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Abstract

Background: Tissues and their component cells have unique DNA methylation profiles comprising DNA
methylation patterns of tissue-dependent and differentially methylated regions (T-DMRs). Previous studies reported
that DNA methylation plays crucial roles in cell differentiation and development. Here, we investigated the
genome-wide DNA methylation profiles of mouse neural progenitors derived from different developmental stages
using HpyCH4IV, a methylation-sensitive restriction enzyme that recognizes ACGT residues, which are uniformly
distributed across the genome.

Results: Using a microarray-based genome-wide DNA methylation analysis system focusing on 8.5-kb regions
around transcription start sites (TSSs), we analyzed the DNA methylation profiles of mouse neurospheres derived
from telencephalons at embryonic days 11.5 (E11.5NSph) and 14.5 (E14.5NSph) and the adult brain (AdBr). We
identified T-DMRs with different DNA methylation statuses between E11.5NSph and E14.5NSph at genes involved in
neural development and/or associated with neurological disorders in humans, such as Dclk1, Nrcam, Nfia, and
Ntng1. These T-DMRs were located not only within 2 kb but also distal (several kbs) from the TSSs, and those
hypomethylated in E11.5NSph tended to be in CpG island (CGI-) associated genes. Most T-DMRs that were
hypomethylated in neurospheres were also hypomethylated in the AdBr. Interestingly, among the T-DMRs
hypomethylated in the progenitors, there were T-DMRs that were hypermethylated in the AdBr. Although certain
genes, including Ntng1, had hypermethylated T-DMRs 50 upstream, we identified hypomethylated T-DMRs in the
AdBr, 30 downstream from their TSSs. This observation could explain why Ntng1 was highly expressed in the AdBr
despite upstream hypermethylation.

Conclusion: Mouse adult brain DNA methylation and gene expression profiles could be attributed to
developmental dynamics of T-DMRs in neural-related genes.
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Background
The adult mouse brain consists of various kinds of cells
that sequentially appear as neurons, astrocytes, and oli-
godendrocytes from late gestation through the neonatal
period. Distinctive neural progenitor cells (NPCs) that
exhibit different differentiation potentials to neurons
and glial cells are generated during mid-to-late gestation
[1-3]. This process is controlled by signaling pathways
composed of transcription factors; dysfunction in genes
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encoding these factors is known to result in brain mal-
formation [4-6].
Epigenetic systems underlie the network of tissue- and

developmental stage-specific transcription factors and their
targets [7]. Major players in epigenetic systems are DNA
methylation and histone modifications, which occur on
nucleosomes and affect chromosomal activity by changing
nucleosome architecture. Tissue-dependent and differen-
tially methylated regions (T-DMRs) are found throughout
the genome and influence tissue-specific gene expression.
T-DMRs have been found 30 downstream of transcription
start sites (TSSs) in addition to in 50-upstream promoter
regions. A distinct combination of DNA methylation
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Figure 1 (See legend on next page.)
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Figure 1 Distinct DNA methylation profile between E11.5NSph and E14.5NSph. (A) Schematic of the analysis in this study. E11.5NSph and
E14.5NSph were cultured from telencephalons of E11.5 and E14.5 mouse embryos and used as models of NPCs. Comparative analysis of D-REAM
data was performed to identify NSph-T-DMRs. Immunocytochemical analysis of differentiated NSphs (E11.5NSph-diff and E14.5NSph-diff) was
conducted using antibodies against βIII-tubulin (TUBB3) and glial fibrillary acidic protein (GFAP). TUBB3-positive and GFAP-positive cells are
indicated in red and green, respectively, and DAPI-stained nuclei are indicated in blue. (B) Distinct characteristics of E11Hypo-T-DMRs and
E14Hypo-T-DMRs. The proportion of CGI genes (upper bar charts) and the distributions of NSph-T-DMRs to TSSs (lower panels) are displayed.
E11Hypo-T-DMRs (left) and E14Hypo-T-DMRs (right) were mapped in 208 and 604 genes, respectively. The y-axis represents the proportions of
each fraction to the whole as 1. The width of the histogram is 250 bp. (C) Integrated Genome Browser (IGB) images of Nrcam and Kat5 gene loci
(Ensembl Transcripts) showing comparative MATscores of E14.5NSph to E11.5NSph. Filled and open arrowheads indicate E11Hypo-T-DMRs and
E14Hypo-T-DMRs, respectively. Regions analyzed by COBRA (D) are represented by gray rectangles. (D) COBRA representing DNA methylation
status of HpyCH4IV sites in Nrcam and Kat5 gene regions. Bisulfite PCR products using genomic DNA from E11.5NSph and E14.5NSph were not
treated (−) or treated with HpyCH4IV (+) and electrophoresed. (E) DNA methylation status of the indicated regions located in 4 disease-associated
genes (gray rectangles of the upper panels) was analyzed by bisulfite sequencing. Each open, filled, and gray circle represents unmethylated,
methylated CpG, and CpG with an undetermined methylation state, respectively. Percentages of methylated CpGs are indicated.
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patterns at T-DMRs determines cellular identity during
development [8-13], thus illustrating that DNA methyla-
tion profiles are unique to individual cells or tissue types
[7,14,15].
Genome-wide DNA methylation analyses focusing on

proximal promoter regions in embryonic stem cell-derived
NPCs and NPCs committed to astrocytes indicate the im-
portance of DNA methylation in the commitment pro-
cess and differentiation potential of NPCs [16-19]. These
reports indicated that the majority of DNA methylation
changes occur at low-CpG density promoters, suggesting
sequence preferences in DNA methylation targets during
neural differentiation [18]. However, T-DMRs are observed
at high-CpG density promoters, such as those containing
CpG islands (CGIs), and are tissue-dependently methy-
lated in the adult brain (AdBr) [7,20].
In this study, we performed a comparative analysis of

DNA methylation status in NPCs derived from mid- and
late-gestation mouse embryo. Using microarray-based,
genome-wide DNA methylation profiling [7], we identi-
fied T-DMRs in dozens of genes, and we illustrate dy-
namic DNA methylation statuses for dozens of T-DMRs,
which are reflected in the DNA methylation profile of
the AdBr.

Results
Distinct DNA methylation profiles in NPCs with
different fates
To explore DNA methylation profiles of mouse NPCs,
we compared neurospheres (NSph) derived from tele-
ncephalons at embryonic days 11.5 (E11.5NSph) and
14.5 (E14.5NSph) by T-DMR profiling with restriction
tag-mediated amplification (D-REAM) with mouse pro-
moter tiling arrays covering from 6 kb upstream to
2.5 kb downstream of 30,140 gene TSSs (Ensembl Tran-
script IDs) [7]. The distinctive cell fates of E11.5NSph
and E14.5NSph were indicated by biased expression of
marker genes for neural and oligodendrocyte progenitor
in the undifferentiated NSph, and those of neuronal and
glial marker genes in the differentiated ones, respectively
(Figure 1A and Additional file 1: Figure S1). We screened
genomic regions that exhibited differential MATscores
[7,21] between NSphs, which indicate differential methy-
lation status, and obtained a total of 1,403 NSph-T-DMRs
consisting of 380 E11Hypo-T-DMRs and 1,023 E14Hypo-
T-DMRs, which were hyper- and hypomethylated, re-
spectively, in E14.5NSph compared to E11.5NSph.
The localization patterns along the genome were dis-

tinct between E11Hypo-T-DMRs and E14Hypo-T-DMRs.
The former exhibited bimodal distributions within 2.5 kb
from TSSs and biased to the CGI genes, which con-
tain CGIs around TSSs [7]; the latter were located 6 kb to
2 kb upstream of TSSs without any promoter type bias
(Figure 1B). These findings are noteworthy because they
indicate that methylation changes occur in regions around
high-CpG promoters. We analyzed E11Hypo-T-DMR 30

downstream from the Nrcam TSS, and E14Hypo-T-DMR
50 upstream from the Kat5 TSS. Combined bisulfite re-
striction analysis (COBRA) of these T-DMRs indicated
differential DNA methylation status as indicated by D-
REAM (Figure 1C and 1D).
Among the genes with NSph-T-DMRs, we identified

human gene orthologs involved in neurological diseases,
such as spinocerebellar ataxia type 1 (ATXN1 and KAT5),
schizophrenia (BLOC1S1, NTNG1, and OLIG2), autism
(NRCAM), and brain malformation syndrome (LIG4 and
NFIA) (Additional file 2: Table S1). We performed bisulfite
sequencing of 1 E11Hypo-T-DMR (Atxn1) and 3 E14Hypo-
T-DMRs (Lig4, Nfia, and Olig2) that were located at various
relative positions from the TSSs, including one associated
with an alternative TSS and those facing their TSS in prox-
imal regions. The results showed clear differences in the
DNA methylation statuses of CpG sites around the Hpy-
CH4IV sites between the 2 types of NSphs (Figure 1E).
These data indicate that methylation changes occurred in a
subpopulation of NSphs in a gene-dependent manner.
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Association of NSph-T-DMRs with neural development
and function
We performed gene ontology (GO) analysis to characterize
genes with the NSph-T-DMRs. The neural-related GO
term “central nervous system development” was enriched
in genes with E11Hypo-T-DMRs but was not enriched in
those with E14Hypo-T-DMRs (Tables 1 and 2). Genes with
E11Hypo-T-DMRs included those for neuronal differenti-
ation and functions: specification of retinal amacrine neu-
rons (Barhl2), axon outgrowth (Dclk1), inhibition of
oligodendrocyte differentiation (Id2), and axon guidance
(B3gnt2 and Nrcam). Among genes with E14Hypo-T-
DMRs, we found those involved in astrocyte and/or oligo-
dendrocyte development, such as Nfia and Olig2. Both
E11Hypo- and E14Hypo-T-DMR genes included those
involved in cell fate commitment (Barhl2, Olig2, and
Cdon) and brain morphogenesis (Tcfap2a, Fezf1, Cer1, and
Cdon). A search of the OMIM (Online Mendelian In-
heritance in Man) database indicated that genes with
E14Hypo-T-DMRs that encode membrane-associated pro-
teins (Accn1, Scg5, and Slc15a2) are expressed in the AdBr
(Table 2). Thus, developmental stage-specific methylation
and demethylation at the T-DMRs in genes related to
neuronal and glial development occurred during neural
cell fate determination.

DNA methylation profile of NSph-T-DMRs in the AdBr
We compared D-REAM data between NSphs and the
AdBr and used K-means clustering to classify E11hypo-
and E14hypo-T-DMRs into 3 clusters. In the AdBr, most
E11Hypo-T-DMRs and E14Hypo-T-DMRs exhibited
hypomethylation (clusters 2 and 3) (Figure 2A). Al-
though the degrees of differences varied among genes,
COBRA of NSph-T-DMRs indicated hypomethylated
status at some loci as clusters 2 and 3 (e.g., Dclk1 and
B3gnt2 for E11Hypo-TDMR, and Rdh5/Bloc1s1 and
Mcf2l for E14Hypo-T-DMRs), and hypermethylated sta-
tus at other loci as cluster 1 (e.g., Cdkn2a and Ntng1 for
E11Hypo- and E14Hypo-T-DMRs, respectively) in the
Table 1 Annotation analysis of genes with NSph-T-DMRs

Genes with E11Hypo-T-DMRs
Category Term P value

BP Central nervous system development 1.01E-02

MF Cyclin-dependent protein kinase inhibitor activity 1.57E-03

KEGG Propanoate metabolism 1.40E-03

Genes with E14Hypo-T-DMRs

BP Positive regulation of developmental process 8.08E-03

CC Peroxisome 7.43E-03

MF Transmembrane transporter activity 1.41E-02

KEGG Retinol metabolism 2.80E-03

BP, MF, KEGG, and CC indicate biological process, molecular function, KEGG
pathway, and cellular component, respectively.
AdBr (Figure 2B and Additional files 3 and 4: Tables S2
and S3).
Among genes with cluster-1 E14Hypo-T-DMRs, we

unexpectedly found that T-DMR hypermethylation was
associated with higher gene expression in the brain
(described later). To address this issue, we further inves-
tigated the DNA methylation status of other HpyCH4IV
sites in these genes using AdBr D-REAM data and found
AdBr-specific hypomethylated T-DMRs 30 downstream
of their TSSs in Ntng1, Aldh1a2, and Accn1 (Figure 3A).
It is noteworthy that all these T-DMRs were located
within few kb from CGIs.
The positional changes of hypomethylated T-DMRs in a

specific genomic region are summarized in Figure 3B.
Bisulfite sequencing analysis of T-DMRs in the Ntng1
gene indicated hypermethylation of E14Hypo-T-DMRs at
the 50-upstream region and hypomethylation at the 30

downstream of the TSS in the AdBr with unmethylated
neighboring regions in all samples (Figure 3C). Quan-
titative reverse-transcription polymerase chain reaction
(Q-RT-PCR) data indicated negative correlation between
hypomethylation at distal T-DMR (region 4) in undiffer-
entiated NSphs, and an association of gene expression in
AdBr with hypomethylation of the T-DMR 30 downstream
of the CGI (Figure 3D). These results highlight functions
associated with developmental stage-dependent multiple
T-DMRs in a gene region.
Discussion
Comparing NSphs with different cell fates enabled the
identification of numerous T-DMRs in genes at dif-
ferent relative positions from TSSs. DNA methylation
and demethylation occurred in a developmental stage-
dependent manner, and changes in DNA methylation at
these T-DMRs resulted in variable methylation in AdBr
cells that shifted the DNA methylation profile as a whole.
The hypomethylated status of most NSph-T-DMRs was
reflected in the DNA methylation profile of the AdBr to
different degrees in a locus-specific manner. The previous
genome-wide methylation analyses of NPCs [16-18]
emphasized preexisting epigenetic marks, such as bivalent
histone modifications on poised genes involved in early
differentiation processes and demethylated promoters of
astrocyte-specific genes in progenitor cells preceding ex-
pression in differentiated cells. DNA methylation status
in NSphs and gene expression in the AdBr have led to
the hypothesis that a considerable number of T-DMRs
identified in this study are epigenetically marked prior to
gene expression. The developmental-stage specific DNA
methylation marks could be useful for identify and evalu-
ation of NPCs established from not only fetus but also
stem cells as pluripotent stem cells and those from adult
tissues.



Table 2 Genes with NSph-T-DMRs annotated for neural development and functions

NSph-T-DMR Gene Description GO terms related to development
and neural functions

OMIM

E11Hypo Atxn1 Ataxin 1 Transmission of nerve impulse 601556

E11Hypo B3gnt2 UDP-GlcNAc:betaGal beta-1,
3-N-acetylglucosaminyltransferase 2

Ax, ND, sensory perception 605581

E11Hypo Barhl2 BarH-like 2 (Drosophila) Ax, CC, ND 605212

E11Hypo Cdkn2a Cyclin-dependent kinase inhibitor 2A 600160

E11Hypo Dclk1 Doublecortin-like kinase 1 Ax, ND 604742

E11Hypo Id2 Inhibitor of DNA binding 2 600386

E11Hypo Nrcam Neuron-glia-CAM-related cell adhesion molecule Ax, ND, transmission of nerve impulse 601581

E11Hypo Tcfap2a Transcription factor AP-2, alpha neural tube closure 107580

E11Hypo/E14Hypo Cer1 Cerberus 1 homolog (Xenopus laevis) 603777

E14Hypo Accn1 Amiloride-sensitive cation channel 1,
neuronal (degenerin)

Sensory perception 601784

E14Hypo Aldh1a2 Aldehyde dehydrogenase family 1,
subfamily A2

ND 603687

E14Hypo Atp11a ATPase, class VI, type 11A 605868

E14Hypo Bloc1s1 Biogenesis of lysosome-related organelles
complex-1, subunit 1

601444

E14Hypo Cdon Cell adhesion molecule-related/down-regulated
by oncogenes

CC 608707

E14Hypo Dph5 DPH5 homolog (S. cerevisiae) 611075

E14Hypo Emid1 EMI domain containing 1 608926

E14Hypo Fezf1 Fez family zinc finger 1 Ax, ND 613301

E14Hypo Kat5 K(lysine) acetyltransferase 5 601409

E14Hypo Lig4 Ligase IV, DNA, ATP-dependent Neuron apoptosis 601837

E14Hypo Mcf2l Mcf.2 transforming sequence-like 609499

E14Hypo Nfia Nuclear factor I/A 600727

E14Hypo Ntng1 Netrin G1 Ax, ND 608818

E14Hypo Olig2 Oligodendrocyte transcription factor 2 CC, ND, gliogenesis, transmission of nerve impulse 606386

E14Hypo Scg5 Secretogranin V Neuropeptide signaling pathway 173120

E14Hypo Slc15a2 Solute carrier family 15 (H+/peptide transporter),
member 2

602339

E14Hypo Wasl Wiskott-Aldrich syndrome-like (human) 605056

Ax, axonogenesis; CC, cell fate commitment; ND, neuron differentiation.
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We observed developmental position changes such as
50 distal hypomethylated T-DMRs in the NSphs and
hypomethylated T-DMR marks 30 proximal downstream
of TSSs in the fully developed brain. These T-DMRs
were often located around CGIs, which is in contrast to
a previous genome-wide analysis of NPCs indicating
biased DNA methylation changes to low-CpG promoters
[17,18]. T-DMRs found in the Ntng1 locus could be clas-
sified into the previously described class of T-DMRs
downstream of TSSs of CGI genes, in which hypomethy-
lation was well correlated with gene expression [7,20].
T-DMRs have been identified at the edges of CGIs [22],
and DMRs around CGIs, named as CpG island shores,
are identified in not only normal tissues but also cancer
cells [23]. The biased distribution of E14Hypo-T-DMRs
to the relatively 50-distal positions from TSSs suggested
that hypomethylation of these 50-distal T-DMRs in the
progenitor cells are epigenetic marks that lead to expres-
sion in differentiated cells, which exhibit hypomethyla-
tion of T-DMRs at 30 downstream of TSS.
Systematic biases are inevitable for any genome-wide

DNA methylation analysis: both Microarray-based Inte-
grated Analysis of Methylation by Isoschizomers (MIAMI)
[16] and Reduced Representation Bisulfite Sequencing
(RRBS) [18], methods used in the previous epigenomic
study in NPCs, are inevitably focusing on CGIs because of
the biased distribution of MspI recognition sites that they
uses for enrichment of fragments [24]; Methylated DNA
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immunoprecipitation (MeDIP) [17], is known to have bias
to high density CpG promoter [25]. Approximately 50% of
promoters are associated with CGIs. D-REAM also has
[7,25]. Only limited numbers of genes are coincided to be
predicted to have DMRs in NSph: Gfap, which have been
shown to have DMR hypomethylated in E14.5NSph [18],
was not included in our gene list because of lacking Hpy-
CH4IV site in the proximal promoter region: DMRs on
Ntng1, which was identified in this study, is an example of
novel T-DMRs not described in the previous studies.
Several converging lines of evidence have indicated the

significance of DNA methylation in normal brain func-
tion. Mutations in Dnmt1, Dnmt3b, and Mecp2 result in
functional and/or morphological abnormalities in human
and mouse brain [26-28]. Mutations in the human
orthologs of some genes carrying NSph-T-DMR, such as
LIG4 and NFIA, are associated with neurological disor-
ders [29,30]. Similar phenotypes are observed in mice
harboring mutations in these genes [4,31]. Targeted mu-
tation of 2 genes with E11Hypo-T-DMRs, Dclk1 and
Nrcam, results in axonal defects in mice [32,33]. Disor-
ganized DNA methylation profiles have been reported in
cloned animals [34], chemically treated cells [35], and in
certain diseases [36,37]. Epimutations in tumor suppres-
sor genes are involved in carcinogenesis [38]. Therefore,
the establishment of DNA methylation status at T-
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DMRs in these genes indicates the possibility that epi-
mutations at T-DMRs could be involved in neurological
disorders without genetic alterations.

Conclusions
The dynamics of T-DMRs, several of which are often
identified around TSS of a single gene during neural de-
velopment, contribute regulation of developmental ex-
pression of genes and the DNA methylation profile of
mouse adult brain. The identified T-DMRs could be
used for evaluation and identification of NPCs, and for
epimutation analysis in neural diseases.

Methods
Tissue samples, neurosphere culture, and
immunocytochemistry
All experiments using mice were carried out according
to the institutional guidelines for the care and use of
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laboratory animals (Graduate School of Agricultural and
Life Sciences, the University of Tokyo). Pregnant C57BL/
6 N mice were euthanized, and fetuses were recovered in
ice-cold phosphate-buffered saline (PBS) containing 0.6%
glucose. For neurosphere culture, dissected telencepha-
lons were dispersed, and were suspended in progenitor
cell culture medium: Dulbecco’s modified Eagle’s medium
(DMEM)/F12 (1:1) containing 5.5 mM HEPES, 2 mM L-
glutamine, 1/50 volume of B-27 Supplement (Invitrogen),
20 ng/ml epidermal growth factor (EGF), 20 ng/ml
human basic fibroblast growth factor (bFGF) (Pepro-
Tech), and 5 μg/ml heparin. Cells were seeded into a
petri dish and cultured for 6 days, replacing half of the
medium with fresh medium at day 3. To induce differen-
tiation, cells were dispersed, suspended in differentiation
medium (progenitor cell culture medium without EGF,
bFGF, and heparin), and seeded onto poly-L-lysine- and
laminin-coated coverslips for immunocytochemistry.
After 4 days of culture, cells were fixed with 4% parafor-
maldehyde and stained with a monoclonal antibody
against βIII-tubulin (Covance) and a rabbit polyclonal
antibody against glial fibrillary acidic protein (DAKO).

Genomic DNA extraction
Cells (1.5 × 106) were incubated in 200 μl of lysis solu-
tion (10 mM Tris–HCl (pH 8.0), 5 mM EDTA, 200 mM
NaCl, 0.2% SDS and 200 μg/ml proteinase K) at 55°C for
30 min. The samples were extracted with phenol/chloro-
form/isoamyl alcohol (PCI; 25:24:1), incubated with
RNase for 30 min, and extracted again with PCI. Gen-
omic DNA was precipitated with ethanol and dissolved
in 20 μl of TE (pH 8.0).

D-REAM
D-REAM was performed as previously described [7].
Genomic DNA (5 μg) was digested with HpyCH4IV
(New England Biolabs), extracted with PCI and chloro-
form, ethanol-precipitated, and dissolved in TE (pH 8.0).
DNA sample (50 ng) was ligated to the R-adaptor pair
using T4 DNA ligase (New England Biolabs) at 16°C
overnight. After the 50-overhang of the adaptor was filled
in with Klenow Fragment, the DNA was digested with
TaqI at 65°C for at least 1 h and purified with a Micro-
spin S-300 HR Column (GE Healthcare). The TaqI ends
of the DNA were ligated to the N-adaptor pair. The
resulting DNA sample was purified with the Wizard SV
Gel and PCR Clean-up System (Promega) and amplified
with the R18 and N18 primers and Immolase Taq DNA
polymerase (Bioline) under the following conditions: de-
naturation at 95°C for 7 min, followed by 20 cycles of
30 sec at 95°C, 30 sec at 62°C, and 2 min at 72°C. DNA
was purified with MinElute PCR Purification Kit (Qia-
gen), and 7.5 μg of DNA was used for microarray ana-
lysis. Microarray analysis was conducted with GeneChip
System (Affymetrix), and all procedures were done accord-
ing to the Affymetrix Chromatin Immunoprecipitation
Assay Protocol. DNA samples were labeled with the Gene-
Chip WT Double-Stranded DNA Terminal Labeling Kit
and hybridized with GeneChip Mouse Promoter 1.0R
Arrays. Arrays were stained and washed with GeneChip
Fluidics Station 450 and scanned with GeneChip Scanner
3000 7 G. The instruments were operated with GeneChip
Operating Software version 1.4. D-REAM data obtained in
this study have been deposited in the ArrayExpress data-
base (accession number E-MTAB-1150). The D-REAM
dataset of the adult whole cerebrums (AdBr), which were
obtained from 13 week-old male mice, is reported previ-
ously [7].

Data analysis
D-REAM data for two experiments were obtained for
each NSph. The data were visualized using the Integrated
Genome Browser (Affymetrix). Ensembl Transcript IDs
(release 46) associated with T-DMR were obtained using
BioMart [39] and Galaxy website [40]. Distribution ana-
lysis was conducted with the R software package. K-means
clustering of MATscores was performed with the MultiEx-
periment Viewer (MeV in TM4 Microarray Software
Suite) [41]. Gene Ontology analysis was conducted using
the DAVID Bioinformatics Resources website [42].

Combined bisulfite restriction analysis (COBRA) and
sequencing
PstI- or EcoRV-digested genomic DNA (3 μg) was dena-
tured with 0.3 M NaOH. Sodium metabisulfite (pH 5.0)
and hydroquinone were added to final concentrations of
2.0 M and 0.5 mM, respectively. The reaction mixtures
were incubated in the dark at 55°C for 16 h. The DNA
was purified with the Wizard DNA Clean-up System
(Promega), treated with 0.3 M NaOH at 37°C for
15 min, and ethanol-precipitated. The DNA was dis-
solved in 20 μl of TE (pH 8.0). After the bisulfite reac-
tion, the unmethylated CpGs are converted to uracil-
phosphate-guanines (UpGs), whereas the methylated
CpGs remain intact. One-hundredth to 1/20 amount of
the DNA was used for PCR with Immolase Taq DNA
polymerase. For COBRA, one-tenth of the PCR product
was digested with HpyCH4IV at 37°C overnight and
electrophoresed with untreated control in a 2% agarose
gel. For sequencing, PCR product was purified with the
Wizard SV Gel and PCR Clean-up System (Promega)
and cloned into pGEM-T Easy Vector (Promega). Up to
16 clones were sequenced. Primer sets used are listed in
Additional file 5: Table S2.

RT-PCR
Total RNA was extracted with the TRIzol Reagent (Invi-
trogen), and 1 μg of total RNA was subjected to reverse
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transcription using the Superscript II First-strand Syn-
thesis System (Invitrogen). One-hundredth of the cDNA
was used for PCR with Immolase Taq DNA polymerase
under the following conditions: denaturation at 95°C for
7 min and 23 or 35 cycles of 30 sec at 95°C, 30 sec at
62°C, and 30 sec at 72°C (Additional file 5: Table S2).
Quantitative RT-PCR was carried-out on Bio-Mark HD
system (Fluidigm) using Universal probes (Roche Ap-
plied Science) for monitoring amplifications (detailed in
Additional file 6). Makers were selected according to the
previous report [43].

Additional files

Additional file 1: Figure S1. NSph differentiation capacity.

Additional file 2: Table S1. Associations of genes carrying NSph-T-DMRs
with human neurological disease.

Additional file 3: Figure S2. Integrated Genome Browser (IGB) images
of the genes (Ensembl Transcripts) with E11Hypo- (A) and E14Hypo-
T-DMRs (B).

Additional file 4: Figure S3. COBRA representing DNA methylation
status of NSph-T-DMRs.

Additional file 5: Table S2. Primers used in this study.

Additional file 6: Method and Primer list for Q-RT-PCR.
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