specific sites were less likely to be near a Pol II initiation
site, and showed depletion of histone 3 lysine 4 trimethyla-
tion (H3K4me3), a chromatin mark associated with active
promoters [13]. REST, a transcription repressor that binds
the RE1 element to repress neuronal genes in non-neurons
[9,14-16], similarly showed preferential occupancy in a
large set of regions depleted for other TFs and for initiat-
ing Pol II.
To focus on only canonical TFs, which should be more

functionally homogeneous and increase our specificity
for HOT regions, we removed from the analysis four
classes of proteins with different behaviors that con-
founded our goal of HOT region analysis. These were
the cohesin complex, REST, chromatin remodelers and
modifiers (e.g., p300 and SWI/SNF), and the preinitia-
tion complex. The latter was later used to test functional
predictions.
With this reduced set of 75 canonical TFs, UniPeak

detected 7,227 regions (Table 1), of median size 171
bp (Additional file 1: Figure S3). Consistent with HOT
regions, these regions were occupied by most or all TFs
(Figure 2). Hierarchical clustering showed that the occu-
pancy profiles of different TFs in the same cell were
generally more similar than those of the same TF across
all cells. In particular, GM12878, K562, and HepG2 each
showed sets of HOT regions that were only occupied in
one cell type, and these tended to be depleted for ini-
tiating Pol II and for histone 3 lysine 4 trimethylation
vs. monomethylation; these regions might represent cell
line-specific enhancers.
Because of these cell-specific signals and because of

the incomplete overlap among the sets of TFs tested in
different cells (Additional file 1: Table S1), we also used
UniPeak to detect enriched regions in each of the 5
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Figure 1 The UniPeakworkflow. A: Sequence reads are considered as hits at their 5′ start positions, strand-specifically. B: A global read-shift
value is computed independently for each sample to align forward and reverse reads. C: The shifted reads from all samples are then used to
estimate a single underlying density profile. Enriched regions are identified where this density exceeds a fixed threshold, determined as a function
of sequencing depth and genome size. Shifted reads from each sample are counted within these regions, providing a read count for each sample
within each genomic region.

cell lines individually. This yielded 12,312–14,578 HOT
regions from each data set, except H1-hESC with only
3,392 (Additional file 1: Figure S4). The generally higher
number of detected regions may reflect higher sensitiv-
ity to cell-specific binding than in the pooled analysis,
and a general lack of active cell-specific sites in H1-hESC
(perhaps differentiated lineage-specific enhancers, since
H1-hESC showed much higher promoter enrichment
(50% consensus promoters vs. 22–39% in other cell types);
this is consistent with a model in which tissue-specific

enhancers are inactive or “poised” in undifferentiated cells
[17]).

Many HOT regions are promoters
Since transcription factors occupy regulatory elements
in the genome, we expected HOT regions to align with
these elements. We compared the positions of these
HOT regions with those of known or inferred promot-
ers, according to three lines of evidence. First, we detected
initiating RNA polymerase II (serine 5-phosphorylated
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Table 1 Results of region calling

Data set Proteins Samples Reads
UniPeak
regions

Reads in
regions

RNA polymerase II
initiation sites

CAGE peaks RefSeq TSS Consensus
promoters

All proteins 96 503 8.8B 11,239 213M (2%) 5,631 (50%) 4,951 (44%) 4,703 (42%) 4,189 (37%)

TFs only 75 357 6.3B 7,227 118M (2%) 5,745 (79%) 5,128 (71%) 4,813 (67%) 4,441 (61%)

GM12878 46 102 1.8B 12,887 61M (3%) 7,477 (58%) 6,315 (49%) 5,011 (39%) 4,522 (35%)

K562 41 93 1.5B 14,578 70M (5%) 10,174 (70%) 7,188 (49%) 6,589 (45%) 5,743 (39%)

HepG2 32 76 1.5B 12,312 48M (3%) 6,557 (53%) 5,232 (42%) 4,199 (34%) 3,791 (31%)

H1-hESC 25 52 985M 3,392 8M (1%) 2,180 (64%) 2,303 (68%) 2,127 (63%) 1,700 (50%)

HeLa-S3 16 34 498M 13,199 18M (4%) 5,499 (42%) 4,056 (31%) 3,243 (25%) 2,893 (22%)

[18]; Pol II-S5P) enrichment sites from an independent
UniPeak analysis, again using ENCODE ChIP-seq data.
Second, we used a strand-specific UniPeak analysis to
detect enriched regions from CAGE, a form of RNA-seq
that captures short tags at the 5′ end of the transcript [19].
Finally, we used transcription start site (TSS) positions
from RefSeq [20], the most robust and most stringent
annotation.
Of the 7,227 HOT regions called using the set of canon-

ical TFs in all cells, 79% were within 500 bp of Pol
II-S5P occupancy peaks, 71% within 500 bp of CAGE
enrichment peaks, and 67% within 500 bp of RefSeq
TSSs, with 61% “consensus promoters”, i.e. within 500
bp of all three features (Figure 3A). Of HOT regions
with occupancy peaks within 500 bp of one of these
annotations, most fell within 200 bp of the given anno-
tation (83% Pol II-S5P, 88% CAGE, 85% RefSeq TSS),
with a bias toward being upstream rather than down-
stream of annotated TSSs (68% upstream; Figure 3B).
Among the regions called in the five cell-specific anal-
yses, 42–70% were near Pol II-S5P sites, 31–68% near
CAGE peaks, and 25–63% near annotated TSSs (Table 1);
the variation in these ranges reflects the different sets of
TFs tested in the different cells. RefSeq TSS was consis-
tently the least common annotation, perhaps because the
database represents an incomplete set of true promoters,
whereas Pol II-S5P ChIP-seq and CAGE enrichment sig-
nals occur at active TSSs regardless of whether they are
annotated.
We further characterized HOT regions at consen-

sus promoters in terms of several quantitative genomic
features associated with promoters (Additional file 1:
Figure S5). Most known human promoters are enriched
for GC content and especially CpG dinucleotides [21],
and their sequences are typically under evolutionary con-
straint [22]. In addition, several histone modifications are
associated with regulatory genome elements: histone 3
lysine 4 trimethylation (H3K4me3) is enriched at active
promoters [13], while monomethylation (H3K4me1) is
enriched at enhancers [23], and histone 3 lysine 27

acetylation (H3K27ac) is enriched at both active promot-
ers [24,25] and active enhancers [17,25,26]. Consistent
with active promoters, our consensus promoters showed
higher GC content, CpG content, evolutionary constraint,
H3K27ac, and H3K4me3 vs. H3K4me1 (Figure 3C). Since
these regions showed strong evidence of being promoters
and could be associated with specific genes, we restricted
all subsequent analyses to the consensus promoters in
each of the five cell-specific HOT region lists, treating
them as independent replicate experiments.

Similar occupancy profiles suggest binding partners
We reasoned that TFs with correlated occupancy pro-
files (more abundant at some sites and less abundant
at others) may share mechanistic or functional relation-
ships. To search for such relationships, we used neighbor-
joining [27] to cluster TFs by the similarity of their
occupancy profiles across consensus promoters in each
cell (Figure 4). This analysis detected some known binding
partners and gene families as well as novel relationships
among TFs. For example, subunits of multimeric com-
plexes often had very similar binding profiles, such as
NFE2 and MAFF or MAFK [28]; MAX and MYC or
MXI1 [29,30], NFYA and NFYB [31,32]; and USF1 and
USF2 [33]; to a lesser extent, so did family members
that share a DNA-binding motif, such as the ETS fam-
ily (ELF1, ETS1, GABPA, SPI1) and the E-box family
(MYC, USF1, USF2).
The AP-1 transcription factor is a heterodimer com-

posed of a member of the JUN family and a member of
either the FOS family or the ATF family [34]. However, in
our analysis, FOS itself never clustered with a JUN fam-
ily member, but JUN and JUND’s occupancy profiles were
correlated with those of their alternative binding partners
BATF, FOSL1, FOSL2, and ATF2, and to a lesser extent
CEBPB and CEBPD, which are not documented to inter-
act with AP-1 subunits. Unlike ATF2, ATF3 reproducibly
clustered with USF1 and USF2, which have no docu-
mented interaction with ATF3. The occupancy profiles of
SIX5 and ZNF143 were also correlated in multiple cell
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Figure 2 Clustering of protein occupancy data. A: Hierarchically clustered heatmap of all DNA-associated proteins assayed. Each row represents
a HOT region called on the pooled data by UniPeak (m = 11, 239), and each column represents a single replicate of a ChIP-seq experiment
(n = 503). The sidebars show histone modification ChIP-seq signals within the same regions, normalized separately, and initiating RNA polymerase II
signal and the nearest peak within 500 bp (zero if there were no peaks in this range). Color intensity in the heatmaps corresponds to
variance-stabilized values for occupancy. B: Canonical TFs only (7,227 regions × 357 samples).

types despite no documented interaction. In fact, mam-
malian two-hybrid assays found no direct binding activity
between these proteins [35].
One large branch in GM12878 included ATF2 [36],

BATF [37], BCL3 [38], BCL11A [39], BCLAF1 [40],
BHLHE40 [41], EBF1 [42], IRF4 [43], JUND [44], MEF2C
[45], MTA3 [46], NFATC1 [47], PAX5 [48], PML [49],
POU2F2 [50], RUNX3 [51], RXRA [52], SPI1 [53], STAT3
[54], STAT5A [55], TCF3 [56], and TCF12 [57], which
are all known to be involved in the differentiation of
lymphocyte lineages. This branch also included MEF2A,
which, unlike its highly similar family member MEF2C,
is not known to be involved in lymphocyte differentia-
tion [58]. Thus, this analysis both recovered known func-
tional relationships between TFs and discovered novel
associations.
To test whether protein-protein interactions predict

similarites in occupancy patterns, we compared our
results with a comprehensive database of mammalian

two-hybrid screens; data were available for all TFs in this
study except FAM48A and THAP1 [35] Within each cell
type, we split pairwise correlations of samples’ occupancy
profiles across all HOT regions into those from binding
TF pairs and those from non-binding TF pairs. Pairs of
replicates of the same TF were not used. On average, the
occupancy profiles of binding TFs were more correlated
than those of non-binding TFs (Additional file 1: Figure
S6). The difference was only large in the HeLa-S3 data,
perhaps due to the selection of TFs tested in that cell type;
in other words, potential direct interactions between TF
pairs (which may not actually occur in vivo) generally only
explain a small part of the similarity in their occupancy
patterns.

Most TFs appear to be recruited to HOT regions as cofactors
Although it is difficult to use shared occupancy pro-
files to infer a binding mechanism, additional analysis
can illuminate a critical step in the recruitment of a TF
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Figure 3 Characterization of HOT regions with reference annotations. A: Overlap among promoter annotations. Each HOT region from the
analysis of all canonical TFs in all cells (N = 7, 227) was annotated with the nearest initiating RNA polymerase II peak, CAGE peak, or RefSeq TSS
within 500 bp. B: Proximity of TFs’ binding regions to promoters, in base pairs, according to nondirectional RNA polymerase II ChIP-seq data,
directional CAGE data, or RefSeq annotations of transcription start sites. C: Quantitative annotations versus presence of Pol II. Each row of figures
shows distributions of a given annotation in the two combined and five cell-specific data sets, separated between HOT regions not at a consensus
promoter (dark) vs. regions within 500 bp of a Pol II binding site, a CAGE peak, and a RefSeq TSS (light).

complex. A TF’s observed occupancy at a given pro-
moter might be due to either direct binding of DNA
or recruitment by another protein. Most TFs in our
data set have previously been annotated with DNA
sequence motifs that they bind specifically. Thus, if we
make the simplifying assumption that most TFs usu-
ally bind DNA at regions that contain their respective
sequence motifs, then their occupancy at sites without
their motifs is likely to be as cofactors recruited by other
proteins.
To identify candidates for direct DNA binding, we

searched across the consensus promoters from the cell-
specific UniPeak output for occurrences of sequence
motifs associated with the TFs in the ENCODE data set.
We considered motifs identified de novo by ENCODE
from analysis of each ChIP-seq experiment individually
(Kheradpour P, Kellis M: ENCODE-motifs: systematic

analysis of regulatory motifs associated with transcrip-
tion factor binding in the human genome, under revision),
and in order to avoid motifs that are not bound directly
by a given TF but rather by its cofactor, we used only
motifs that matched database annotations for the given
TF. This yielded multiple motifs for some TFs and none
for others, and some motifs were associated with TF
families rather than individual TFs; thus, our analysis
was based on “motif sets” that share a common annota-
tion, rather than individual motifs. On average, any given
HOT promoter contained motifs in about 4 distinct sets
(Figure 5A), even though these sites are defined by the
presence of many more TFs, suggesting that the major-
ity of TFs at these sites may be recruited by other factors
rather than bound to the promoter themselves. Further-
more, the number of occurrences of any set’s motifs
across the set of regions was too small for nearly any
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Figure 4 Neighbor-joining trees for TFs at consensus promoters in the cell-specific analyses. Clustering is by Pearson distance of occupancy
profiles. Individual replicates are shown separately. Known and putative functional groups are highlighted.

particular TF to bind its motif at most HOT regions
(Figure 5B).
Next we measured the association between motifs

and TF occupancy at consensus promoters. For each
motif, we compared the occupancy score of each TF
between consensus promoters with the motif vs. those
without it Figure 6, (Additional file 1: Figure S7).
Many motif sets were predictive of the occupancy of
other TFs besides their own, and some TFs’ occu-
pancy was better predicted by other TFs’ motifs than
by their own. The most promiment pattern was that
ETS-family motifs were strongly predictive of many
other TFs’ occupancy. In particular, consensus pro-
moters with ETS motifs were enriched for the occu-
pancy of MAFF, MAFK, MEF2A, MEF2C, POU2F2,
and SRF, suggesting that these TFs’ primary mecha-
nism of positioning at HOT regions may be recruit-
ment by ETS family members rather than direct DNA
binding.
Motifs in the E-box family are bound by TFs with

a basic helix-loop-helix domain, including BHLHE40

[59], MYC-MAX [29], MXI1-MAX [30], TCF12 [60],
and USF1/USF2 [33]. Other TFs enriched at E-box
sites included ATF3, E2F6, NFE2, and SIN3A; of these,
the only previously documented interaction with a
E-box-binding TF is between SIN3A and MAD-MAX
[61].
Subunits of the AP-1 transcription factor were only

weakly enriched at promoters containing motifs for the
FOS-JUN heterodimer; however, JUN and JUND, but not
FOS, were more strongly enriched at sites with motifs
associated with their alternate binding partner ATF3.
The ATF3 motifs were also predictive of the occupancy
of CEBPB, RFX5, and SRF, none of which are docu-
mented to interact with AP-1 directly; however, although
neither is enriched at the other’s motif sites, CEBPB
and SRF are known binding partners [62,63]. On the
other hand, FOS, but not FOSL1 or FOSL2, was very
strongly enriched at sites with the NF-Y motifs, as were
IRF3 (but not IRF4), PBX3, RFX5, SP1, and SP2. Of
these, only SP1 is known to interact with NFYA/NFYB
[64].
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Figure 5 Frequency of DNA sequence-motif sets. Each set contains one or more motifs annotated to the same TF.A: Number of distinct motif sets
represented at each consensus promoter peak. B. For each motif set, the number of consensus promoter peaks with at least one motif from the set.

Other relationships between a motif set and TFs not
annotated with it include one particular MAF motif with
SPI1; the NRF1 motifs with ATF3; certain STAT motifs
with ELF1, ETS1, SIX5, SPI1, and ZNF143; TAL1 motif
with TCF3 and TCF12; and ZNF143 motif with ETS1
and SIX5. Of these relationships, all but the last can be
explained by motif sequence similarity; no interaction
among ZNF143, ETS1, and SIX5 is documented. Some of
themost commonmotifs, the GC-rich EGR1 and SP1 sets,
were associated with depletion of most TFs. The NRF1
and NF-Y motifs were associated with depletion of many
TFs except the few that were strongly enriched at those
sites.
The occurrence of TF-associated DNA sequence motifs

in HOT regions was so low, relative to the number of
TFs present, that most TFs probably do not directly
bind the DNA at these regions but are instead recruited
as cofactors, consistent with other analyses of these
data [65]. Reinforcing this, many TFs’ occupancy was
well predicted by motifs known to be bound directly
by different TFs, and in some cases a TF showed a
stronger preference for a different TF’s motif than for its
own.
These results are corroborated by a previous analy-

sis of the same data [66]; however, most of the putative
transcription-factor interactions inferred in that analysis
are not supported by ours. Our analysis may be more
stringent because it considers the strength of the ChIP-seq

signal at each site rather than just presence or absence of
a peak called at arbitrary thresholds.

A small number of TFs explain a large proportion of Pol II
recruitment
The general role of TFs is to recruit the preinitiation com-
plex and ultimately Pol II, which then transcribes RNA
from the gene body; thus, the presence of these down-
stream factors and the abundance of the transcript should
be partially explained by the combination of TFs at pro-
moters. We also expect a relationship between TF occu-
pancy and histone modifications associated with active
promoters, though the causality may work in either direc-
tion. Since we have quantitative enrichment values for all
these markers of gene regulation and for all TFs’ occu-
pancy, at all consensus promoters, we can measure the
strength of the relationship between them statistically.
We constructed a linear regression model that treated

each TF ChIP-seq sample as an independent variable,
and gene regulation as the dependent variable, with each
HOT consensus promoter as one observation. This model
necessarily contains redundant signals, not just as strong
correlations between replicates, but also as weaker cor-
relations between factors with similar behaviors, such as
sets of TFs that bind in complex; because of the number
of predictors and their nested multicollinearity, standard
multiple linear regression would produce uninterpretable
results and suffer from overfitting or reduced power.
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Figure 6 Predictive value of all motifs for all TFs, in GM12878 cells. Each row represents a single TF, with replicates pooled. Each column
represents one sequence motif from the previous analysis, and motif sets associated with the same TF are grouped. Color intensity represents the
significance of the difference in occupancy of the given TF at consensus promoters with vs. without the given motif, where significance is the
logarithm of the p-value from a t-test for the difference between means of occupancy scores, which are the means of variance-stabilized scores
across replicates. Blue signifies enrichment of the given TF at sites with the given motif, and red signifies depletion of the given TF at sites with the
given motif.

We instead applied partial least-squares regression, which
performs a rotation and dimensional reduction on the
covariance matrix in order to isolate latent orthogonal
signals underlying patterns from multiple observations.
This method also allows both the independent and depen-
dent variables to be matrices rather than single vectors,
so only two models (v.i.) were fit for each cell type,
encompassing all available data at once. The dependent
variables we used were the occupancy of PIC subunits
within the region, the enrichment of histone modifica-
tions (H3K4me1, H3K4me3, H3K27ac) within the region,
the occupancy of initiating Pol II at its nearest enriched
region, the occupancy of elongating Pol II (serine 2-
phosphorylated [18]; Pol II-S2P) in the gene body corre-
sponding to the nearest RefSeq TSS, the CAGE signal at
its nearest enriched region, and the RNA-seq signal for the
gene corresponding to the nearest RefSeq TSS. Since all
the signals from the available experiments were required

for a full observation, this analysis was restricted to con-
sensus promoters; genes with no TFs bound were not used
to train the model.
As a null model, we considered that any explanatory

power from the TF signals that could also be contributed
from “input” controls (total chromatin, IgG pulldown)
was likely a ChIP-seq artifact rather than a meaningful
TF effect. Therefore, for each cell type we compared two
models: gene regulation as a function of both TF ChIP and
input signal, and gene regulation as a function of input
signal alone.
The presence of PIC subunits was well predicted by

aggregated TF occupancy (Figure 7, Additional file 1:
Figure S10; cross-validation R2 ≈ 0.7 for the cells with
the most TFs tested), though with somewhat high con-
tribution from input alone. Histone marks H3K4me3 and
H3K27ac were somewhat well predicted (CV R2 ≈ 0.4),
but with even higher relative contribution from input,
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perhaps because these controls are sensitive to open
chromatin, which is associated with active promoters;
H3K4me1 was not well predicted by the model (CV R2 <

0.2), likely because of very low signal at these regions, as
expected for a mark depleted at active promoters. Pol II-
S5P occupancy was also well predicted by TF occupancy
(CV R2 ≈ 0.4), and input was not very predictive (CV
R2 < 0.2); the results were slightly worse in the cells with
fewer TFs tested. On the other hand, Pol II-S2P occupancy
was not well predicted by TF occupancy, nor was tran-
script abundance as measured by either CAGE or RNA-
seq (CV R2 < 0.2); there was no consistent difference
between CAGE signals from polyadenylated (mature) and
unpolyadenylated transcripts. Thus we found that the
presence of these TFs is strongly associated with immedi-
ately subsequent steps in gene regulation, but only weakly
associated with later steps.

Conclusions
We present a quantitative analysis of a large volume of
ChIP-seq data, constituting the genome-wide occupancy
profiles of a large number of TFs in five human cell types,
from the ENCODE consortium [8]. The new software
package UniPeak facilitates the comparison of binding
profiles from an unlimited number of samples at a con-
sistent set of genome regions, eliminating the difficulty of
reconciling many independent lists of peak calls and pro-
ducing a regions × samples matrix of signal strengths,
similar to those generated by microarray experiments.
Here we bring matrix analysis and sample clustering back
to the forefront of a high-throughput genomics investi-
gation. Since we view DNA-associated protein occupancy
as a fundamentally quantitative phenomenon, which may
have quantitative functional effects [2], we avoid apply-
ing premature thresholds and dequantification of the
peak intensities. Our approach may become even more
useful as improved technology allows greater sequenc-
ing depths and therefore higher quantitative precision,
and perhaps also as new molecular protocols increase
the signal-to-noise ratio of protein-associated DNA
capture [67].
Assessing the relevance of this study to our understand-

ing of transcriptional regulation, we found that about 40%
of variance in initiating Pol II occupancy at HOT pro-
moters can be explained by the entire set of available
TF occupancy data in the cells with the most experi-
ments. The predictive value is higher for PIC subunits,
and much lower for elongating Pol II and transcript abun-
dance. These results are also consistent with our knowl-
edge of biological mechanisms, because there are many
additional regulatory interactions between PIC recruit-
ment and the production of an elongated, mature, stable
transcript that do not involve TFs. It is important to
note that these models would have shown a better fit

if we had surveyed all promoters instead of just those
occupied by many TFs, because the inclusion of inac-
tive promoters would add many points near the origin
(no TFs bound, no gene expression), which would make
the trend more linear [7,68-70]. Finally, this analysis rep-
resents fewer than 50 TFs tested in any individual cell
line, compared with the 1,400–1,900 TFs estimated to
exist in the human genome [71]; in that context, 40%
of variance explained represents substantial explanatory
power.
Regions occupied by many different TFs are common

in the human genome. Even our strictest definition finds
several thousand HOT promoters, likely a considerable
fraction of the active genes in any given cell line. Espe-
cially since there are far too few known DNA sequence
motifs to account for all the TF occupancy at these sites,
we propose that TFs collaborate combinatorially through
protein-protein interactions to regulate Pol II recruit-
ment (Figure 8), concordant with similar evidence from
Drosophila enhancers [72]. Interactions of this nature
have not previously been examined on such a large scale,
due to the greater challenges of high-throughput pep-
tide assays compared to high-throughput nucleotide
assays.
This analysis yields several hypotheses that may be val-

idated by future experiments. Based on the similarity of
their occupancy profiles, reproduced independently in
multiple cell lines, we infer that ATF3 and USF1/USF2
may be part of a novel protein complex; furthermore,
since DNA sequence motifs associated with USF1/2 are
predictive of ATF3’s occupancy but not vice versa, we
predict that USF1 or USF2 is the subunit of this com-
plex that directly binds the promoter, while ATF3 is a
cofactor recruited byUSF1/2 despite having its ownDNA-
binding domain that is used in other complexes. By the
same logic we also predict that SIX5 and ZNF143 are
members of a novel complex in which ZNF143 is the
DNA-binding subunit. In both cases, previous experimen-
tal evidence shows the two partners are not capable of
binding each other alone, suggesting that a chaperone
is required to enable binding, or that these interactions
require both proteins to bind to a common intermediate
or complex of intermediates. On the other hand, we find
that in HOT promoters, FOS seems only rarely to per-
form its well-known role in the AP-1 heterodimer with
JUN, generally supplanted by a FOSL or ATF protein,
though of course FOS is known to have several alternate
cofactors [34].
It should not be surprising that a TF with a functional

DNA-binding domain and even a well-demonstrated
sequence motif might often be recruited as a cofac-
tor by some other protein. Indeed, this is true of TBP,
the so-called TATA-binding protein, which is required
for the assembly of the preinitiation complex at all
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Figure 8 Proposedmodel of interaction between two HOT regions and resulting signals from high-throughput sequencing experiments.
An enhancer is looped over and connected by a complex of many TFs, which recruit the preinitiation complex and ultimately RNA polymerase II to
the TSS. Proteins A are directly bound to DNA, while protein B is recruited to the site through only protein-protein interactions. These mechanisms
are indistinguishable from the ChIP-seq signal, but presence of a known sequence motif suggests which protein binds directly.

loci even though only 10–24% of human promoters
have a TATA box [73,74]. One possible paradigm for
gene-regulatory evolution might be the emergence of
a DNA-binding TF that uses protein-protein interac-
tions to recruit other TFs to its own recognition sites,
harnessing their existing regulatory pathways without
sequence motifs for the other TFs. Over evolution-
ary time, this additional layer of regulatory interac-
tions between the steps of protein-DNA binding and
recruitment of polymerase might remove the constraint
of requiring the “downstream” TFs’ sequence motifs in
new regulatory elements or even conserving them in
existing elements, so that TFs capable of autonomously
binding DNA and recruiting the PIC become primar-
ily cofactors for other TFs with more specialized tar-
get loci and finer regulatory control. Thus the large
TF complexes, or interchangeable interactions, that we

observe at HOT regions might represent multiple lev-
els of gene regulation and therefore of evolutionary
history.

Materials andmethods
Read alignment
ChIP-seq nucleotide sequence reads and base qualities
were obtained from the ENCODE database, and truncated
to the first 25 nt, the shortest length in the data set, to
prevent biases in mapping due to different read lengths.
BWA 0.6.1-r104 [75] was used to map reads to the
hg19 reference assembly. Unique best hits were filtered to
confident alignments with posterior probability ≥ 0.9.

Density profiles
Similarly to the robust QuEST algorithm [10], a smooth
density profile was created using the frequency of 5′ read
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starts per reference base as the input to kernel density esti-
mation (KDE), so that the density at any given position i
on one strand was given by

H(i) =
∑i+h

j=i−h K
(
i−j
h

)
C(j)

∑h
k=−h K( kh )

where K(x) = 3
4 (1 − x2)1{|x|≤1} is the Epanechnikov

(quadratic) kernel density function, h is the kernel band-
width, and C(j) gives the number of 5′ read starts at
position j.

Enriched region calling
Any region where the smooth density profile exceeded a
fixed threshold, relative to the uniform background of the
total confident read count divided by the genome size,
was considered enriched. 5′ read starts were then counted
inside each region. The kurtosis of the distribution of 5′
read starts within each region was calculated, and lep-
tokurtic regions were filtered out to remove technical
artifacts.

Strand shift estimation
To estimate the shift between enrichment maxima from
the forward and reverse strands flanking each binding
site, a byproduct of 5′ end-directed sequencing and the
genomic fragment size, KDE was performed separately
on each strand, and preliminary enriched regions were
called from the sum of the two density profiles. Among
the regions containing the highest read counts, the Pear-
son correlation between the strand-specific density pro-
files was calculated for each of a spectrum of 5′ to 3′
shift values. The distribution of correlation-maximizing
shift values across the top regions was smoothened
with a small bandwidth and the global maximum was
chosen as the sample-wide shift value. Density profiles
from opposite strands were shifted by this value and
added together for a unified, strand-independent pro-
file. Regions with a low Pearson correlation between
the two strands’ density profiles were discarded as
artifacts.

UniPeak workflow
The new software package UniPeak was written to auto-
mate the steps above. Starting with confidently aligned
reads, strand shift was estimated independently for each
sample (with the exception of negative controls, whose
shift was inferred from corresponding ChIP samples, as
they did not yield enough preliminary enriched regions
to estimate a shift value), using the top 1,000 regions
called with smoothing bandwidth 50 nt, region-calling
fold-enrichment threshold 25X, kurtosis threshold 50,

minimum strand correlation 0.3, minimum shift 25 nt
each strand, maximum shift 150 nt each strand, and
correlation vs. shift smoothing bandwidth 5 nt. The sam-
ples were then shifted accordingly and kernel smooth-
ing was performed with bandwidth 100 nt to capture
binding sites in close proximity to each other; density
profiles from both strands of all samples were summed
and enriched regions were called and filtered as before.
Enriched regions on sex chromosomes and the mitochon-
drial genome were removed, along with those overlapping
false-positive genome regions identified by ENCODE and
those greater than 500 bp in size.

Normalization
The read-count matrix from UniPeak 1.0 was normal-
ized by the variance-stabilizing transformation in DESeq
1.7.7 [11], determining the dispersion-mean relation-
ship with local fitting, pooling all samples to estimate a
single empirical dispersion value per analysis, and using
only the fitted dispersion-mean relationship values. Repli-
cate experiments from different laboratories were treated
as separate classes.

Clustering analysis
Clustering was performed on normalized data as
described above. Distances were calculated with the
Pearson metric (1 − r). Rooted, ultrametric trees were
generated by hierarchical clustering with UPGMA as
implemented in the fastcluster 1.0.4 package
in R 2.12.1 [76]. Unrooted trees were generated
by neighbor-joining [27] as implemented in RapidNJ
2.1.0 [77].

Comparison with annotations and independent data
Initiating RNA polymerase II ChIP-seq data were treated
in the same manner as TF data, but independently from
that analysis, with 50 nt smoothing bandwidth for region
calling and no region size filter. A TF-enriched region
was matched to a Pol II-S5P-enriched region if the max-
ima of the regions’ respective density profiles were within
500 bp of each other; when more than one Pol II-S5P
site was near a TF site, the nearest Pol II-S5P site was
used.
Transcription start site coordinates for the hg19 refer-

ence assembly were obtained from the RefSeq database
[20]. A TF-enriched region was matched to a RefSeq TSS
if the TSS was within 500 bp of the local maximum of the
density profile within the region; whenmore than one TSS
fell within this range, the nearest was used. Single-end,
75 nt RNA-seq reads from the ENCODE database were
aligned to the hg19 RefSeq transcriptome by DNAnexus,
which computed the count per transcript [78]. Elongating
RNA polymerase II ChIP-seq reads were aligned to the
hg19 genome, and for each annotated TSS, reads were
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counted between 100 bp upstream of the TSS and 100 bp
downstream of the TES for the longest isoform.
CAGE reads were obtained from the ENCODE database

after alignment to hg19 with Delve (T Lassmann, in
prep.). CAGE-enriched regions were called via UniPeak
in the same manner as TF binding sites, using 50 nt
smoothing bandwidth, separate strands, and no shifting.
CAGE regions were matched with TF regions in the same
manner as Pol II-S5P regions.
Evolutionary constraint within a region was calcu-

lated as the proportion of positions with a rejected
substitution (RS) score greater than 2, according to
GERP++ [22].
From ENCODE’s database we retrieved 226 sequence

motifs that were both inferred de novo fromChIP-seq data
and matched to similar motifs in other databases, such
that there was a variably sized set of motifs annotated
to each individual TF. These were aligned to reference
sequence in a 201 bp window centered at each HOT
region peak by MAST 4.6.0 [79]. A HOT region peak
was considered to have a hit for a given TF’s motif set if
any motif in the set had a MAST hit of E < 10.

Modeling gene regulation
For each cell line, we constructed a model of the general
form

∑
YPIC +

∑
Yhistone +

∑
Ypol2 +

∑
YCAGE

+
∑

YRNA-seq ∼
∑

Xinput +
∑

XTF

where the Y terms form a matrix of the individual repli-
cates of the dependent variables, normalized together by
DESeq as before: preinitiation-complex occupancy within
the region, histone-mark occupancy within the region,
Pol II occupancy at the nearest UniPeak site, CAGE
signal at the nearest UniPeak site, and RNA-seq signal
for the gene corresponding to the nearest RefSeq TSS;
and the X terms form the matrix of all the individual
replicates of TF occupancy scores plus the signal from
negative-control samples (input, IgG, reverse-crosslinked
chromatin) within the regions, normalized together. Since
both the independent and depent variables were highly
multicollinear, we used the pls 2.3-0 package in R
2.12.1 [80] to reduce this model to latent variables
by partial least-squares regression. The number of LVs
used in each model was determined as the first LV plus
all subsequent LVs that subtracted at least 0.01 from
the average RMSEP (Additional file 1: Figures S8, S9).
Cross-validation used the leave-one-out method: the R2

values were calculated by validating with each UniPeak
region after re-training the model on the remainder of the
data.
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