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Abstract

Background: Genome-scale prediction of gene regulation and reconstruction of transcriptional regulatory networks
in prokaryotes is one of the critical tasks of modern genomics. Bacteria from different taxonomic groups, whose
lifestyles and natural environments are substantially different, possess highly diverged transcriptional regulatory
networks. The comparative genomics approaches are useful for in silico reconstruction of bacterial regulons and
networks operated by both transcription factors (TFs) and RNA regulatory elements (riboswitches).

Description: RegPrecise (http://regprecise.lbl.gov) is a web resource for collection, visualization and analysis of
transcriptional regulons reconstructed by comparative genomics. We significantly expanded a reference collection
of manually curated regulons we introduced earlier. RegPrecise 3.0 provides access to inferred regulatory interactions
organized by phylogenetic, structural and functional properties. Taxonomy-specific collections include 781 TF regulogs
inferred in more than 160 genomes representing 14 taxonomic groups of Bacteria. TF-specific collections include
regulogs for a selected subset of 40 TFs reconstructed across more than 30 taxonomic lineages. Novel collections of
regulons operated by RNA regulatory elements (riboswitches) include near 400 regulogs inferred in 24 bacterial
lineages. RegPrecise 3.0 provides four classifications of the reference regulons implemented as controlled vocabularies:
55 TF protein families; 43 RNA motif families; ~150 biological processes or metabolic pathways; and ~200 effectors or
environmental signals. Genome-wide visualization of regulatory networks and metabolic pathways covered by the
reference regulons are available for all studied genomes. A separate section of RegPrecise 3.0 contains draft regulatory
networks in 640 genomes obtained by an conservative propagation of the reference regulons to closely related
genomes.

Conclusions: RegPrecise 3.0 gives access to the transcriptional regulons reconstructed in bacterial genomes. Analytical
capabilities include exploration of: regulon content, structure and function; TF binding site motifs; conservation and
variations in genome-wide regulatory networks across all taxonomic groups of Bacteria. RegPrecise 3.0 was selected as
a core resource on transcriptional regulation of the Department of Energy Systems Biology Knowledgebase, an
emerging software and data environment designed to enable researchers to collaboratively generate, test and share
new hypotheses about gene and protein functions, perform large-scale analyses, and model interactions in microbes,
plants, and their communities.
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Background
Fine-tuned regulation of gene transcription in response
to extracellular and intracellular signals is a key mechan-
ism for successful adaptation of microorganisms to
changing environmental conditions. Activation and re-
pression of gene expression in bacteria is usually medi-
ated by DNA-binding transcription factors (TFs) that
specifically recognize TF-binding sites (TFBSs) in upstream
regions of target genes, and also by various regulatory
RNA structures including cis-acting metabolite-sensing
riboswitches and attenuators encoded in the leader re-
gions of target genes. Genes and operons directly co-
regulated by the same TF (or by RNA motifs from the
same structural family) form a so called regulon [1]. All
regulons together operated in the same genome form a
transcriptional regulatory network (TRN) of a cell.
Computational methods based on the comparison of

TFBSs in related species proved to be efficient for pre-
dicting transcriptional regulons in Bacteria [2-5]. To ad-
dress the challenge of regulatory network reconstruction
in ever growing number of sequenced microbial ge-
nomes, we recently developed a strategy for fast and ac-
curate comparative reconstruction of large-scale TRNs
and implemented it in the RegPredict web server [6].
First, the bacterial species tree is subdivided into small
taxonomic groups, and a subset of 5–15 representative
genomes from each group is selected. Second, semi-
automatic reconstruction of reference regulogs (ortholo-
gous regulons) in these selected genomes is carried out
using both known TF-binding motifs and ab initio pre-
dicted novel DNA motifs (reviewed in [1]). Resulting
regulons are characterized by a TF, predicted DNA-
binding motif, and a set of target genes/operons together
with associated TFBSs in their upstream regions. A reg-
ulog, that is a group of regulons operated by the ortho-
logous TFs in closely related genomes, represents the
main outcome of the RegPredict-based analysis. The ref-
erence regulogs are then used for an automatic propaga-
tion of the captured regulatory interactions into new
genomes from the same taxonomic group.
By applying this computational approach to a growing

number of complete bacterial genomes, we inferred high-
quality genome-scale TRNs for diverse taxonomic groups
of bacteria, namely Shewanella,Thermotoga, Desulfovibrio,
Bacillus, Lactobacillus, Streptococcus and Staphylococcus
spp. [7-20]. To provide public access to the collections of
transcriptional regulons reconstructed via the RegPredict
web server, some time ago we had developed the first ver-
sion of the RegPrecise database for capturing and
visualization of the curated regulon inferences [21]. Re-
cently added RegPrecise web services [22] allow for pro-
grammatic access to the transcriptional regulatory data.
Here we present RegPrecise Version 3.0 with signifi-

cantly increased biological data content and novel
database features. The current database contains more
than 1500 regulogs including ~400 regulogs controlled
by RNA regulatory motifs in 24 taxonomic groups, and
~800 TF-operated regulogs in 14 taxonomic collections.
Novel features of RegPrecise 3.0 include controlled vo-
cabularies for effectors and metabolic pathways, detailed
classifications for TF proteins and RNA motif families,
and several types of visualization for genome-wide regu-
latory networks. RegPrecise 3.0 is a largest and fast
growing web resource for comparative genomics of tran-
scriptional regulation in Bacteria. It is highly valuable
both for experimental biologists studying mechanisms of
transcriptional regulation in bacteria, and computational
biologists interested in modeling metabolic and regula-
tory networks.

Construction and content
The RegPrecise database contains detailed information
on regulatory interactions and transcriptional regulons
inferred by a comparative genomics in diverse bacterial
genomes [21]. In addition to TF-operated regulons, the
updated version of the database includes the inferred
regulons for RNA regulatory motifs (riboswitches) [23].
Below we describe the database structure and data
organization, and present new features and statistics for
significantly updated RegPrecise 3.0 content.
The database has the following hierarchical data

organization: (i) a regulon; (ii) a regulog; and (iii) a col-
lection of regulogs (Figure 1). A regulon is a basic unit
of the database that represents a set of target genes/op-
erons that are co-regulated by the same regulator (TF or
RNA motif ) in a particular genome. The description of
each regulon in RegPrecise also includes an alignment of
TF binding sites (or RNA regulatory sites). A regulog
represents a set of regulons under control of ortholo-
gous regulators in a group of taxonomically related ge-
nomes. Each TF-operated regulog has a TFBS motif
represented as a sequence logo or an alignment.
Our strategy for regulon reconstruction in RegPrecise

includes four steps (Figure 2): (i) selection of a group of
closely-related bacteria on the species tree; (ii) selection of
a subset of diverse genomes that represent a given taxo-
nomic group; (iii) reconstruction and manual curation of
reference regulogs in the selected genomes; (iv) accurate
automatic propagation of the reference regulogs to the
large set of closely-related genomes from the same taxo-
nomic group. Accordingly, the RegPrecise 3.0 database in-
cludes two major sections: (1) reference regulog collections,
and (2) propagated regulons. Below we describe data con-
struction and content for each of these sections.

Building reference regulog collections
We use RegPredict web server [6] for careful compara-
tive analysis and manual curation of each regulog in
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Figure 1 Data organization in RegPrecise.

Novichkov et al. BMC Genomics 2013, 14:745 Page 3 of 12
http://www.biomedcentral.com/1471-2164/14/745
RegPrecise. RegPredict allows for the simultaneous ana-
lysis of multiple microbial genomes and integrates infor-
mation on gene orthologs, operon predictions, and
functional gene annotations. It implements two well-
established workflows for inference of TF-operated regu-
lons: i) regulon reconstruction for known TFBS motifs,
and ii) ab initio inference of novel TFBS motifs and reg-
ulons. For experimentally characterized regulons, we
used training sets of known TFBSs collected from litera-
ture and other regulatory databases [24-27] to build a
position weight matrix (PWM) for a TFBS motif. Novel
TFBS motifs were identified by Discover profile tool of
RegPredict using sets of potentially co-regulated genes.
Constructed PWMs for DNA motifs (both known and
ab initio predicted) were used to scan each selected
Figure 2 Comparative genomics-driven strategy for regulon inference
genome and identify genes with candidate regulatory
sites in upstream regions. Each predicted regulatory
interaction was analyzed for conservation across the
group of closely related genomes using the Clusters of
co-Regulated Orthologous operoNs (CRONs) in RegPre-
dict. For each analyzed regulon, the set of constructed
CRONs was prioritized based on the level of conserva-
tion of regulatory interactions, emphasizing the most
prominent regulon members. At the next step, we con-
ducted the functional and genomic context analysis of
each CRON using the advanced web interface facilitating
the decision on CRON inclusion in the final regulog
model. Combining all accepted CRONs for a given TFBS
motif produces the reconstructed TF regulog for a group
of target genomes.
in RegPrecise.



Table 1 Taxonomic collections of curated genome-wide TRNs in diverse microbes

Taxonomic group Phylum Reference
genomes

TF regulogs RNA regulogs TF binding
sites

RNA sites Regulated
genes1

Genes per
genome2

Bacillales Firmicutes 11 134 39 3815 668 7301 664

Staphylococcus Firmicutes 7 48 29 1965 288 3329 476

Lactobacillaceae Firmicutes 15 79 39 1811 581 3784 252

Streptococcaceae Firmicutes 15 69 29 3118 400 5652 377

Clostridiaceae Firmicutes 20 7 40 303 968 2489 124

Enterobacteriales Proteobacteria 12 87 18 7365 188 9028 752

Shewanella Proteobacteria 16 80 15 8450 291 10817 676

Ralstonia Proteobacteria 6 24 10 574 66 1297 216

Desulfovibrionales Proteobacteria 10 92 9 1942 72 3368 337

Thermotogales Thermotogae 11 33 13 642 88 2153 196

Corynebacteriaceae Actinobacteria 8 45 13 937 80 1624 203

Bacteroidaceae Bacteroidae 11 35 2 667 84 1797 163

Chloroflexi Chloroflexi 5 30 17 314 98 1014 203

Cyanobacteria Cyanobacteria 14 18 11 1032 86 1442 103

Total: - 161 781 284 32935 3958 55095 342
1Total number of regulated genes in all TF- and RNA operated regulons.
2Average numbers of regulated genes per genome were calculated for each studied taxonomic group; the average numbers for all lineages are given in the last line.
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We utilized a similar workflow for reconstruction of
regulogs operated by RNA motifs. First, RNA regulatory
sites were identified in the studied genomes using the
probabilistic covariance models for 43 RNA families
from the Rfam database [28] and the Infernal program
[29]. Then, the identified candidate RNA sites were
uploaded into RegPredict and used for regulog recon-
struction using the similar CRON-based approach as for
TF regulogs. Thus, each inferred RNA regulog includes
Table 2 Collections of TF regulons reconstructed by conserva

Propagated regulons

Taxonomic group Genomes TF regulons Regulog

Bacillales 68 3784 Bacillale

Staphylococcaceae 25 876 Staphyl

Lactobacillaceae 29 873 Lactoba

Streptococcaceae 69 2644 Strepto

Clostridia 61 144 Clostrid

Enterobacteriales 160 7735 Enterob

Alteromonadales 39 1444 Shewan

Burkholderiaceae 74 1022 Ralston

Desulfovibrionales 11 349 Desulfo

Thermotogales 11 223 Thermo

Corynebacteriaceae 9 237 Coryneb

Bacteroidaceae 22 254 Bactero

Chloroflexi 14 139 Chlorof

Cyanobacteria 48 510 Cyanob

Total: 640 20234 Total:
all genes/operons that are preceded by a candidate
Rfam-family motif in a studied taxonomic group of ge-
nomes [23].

Collections of regulogs
All reference regulogs are classified into collections of six
biological types briefly described below.
Taxonomic collections represent results of large-scale

reconstructions of both TF- and RNA-operated regulogs
tive propagation

Reference regulons

collection Genomes TF regulogs TF regulons

s 11 134 844

ococcus 7 48 271

cillaceae 15 79 483

coccaceae 15 69 593

iaceae 20 7 51

acteriales 12 87 698

ella 16 80 862

ia 6 24 122

vibrionales 10 92 392

togales 11 33 239

acteriaceae 8 45 209

idaceae 11 35 215

lexi 5 30 107

acteria 14 18 180

161 781 5266
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in narrow taxonomic groups of bacteria. RegPrecise 3.0
contains 14 taxonomic collections covering major phyla
of Bacteria and including 781 regulogs (Table 1). These
data represent a major expansion since the 1.0 version
that had only two taxonomic collections [21]. The re-
constructed genome-wide TRNs for bacteria from six
taxonomic collections (Shewanella, Staphylococcus,
Bacillales, Streptococcaceae, Lactobacillaceae and Ther-
motogales) have been described in our research papers
[10,12,13,19,20], whereas publications on other taxo-
nomic collections are currently in preparation. The re-
constructed genome-specific TRNs utilize and expand
experimental knowledge on regulatory interactions accu-
mulated in the RegTransBase database developed in our
group [25], and other specialized databases (DBTBS
[27], RegulonDB [26], CoryneRegNet [24]). For instance,
the Bacillus subtilis TRN was expanded by ~300 new
target genes and 36 novel TF regulons that await future
Figure 3 The regulon page in RegPrecise. The screenshot illustrates the
experimental validation [10]. The genome-wide TRNs
from taxonomy collections are useful for building pre-
dictive metabolic models with regulatory constraints.
TF collections contain regulogs for a selected subset of

TFs conserved in more than three taxonomic groups.
Each TF collection represents all reconstructed regulogs
for a given set of orthologous TFs across different taxo-
nomic groups of bacteria. The RegPrecise 3.0 contains 40
TF collections (an increase of 31 TFs since the previous
database version) that include both widespread TFs such
as NrdR, LexA and Zur present in more than 25 diverse
taxonomic groups, and narrowly distributed TFs such as
Irr in α-proteobacteria and PurR in γ-proteobacteria.
Altogether, the orthologous TF collections include 443
regulogs that are valuable for comparative and evolution-
ary analysis of TF binding motifs and regulon contents, as
illustrated by our previous publications on comparative
genomics analyses of numerous TFs including HexR [11],
details of the HexR regulon in Shewanella oneidensis.
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Rex [14], NrdR [17], NrtR [30], NiaR [31], KdgR and ExuR
[32], AraR and XylR [33], PsrA and LiuR [7], NsrR and
NorR [16], Irr and IscR [18], BirA [34], and PaaR [35].
TF family collections provide structural classification

of more than 7000 TFs that belong to more than 1000
reconstructed TF regulogs. All studied TFs were classi-
fied into 55 protein families based on their domain com-
position in the Pfam [36], COG [37] and Superfamily
[38] libraries (see TF families classification and domains
architecture in Additional file 1). Annotations of TF pro-
tein domains were collected from the MicrobesOnline
database [39]. Each TF family was characterized by at
least one DNA-binding domain and one or several add-
itional domains involved in effector sensing and/or
dimerization. In RegPrecise 3.0, we provide a short sum-
mary with literature citations for each of the 55 TF fam-
ilies. The TF family collections covers both large and
diverse families such as LacI, GntR, and TetR that con-
tain more than 100 TF regulogs, and narrow families
such as ArgR, BirA and LexA containing orthologous
TFs of the same function. These collections are valuable
for evolutionary analysis of TF binding site motifs and
effector specificities within the same TF family.
Figure 4 A GLAMM representation of functional regulon content in R
reactions controlled by the HexR regulon in Shewanella oneidensis.
RNA family collections is a novel section that provides
an access to near 400 reconstructed regulogs operated by
the RNA regulatory elements in more than 250 bacterial
genomes from 24 taxonomic groups. The RegPrecise 3.0
includes RNA family collections for 43 Rfam families. For
each collection we provide a short biological summary
with literature citations and cross references to the Rfam
database [28]. Among the analyzed regulatory RNAs are
15 metabolite-sensing riboswitches, 6 ribosomal operon
leaders, 4 amino acid-responsive attenuators, and multiple
cis-acting regulatory RNAs of yet unknown regulatory
mechanisms. The large collection of T-box regulogs for
amino acid metabolism was additionally classified by
amino acid specificities of T-boxes deduced from their
multiple sequence alignment. The detailed evolutionary
analysis of regulog content from the RNA family collec-
tions was recently published [23].
Effector and Pathway collections represent two novel

functional classifications of regulogs in RegPrecise 3.0.
We used controlled vocabularies of 255 regulatory effec-
tors and 235 metabolic pathways to organize collections
of these two types. Effectors were retrieved from manually
curated annotations of TF- and RNA-operated regulogs in
egPrecise. The screenshot highlights metabolic pathways and
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RegPrecise, and assigned to 12 higher-level categories.
These categories include amino acids, aminoacyl-tRNAs,
antibiotics, carbohydrates, coenzymes, heterocyclic com-
pounds, inorganic chemicals, lipids and fatty acids, nucle-
otides and nucleosides, organic chemicals, peptides and
proteins and other factors (according to MeSH headings).
Metabolic pathways and biological processes were assigned
to regulogs based on the analysis of functional regulon
content and experimental data from the literature. The
RegPrecise 3.0 contains 235 pathways classified into 23
functional categories according to the biological subsys-
tems classification from the SEED database [40]. Two lar-
gest functional categories of regulogs in RegPrecise are
those involved in the metabolism of carbohydrates and
amino acids.

Propagated TF regulons
The obtained reference TF regulogs were used for large-
scale annotation of regulatory interactions in closely re-
lated genomes by using an automated conservative
propagation procedure. For each taxonomic collection
including manually curated regulons in the selected sub-
set of genomes, we selected an expanded set of genomes
from the same taxonomic lineage that are available in
the MicrobesOnline database [39]. To propagate a par-
ticular TF regulog to a target genome, we identified
orthologs for both a TF gene and each of the previously
described members of a reference TF regulog using the
pre-computed ortholog groups in MicrobesOnline. For
Figure 5 The regulog page in RegPrecise. The screenshot illustrates CRO
the identified gene orthologs in target genomes, we per-
form search for candidate TFBSs in their upstream re-
gions (from −350 to +50 bp relative to the start codon,
excluding the coding regions of upstream genes). For
search of putative binding sites we utilized a PWM that
is associated with the reference regulog and was used for
its original reconstruction. Each propagated regulon has
one or more candidate regulated genes, their upstream
binding sites, and, in most cases, an attributed ortholo-
gous TF. Moreover, we explicitly provide comparative
genomics evidences supporting for each predicted regu-
latory interaction. Possible operon structures of the
identified regulated genes have not been studied, thus
the propagated regulons are still preliminary and need to
be improved by operon prediction in the future. Never-
theless, the regulon propagation procedure is considered
to be accurate and conservative, since it relies on the
manually curated regulons and does not make an attempt
for automatic prediction of new members of regulon.
As result, the conservative propagation procedure was

applied to 640 genomes from 14 taxonomic groups with
available genome-wide collections of reference TF regu-
logs (Table 2). Three largest taxonomic groups with
propagated TF regulons were Enterobacteriales (160 ge-
nomes), Bacillales (68 genomes) and Streptococcaceae
(69 genomes). The propagated regulons section in
RegPrecise 3.0 represents a large set of draft TF regulons
annotated in all available genomes within the analyzed
taxonomic groups of bacteria (Table 2).
Ns constituting the HexR regulog in the Shewanella taxonomic group.



Figure 6 The TF collection page in RegPrecise. The screenshot illustrates the collection of HexR regulogs in various taxonomic groups
of Proteobacteria.
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Utility and discussion
The RegPrecise 3.0 interface provides several different
ways to navigate the data. The manually curated refer-
ence regulons are accessible via regulog collections and
browse web pages, or by using a keyword search tool.
The central regulog collections page has entry points to
the pages with regulog classifications of six different
types: by taxonomic groups, by TFs, by TF families, by
Figure 7 The taxonomy collection page in RegPrecise. The screenshot ill
RNA families, by effectors, and by metabolic pathways,
as described in the previous section. The browse by regu-
logs and browse by genomes pages contain the complete
lists of all studied regulogs and genomes, and give an al-
ternative way to access each individual regulog and gen-
ome page in the database. A keyword search tool located
in the top right corner on any RegPrecise page allows a
user to search for target genes and regulators using their
ustrates the collection of regulogs in the Chloroflexi taxonomic group.
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locus tags or names, and to access the corresponding
regulon pages for particular genomes. A case study of
the HexR regulon below describes major ways to access
data and web interfaces in RegPrecise 3.0.
The regulon page (as illustrated by the HexR regulon

in Shewanella oneidensis in Figure 3) gives a brief sum-
mary for a regulator (TF or RNA type, locus tag, family,
regulation mode, regulated biological process, effector)
and a complete list of predicted target genes/operons with
their locus tags, names and functions. In addition, the reg-
ulon page contains cross-links to the parent regulog and
regulog collections pages, the TFBS motif page, and the
visualization page. The latter page utilizes the Genome-
Linked Application for Metabolic Maps (GLAMM) inter-
face and presents the functional overview of a regulon by
visualizing its predicted members in the context of meta-
bolic networks [41]. For instance, an image of the HexR
regulon in Shewanella shows that it contains genes in-
volved in the energy, carbohydrate and nucleotide metab-
olisms (Figure 4).
The regulog page allows one to analyze the evolution-

ary conservation of gene regulation by orthologous regu-
lators in a set of closely related genomes. A comparative
Figure 8 The regulatory cascades on the genome page in RegPrecise. T
regulatory network of Shewanella oneidensis.
table of all CRONs shows a phylogenetic profile of gene
regulation by a regulator across the genomes (as illus-
trated by the HexR regulog in Shewanellaceae in Figure 5).
The table of CRONs allows one to identify a core part of
the regulog populated by genes with broadly conserved
regulatory sites and a variable part of the regulog contain-
ing genes with non-conserved sites. The regulog page also
has a link to the GLAMM [41] visualization of metabolic
content of the entire regulog. For each TF-operated regu-
log, the TFBS motif logo has a link to the profile page con-
taining detailed information about associated TFBSs (site
sequence, score and position relative the gene start).
The collections pages provide access, unique represen-

tation, description and summary statistics for regulogs
grouped by several properties:
Collections of TFs and TF families (see HexR regulog col-

lection in Figure 6) for each regulog contain unique align-
ments of TFBSs motif logos, which allow for evolutionary
analysis of homologous TFs and their binding motifs.
Collections of RNA families represent and classify all

RNA-operated regulons.
Collections of effectors facilitate the analysis of different

regulators that respond to the same effector.
he screenshot illustrates the regulatory cascades in the reconstructed
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Collections of pathways identify different regulatory
mechanisms for transcriptional control of the same meta-
bolic pathway.
Collections based on taxonomy give an overview for

distribution of all reconstructed TF and RNA regulogs
arranged by regulog type and family attributes in all ana-
lyzed genomes from the same taxonomic group. A tax-
onomy collection page (see the Chloroflexi regulog
collection in Figure 7) highlights universally conserved
and narrowly distributed regulogs, and provides cross-
links to both individual regulog and genome pages.
A genome page summarizes information on all recon-

structed TF and RNA regulons in a given genome, gives
access to a functional overview and visualization of a
genome-wide regulatory network. The reconstructed
genome-centric TRNs are visualized via an interactive
JavaScript widget with scale-up and scale-down func-
tions. Two types of a cross talk between regulons from
highly interconnected TRNs are shown as respective
page tabs: (i) regulatory cascades (as illustrated for the
Shewanella oneidensis TRN in Figure 8), and (ii) co-
regulations of genes by multiple regulators. Finally, the
functional content of an entire TRN in a given genomes
is visualized via the GLAMM applet (as illustrated for
the Shewanella oneidensis TRN in Figure 9).
The regulon, regulog and TFBS profile pages are linked

to relevant datasets of co-regulated genes (as a tab-
delimited text) or regulatory sites (as a fasta-formatted
Figure 9 The regulated metabolic pathways on the genome page in R
metabolic pathways controlled by all reconstructed regulons in Shewanella
text) for export. In addition, the RegPrecise web services
interface provides programmatic access to all regulatory
interactions and regulon data in the database [22]. All
locus tags for TFs and target genes in RegPrecise 3.0 have
cross links to web pages in the MicrobesOnline genomic
database [39].
We are planning to incorporate supportive experimen-

tal evidences for reconstructed regulons and effectors
using information from literature and other databases
on microbial regulation including RegTransBase [25],
RegulonDB [26], DBTBS [27], and CoryneRegNet [24].
We are also planning to develop new graphic modules
allowing the RegPredict-style representation of CRONs
and species trees on the regulog page. The datasets of
reference regulons will be expanded by novel collections
for more than 20 taxonomic groups from both Bacteria
and Archaea domains.

Conclusions
The RegPrecise 3.0 is a significantly updated and en-
hanced version of an open-access database that contains
reference collections of curated microbial regulons oper-
ated by TFs and RNA and inferred by the comparative
genomics. The reference collections of TF regulons from
161 genomes were conservatively propagated to near
500 new genomes. The draft propagated regulons consti-
tute a separate section in the database. RegPrecise pro-
vides a unique user-friendly representation of regulatory
egPrecise. The screenshot illustrates the GLAMM representation of
oneidensis.



Novichkov et al. BMC Genomics 2013, 14:745 Page 11 of 12
http://www.biomedcentral.com/1471-2164/14/745
interactions with multiple interfaces to give access to
multiple features of the inferred regulog collections at
several hierarchical levels. Accumulated data on the regu-
latory interactions in diverse bacterial species will be use-
ful for a broad scientific community. In particularly, these
data can provide a basis for: 1) planning future experi-
ments for validation of novel regulatory mechanisms in-
ferred by comparative genomics; 2) analyzing evolution of
microbial regulatory networks; 3) building predictive
biological models combining regulatory and metabolic
networks.

Availability and requirements
RegPrecise 3.0 is freely available at http://regprecise.lbl.gov.

Additional file

Additional file 1: Domain architectures and protein family classification
of TFs in RegPrecise. Each TF family has an assigned domain rule containing
known domains from Pfam, COG and Superfamily databases. Text descriptions
of TF families include literature references in PubMed.
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