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Abstract

Background: Protein structure comparison and classification is an effective method for exploring protein structure-
function relations. This problem is computationally challenging. Many different computational approaches for
protein structure comparison apply the secondary structure elements (SSEs) representation of protein structures.

Results: We study the complexity of the protein structure comparison problem based on a mixed-graph model
with respect to different computational frameworks. We develop an effective approach for protein structure
comparison based on a novel independent set enumeration algorithm. Our approach (named: ePC, efficient
enumeration-based Protein structure Comparison) is tested for general purpose protein structure comparison as
well as for specific protein examples. Compared with other graph-based approaches for protein structure
comparison, the theoretical running-time O(1.47rnn2) of our approach ePC is significantly better, where n is the
smaller number of SSEs of the two proteins, r is a parameter of small value.

Conclusion: Through the enumeration algorithm, our approach can identify different substructures from a list of
high-scoring solutions of biological interest. Our approach is flexible to conduct protein structure comparison with
the SSEs in sequential and non-sequential order as well. Supplementary data of additional testing and the source
of ePC will be available at http://bioinformatics.astate.edu/.

Background
Protein structure comparison is an effective method for
exploring protein structure-function relations and for
studying evolutionary relations of different species. It
can also be applied to identify the active sites of carrier
proteins, the binding sites of antibodies, the inhibition
sites of enzymes, and the common structural motifs of
proteins, which has significant applications in biological
and biomedical research.
The computational methods for protein structure

comparison usually represent a protein structure by
atomic coordinates in the Euclidean space, as a distance
matrix [1] whose entries represent the distances between
two residues of the protein, or as a contact map [2],
where a binary matrix is used to represent the distances

between the residue pairs. A structure graph representa-
tion of a protein tertiary structure was first defined in
[3] for protein structure prediction. In this current
work, we adopt the structure graph representation in
[3]. We develop a very efficient graph-based approach
for protein structure comparison. Our approach trans-
forms the comparison problem to an independent set
problem in an auxiliary graph, and then applies a novel
enumeration algorithm to identify the best out of a set
of good comparison candidates.
We first show the problem of comparing a query struc-

ture to another structure is intractable with respect to sev-
eral computational frameworks. For example, we show
that the problem is NP − hard (even for very restricted

instances), cannot be approximated to a ratio n
1
2−ε, for

any ε > 0, unless P = NP, and is W [1]- complete with
respect to the framework of parameterized complexity.
We also show that a useful case of the problem is solvable
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in polynomial time by reducing it to the 2-CNF-
SATISFIABILITY problem.
Whereas the above results are negative hinting at the

challenging nature of the problem, the graph-based
approach we use allows us to model the problem as a
maximum independent set problem, for which a reper-
toire of effective exact algorithms exist in the literature.
We use an algorithm developed by (some of) the
authors [4] to enumerate the top-K maximum indepen-
dent sets in a graph in time O(1.47nn2), where n is the
number of vertices in the graph (Note that the algo-
rithm in [4] enumerates the top-K minimum vertex cov-
ers in a graph, but obviously can be used to enumerate
the top-K maximum independent sets in a graph using
the standard reduction between vertex cover and inde-
pendent set); this enumeration algorithm allows us to
sift through the top SSE alignments for the protein
structure comparison problem, looking for the best
amongst them in terms of accuracy. Compared with
other graph-base approaches, the theoretical running-
time O(1.47rnn2) of our approach ePC is the current
best, where n is the smaller number of SSEs of the two
proteins, r is an introduced parameter of small values.
Many different approaches for protein structure com-

parison apply the secondary structure elements (SSEs)
representation and database searching, such as decon-
STRUCT [5], SSM [6], GANGSTA [7], MASS [8,9],
VAST [10], TOPS [11] and approaches in [12-19]. Our
approach ePC utilizes the SSE-based representation of
the protein structure, and takes into consideration the
global 3D structural arrangements of the SSEs of the pro-
teins. We compare our approach with two other SSE-
based approaches: deconSTRUCT, an approach for gen-
eral purpose protein structure comparison and database
search, and SSM, a high-resolution structure comparison
approach. Our approach has comparable performance as
deconSTRUCT. With a more general and simplified
representation and a unified graph enumeration algo-
rithm, our approach could detect a substructure or motif
structure in a set of large structures, more than one com-
mon substructure shared by a set of proteins. It is very
flexible. Our approach could use a wide range of evalua-
tion functions for protein structure comparison. It could
be applied to handle sequential and non-sequential order
of SSE alignment and be extended to handle challenging
protein multiple structure alignment and protein subset
alignment.

Methods
A mixed graph for a protein structure is constructed
from the PDB file as follows: each vertex represents a
core/secondary structure element (i.e., an alpha helix
element, or, a beta strand element), each undirected
edge represents the interaction between two cores, and

each directed edge (arc) represents the loop between
two consecutive cores (from the N-terminal to the
C-terminal). A mixed graph representation is used for
protein structure prediction in [3]. The DSSP program
[20,21] was used for the assignments of secondary struc-
ture elements for the protein entries from the Protein
Data Bank (PDB). Refer to the protein structure and the
corresponding mixed graph representation in Figures 1
for protein with ID: 6ldh. Alpha helix elements are
represented by circles and beta strand elements are
represented by squares. Therefore, a mixed graph can
be represented as a triple G = (V (G), A (G), E (G)),
where V (G) is the vertex-set of G, E (G) is the set of
undirected edges of G, and A (G) is the set of directed
edges of G, which induces a directed path spanning all
vertices of G, thus defining a linear order among the
vertices of V (G). The aforementioned mixed graph
representation incorporates the SSE type, the sequential
order of the SSEs, and the interactions of the SSEs.
When comparing two protein structures, the problem
could now be reduced to finding the common subgraph
of the two mixed graph.
Goldman et al. [2] studied the protein comparison pro-

blem using the notion of contact maps. Contact maps are
undirected graphs whose vertices are linearly ordered.
Goldman et al. [2] formulated the protein comparison pro-
blem as a CONTACT MAP OVERLAP problem, in which
we are given two contact maps and we need to identify a
subset of vertices S in the first contact map, a subset of ver-
tices S′ in the second with |S| = |S′, and an order preser-
ving (w.r.t. linear ordering) bijection f : S → S′, such that
the number of edges in S (i.e., between the vertices in S)
that correspond (under f ) to edges in S′ is maximized. In
[2], the authors proved that the CONTACT MAP OVER-
LAP problem is MAXSNP-complete even when both con-
tact maps have maximum degree one.
Song et al. [3] studied the problem of mixed-graph

comparison, when each vertex v in the first mixed-graph
is associated with a subset of vertices Sv in the second
mixed-graph, and the bijection f is restricted to map v
to a vertex in Sv. Song et al. [3] proved that this pro-
blem is NP-complete, even when the size of each subset
Sv, referred to as the map width is at most 3. Our
results in the following section refine and extend the
results in [3] in several aspects. We first prove that the
problem defined in [3] is intractable with respect to
many computational frameworks. For example, we show
that the problem: (1) is NP − hard (even for very
restricted instances), (2) cannot be approximated to a
ratio n

1
2−ε, for any ε > 0, unless P = NP, and (3) is W

[1]-complete with respect to the framework of parame-
terized complexity. We also show that a useful case of
the problem is solvable in polynomial time by reducing
it to the 2-CNF-SATISFIABILITY problem.
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The graph embedding problem and complexity results
In this section, we study the complexity of the mixed
graph embedding problem, which corresponds to the
problem of identifying the query protein structure (e.g.,
a motif structure) as a substructure in a larger protein
structure.
We define the GRAPH EMBEDDING problem as

follows:

GRAPH EMBEDDING
Given two mixed graphs G = (V (G), A(G), E(G))
and H = (V (H), A(H), E(H)), where H is referred to
as the host graph, such that each vertex v Î V (G)
has a list L(v) ⊆ V (H) of vertices in H that it can be
mapped to, decide if there exists an injection f: V
(G) ® V (H) such that:

(i) f (v) Î L(v) for every v Î V (G);
(ii) for any two vertices v, ν ′ ∈ V(G), there is a
directed path from v to ν ′ in G if and only if
there is a directed path from f(v) to f (ν ′) in H;
and
(iii) for any two vertices v, ν ′ ∈ V(G), if
νν ′ ∈ E(G) then f (ν)f (ν ′) ∈ E(H).

We shall call an injective embedding f satisfying prop-
erties (i)-(iii) above a valid embedding.
Informally speaking, the GRAPH EMBEDDING pro-

blem asks if we can embed G into H in such a way that
the precedence order determined by the arcs of G is
respected by this embedding, and the undirected edges of
G are respected by this embedding.
We define the restriction of the GRAPH EMBEDDING

problem, denoted r-GRAPH EMBEDDING, where r is
positive integer, by restricting the cardinality of the set L
(v) to be at most r, for every v Î V (G); that is, in the
restrictions of the problems, a vertex in V (G) can be
mapped to at most r vertices in H.
If one cannot embed the whole graph G into H, it is

natural to seek an embedding that embeds the maxi-
mum number of vertices in G into H, while respecting

conditions (i)-(iii) above. Therefore, we define a version
of GRAPH EMBEDDING, denoted GRAPH EMBED-
DING≥, by introducing a nonnegative parameter k, and
asking whether there exists a subset S ⊆ V (G) with |S|≥ k,
and an injection f: S ® V (H) such that:

(i) f (v) Î L(v) for every v Î S;
(ii) for any two vertices v, ν ′ ∈ S, if there is a direc-
ted path from v to ν ′ in G then there is a directed
path from f(v) to f (ν ′) in H; and
(iii) for any two vertices v, ν ′ ∈ S, if νν ′ ∈ E (G) then
f (ν)f (ν ′) ∈ E(H).

The optimization/maximization version of the GRAPH
EMBEDDING≥ problem, denoted MAXIMUM GRAPH
EMBEDDING, asks for a set S of maximum cardinality
that satisfies conditions (i)-(iii) above. Similarly, we can
define the problems r-GRAPH EMBEDDING≥ and
MAXIMUM r-GRAPH EMBEDDING.
It was shown in [3] that a more general problem than

r-GRAPH EMBEDDING, in which the set of edges A(G)
do not necessarily induce a path, is NP − complete for
any r ≥ 3. The same proof actually shows that the r-
GRAPH EMBEDDING problem is NP − complete for
any r ≥ 3. We show next that the 2-GRAPH EMBED-
DING is solvable in polynomial time.
Theorem 0.1 The 2-GRAPH EMBEDDING problem is

solvable in polynomial time.
PROOF. We reduce the problem to 2-CNF-SATISFIA-

BILITY, which is solvable in polynomial time (for example,
see [22]. Recall that in the 2-CNF-SATISFIABILITY pro-
blem we are given a Boolean formula in the conjunctive
normal form (CNF) (i.e., the formula is the conjunction of
clauses, and each clause is the disjunction of a literals,
which are variables or negations of variables), in which each
clause contains at most two literals, and we are asked to
decide whether or not the formula is satisfiable. Let (G, H)
be an instance of 2-GRAPH EMBEDDING satisfying |L(v)|
≤ 2, for every v Î V (G). We show how to construct in
polynomial time an instance F of 2-CNF-SATISFIABILITY

Figure 1 Structure graph for 6ldh. Alpha helix elements are represented by circles and beta strand elements are represented by squares.
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such that G has a valid embedding into H if and only if F is
satisfiable.
For every vertex v Î G: if L(ν) = {ν ′} we add a variable

xνν′ and add the clause {xνν′ } to F; and if L(ν) = {ν ′, ν ′′} we
add the two variables xνν′, xνν′′and the two clauses
{xνν′ , xνν′′ }, {xνν′ , xνν′′ } to F. This ensures that every vertex
v in G is mapped to one and only one vertex in H (i.e., the
map is a well-defined function). (We assume that |L(v)| ≠
0; otherwise, the instance can be rejected.)
For every two vertices v and u in G such that there is a

directed path from v to u in G (i.e., v appears before u in
the directed path in G), and for very ν ′ ∈ L(ν) and
u′ ∈ L(u) such that ν ′ = u′ or u′appears before u in the
directed path in H, we add the clause {xνν′ , xuu′ } to F. This
ensures that the desired mapping is injective, and ensures
that the mapping respects the precedence order among
the vertices in G that is defined by the directed path in G
(property (ii)).
For every two vertices v and u in G such that vu Î E

(G), and for very ν ′ ∈ L(ν) and u′ ∈ L(u) such that
ν ′u′ /∈ E(H), we add the clause {xνν′ , xuu′ } to F. This
ensures that the desired mapping respects the undirected
edges of G (property (iii)).
This completes the construction of F. Clearly, this

construction can be carried out in polynomial time.
It is not difficult to verify that (G, H) is a yes-instance of

2-GRAPH EMBEDDING if and only if F is a yes-instance
of 2-CNF-SATISFIABILITY. This implies that 2-GRAPH
EMBEDDING is polynomial-time solvable. □
The above theorem, together with the result in [3],

provides a complete characterization of the complexity
(NP-hardness) of r-GRAPH EMBEDDING with respect
to r.
If we consider the r-GRAPH EMBEDDING parame-

terized by r, the fact that the problem is NP-complete
for r ≥ 3 [3] implies that the problem is not solvable in
time O(nr) unless P = NP, and hence, with respect to
the parameterized complexity framework, the problem is
not in the class XP. Therefore, there is not much hope
behind seeking parameterized algorithms (with respect
to r) for the problem. Moreover, the NP-hardness proof
for r-GRAPH EMBEDDING (r ≥ 3) is via a reduction
from 3-CNF-SATISFIABILITY (each clause contains at
most three literals) that produces two graphs G and H,
each of size linear in the number of clauses of the 3-
CNF-SATISFIABILITY instance. Therefore, based on
the results in [23], we can conclude that r-GRAPH
EMBEDDING (r ≥ 3) is not solvable in subexponential
time unless the exponential-time hypothesis (ETH) fails
[23].
We investigate next the complexity of the r- GRAPH

EMBEDDING≥ problem.
Theorem 0.2 The r-GRAPH EMBEDDING≥ problem

is NP − complete, for any r ≥ 1.

PROOF. It suffices to prove the NP − completeness of
the 1-GRAPH EMBEDDING≥ problem. We only prove
the NP-hardness, as it is very easy to show the member-
ship of the problem in NP. The proof is via a reduction
from the CLIQUE problem: Given a graph and a nonne-
gative integer k, determine if the graph has a clique
(complete subgraph) of size k.
Let (G′, k) be an instance of CLIQUE, where

V(G′) = {ν ′
1, ..., ν

′
n}. We construct the instance (G, H, k)

of 1- GRAPH EMBEDDING≥ as follows. The set of ver-
tices V (G) = {v1, ... ,vn} and V (H) = {u1, ... ,un} are
copies of V(G′). We connect the vertices v1 ,..., vn in G
by a directed path, and u1, ... ,un in H by a directed
path, and define L(νi) = {ui}, for i = 1, ... ,n. Finally, the
undirected edges of G form a clique, and the undirected
edges of H are those of G′; that is, vivj Î E(G) for every
1 ≤ i ≠ j ≤ n, and uiuj Î E(H) if and only if ν ′

iν
′
j ∈ E(G′).

This completes the reduction, which is obviously com-
putable in polynomial time.
It is not difficult to verify that (G′, k) is a yes-instance of

CLIQUE if and only if (G, H, k) is a yes-instance of 1-
GRAPH EMBEDDING≥. This completes the proof. □
The reduction in the above theorem is an fpt-reduc-

tion, from the CLIQUE problem to 1- GRAPH EMBED-
DING≥, where the parameter is the size of the subgraph
sought k. Since CLIQUE is known to be W [1]-hard in
the parameterized complexity hierarchy, we obtain:
Theorem 0.3 The r- GRAPH EMBEDDING≥ problem

is W [1]-complete, for any r ≥ 1. (Note that membership
in W [1] follows from the results in the next section.)
Finally, we observe that the same reduction in Theorem

0.2 provides an L-reduction [24] (i.e., approximation-pre-
serving reduction) from MAXIMUM CLIQUE (the pro-
blem of computing a clique of maximum cardinality in a
graph) to MAXIMUM 1-GRAPH EMBEDDING. It is
well known that, unless P = NP, MAXIMUM CLIQUE
cannot be approximated to a ratio n

1
2−ε for any ε > 0

[25]. It follows that:
Theorem 0.4 Unless P = NP, the MAXIMUM

r-GRAPH EMBEDDING problem cannot be approxi-
mated to a ratio n

1
2−ε for any ε > 0.

Graph embedding to independent set
In this section we show that the MAXIMUM r-GRAPH
EMBEDDING problem can be modeled as an MAXI-
MUM INDEPENDENT SET problem. Recall that an
independent set in a graph is set of vertices such that no
two of them are adjacent, and the MAXIMUM INDE-
PENDENT SET problem asks for an independent set of
maximum cardinality in a graph.
Let (G, H) be an instance of MAXIMUM r-GRAPH

EMBEDDING. Suppose that V (G) = {g1, g2, ... ,gn} with
directed edges from gi to gi+1, for 1 ≤ i ≤ n − 1, and suppose
that V (H) = {h1, h2, ... ,hm}, m ≥ n, and with directed edges

Ashby et al. BMC Genomics 2013, 14(Suppl 2):S1
http://www.biomedcentral.com/1471-2164/14/S2/S1

Page 4 of 10



from hi to hi+1, for 1 ≤ i ≤ m − 1. Suppose that each vertex
of G can be mapped to one of at most r vertices in H.
Theorem 0.5 If MAXIMUM INDEPENDENT SET is

solvable in time 2cn, then MAXIMUM r-GRAPH
EMBEDDING is solvable in 2crn time.
PROOF. Create an auxiliary graph X as follows. For

each possible choice mapping gi to hj, create a vertex xij.
For any two vertices xij and xkl, add an edge between
them if and only if one of the following conditions are
true:

1. i = k or j = l.
2. i <k and j >l, or i >k and j <l.
3. There is an undirected edge between gi and gk in
G, while there is no undirected edge between hj and
hl in H.

Note that Condition 2 could be removed when the
order of the mapped vertices are not required to be the
same for the two graphs.
It is clear that any independent set of X corresponds to a

common subgraph of G and H of the same size. So the
problem of finding a maximum common subgraph of G
and H is reduced to the problem of finding a maximum
independent set of X, which has rn vertices. In particular,
to find if G is a subgraph of H it suffices to find an inde-
pendent set of size n. Therefore if MAXIMUM INDEPEN-
DENT SET is solvable in time 2cn, then MAXIMUM
r-GRAPH EMBEDDING is solvable in 2crn time. □
If we use the current-best exact algorithm for MAXI-

MUM INDEPENDENT SET by Robson [26] that runs
in time O(2n/4), we conclude that:
Theorem 0.6 The MAXIMUM r-GRAPH EMBED-

DING problem is solvable in time O(2rn/4), where n is
the number of vertices in graph G.

Algorithm for structure comparison
The problem of protein structure comparison could be
modeled as finding an independent set problem of an aux-
iliary graph. When aligning two protein structures, the
auxiliary graph X is created as is in the proof of Theorem
2.5. Note that when aligning three and more protein struc-
tures, the auxiliary graph X could be created similarly.
Refer to the following for the outline of the algorithm

for protein structure comparison.

1 (Preprocessing). Generate the two structure graphs
for the two proteins, based on both their secondary
structure information (local structure) and tertiary
structure (global structure) information.
2 (Auxiliary graph). Build the auxiliary graph from the
two structure graphs;
3 (Top K independent sets). Generate the top K max-
imum independent sets of the auxiliary graph by

applying the enumeration algorithm developed in
[4].
4 (Matched SSEs). Evaluate the generated top K
maximum independent sets and generate the SSE
pairs with the best score of the two proteins.

We analyze the time complexity of the algorithm:
Step 1: The algorithm processes the two proteins to

generate the corresponding two structure graphs, where
each vertex of a graph represents an SSE of the corre-
sponding protein. Suppose the number of the vertices of
each structure graph is bounded by n.
Step 2: We introduce a parameter r as the maximum

number of pairs associated with each vertex of the
structure graphs. The number of vertices of the auxiliary
graph is bounded rn.
Step 3: Through calling the enumeration algorithm

develop in [4], it takes time O(1.47rn) to generate the
top K independent sets of the auxiliary graph.
Step 4: It takes time O(1.47rnn2) to evaluate the gener-

ated independent sets and identify the independent set,
which corresponding to the SSE pairs with the best
score of the two proteins.
Refer to [27] for a discussion of the theoretical run-

ning times of several other graph-based approaches for
protein structure comparison, which are of O((mn)n) or
O(mn+1)n), where m and n demote the size of the struc-
ture graphs. The theoretical running-time O(1.47rnn2) of
our approach ePC is the current best, where n is the
smaller number of SSEs of the two proteins, r is a para-
meter of small values.

Testing results
Our approach ePC is designed for general-purpose protein
structure comparison. In this section we test our approach
for this purpose using SABmark-sup and SABmark-twi
[28], and specific novel folds studied in the literature. Our
approach is implemented using C++. The testing is mainly
performed on a regular Macbook (8GB Mem). The run-
ning-time testing is conducted on a Dell server (Power-
Edge 2950III, 32GB Mem). Due to the space limit, some
testing results are not presented.
Given two proteins, A and B, the score of the a SSE pair

is the sum of the Lij of the residues for the SSE pair. Lij is
defined in [29] denoting the similarity between a segment
centered around residue i of one protein and a segment
centered around residue i of the other protein, where
Lij = min{D(dAi−2,i+2, d

B
j−2,j+2),D(dAi−2,i+1, d

B
j−2,j+1),D(dAi−1,i+2, d

B
j−1,i+2)},

where D(d1, d2) = 0.1 − |d1 − d2|/(d1 + d2).
Let S be the sum of the scores of all the aligned SSEs.

The normalized score Sn = S/
√
(lA ∗ lB), where lA and lB

are the lengths of the two proteins. Ac is the number of
SSEs in A, Bc is the number of SSEs in B and MCSn is
the size of the common subgraph of the two protein
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structure graphs, the CORE-COV is a percentage
defined by: MCSn / min(Ac, Bc).

Testing different parameter values
There are two important parameters of our algorithm r
and K, where r is the maximum number of SSE pairs
associated with each SSE of the structure graphs, and K
is the number of enumerated independent sets. Note
that the score Lij of the SSE pairs is the criteria for iden-
tifying the associated r SSEs. We test the impacts of the
two parameter values on the running time and scoring
for the protein comparison.
We present our testing results for accuracy (using the

score S as a criteria) and running-time of our approach
with different parameter r values. We have conducted
the testing of 200 protein pairs from SABmark-sup data-
base with different parameter r values, where each SSE
from one protein is matched with the top r SSEs from
the other protein. Refer to Figure 2 for the average
scores of 200 protein pairs from Sup database, when
testing our approach with different parameter r values,
r = 2, 3, 4, 5, 6, 7, 8, 9. Our testing results indicate that
when the parameter r value increases, the score has
increased. Refer to Figure 3 for the average running
times of 200 protein pairs from Sup database, when test-
ing our approach with different parameter r values.
When r increases, the running time of our approach
increases in general. However note that the running
times when r = 5, 6, 7, 8, 9 are very similar; this is
because trimming has been applied to reduce the sizes
of the auxiliary graphes before the enumeration of the
independent sets, and also because the impact of the
parameter K on the running time. Especially the running
time when r = 2 is significantly lower than the other

cases, which matches our theoretical result that for r = 2
the r-GRAPH EMBEDDING problem is in P.
For the enumeration of independent sets, we have

introduced a parameter K, which is the bound of the
number of enumerated independent sets. Here we pre-
sent our testing results for accuracy and running-time of
our approach with different parameter K values (See
Table 1). Similar as the testing for the parameter r, we
have conducted the testing of 200 protein pairs from
SABmark-sup database with different parameter K values,
K = 125, 250, 500, 1000. Our testing results indicate that
when the parameter K value increases, the score has
increased and the running time also increases.

Performing structure comparison
Self-querying in a large database of structures. As pointed
in [5], a necessary condition for a approach to be of practi-
cal value for structure comparison and classification, it
should be able to find the query itself in a database of pro-
tein structures. To test this property of our approach,
1000 protein structures from the SABmark-sup database.
Our approach with the normalized score function can
identify the query structure with ranking No. 1 with 100%
accuracy.
Detecting a substructure in a set of larger structures.

Our approach can detect a smaller query structure (or,
a motif structure) within a larger target structure.

Figure 2 The running times for different r values. Note for all
these testing, our approach use the same parameter K = 1000.

Figure 3 The scores for different r values. Note for all these
testing, our approach use the same parameter K = 1000.

Table 1 The running times and scores for different K
values

K = 125 250 500 1000

time 1.90 3.57 6.76 12.73

score 8.89 9.08 9.17 9.28

Note for all these testing our approach use the same parameter r = 6.
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We use the test set from the previous test and required
for each domain to be matched to the target domain
embedded in the original full-protein structure. Our
approach with the normalized score can identify the
substructure with ranking No. 1 with 100% accuracy.
Protein family classification. We compare the perfor-

mance of our approach for protein family classification
with deconSTRUCT, which is also an SSE-based method
and designed for protein structure database filtering. We
have tested 1000 proteins pairs of the SABmark [28].
Due to the space limit, we only discuss some of the
representative testing result. We align protein d1a6m
(core size:7; AAs: 151; from SABmark [28]) to proteins
from 10 different families of the twi database with each
family 10 proteins. Of the proteins in the top 10 rank-
ing, 7 proteins identified through our approach are the
proteins from the same family as protein d1a6m. For

deconSTRUCT, 7 proteins of the identified 10 proteins
(without ranking) are the proteins from the same family
as protein d1a6m. Form the testing results, our
approach has comparable performance with Decon-
STRUCT for the general purpose protein structure com-
parison and structure classification. The mixed graph
representation of our approach ePC is much simpler
compared with deconSTRUCT. Our approach ePC is
more flexible than deconSTRUCT in that ePC can han-
dle SSE alignments with and without respect to the
order of SSEs, which will be discussed in the next sec-
tion for specific examples.

Specific examples
We test our approach on specific examples for common
substructures and novel folds which share common sub-
structures with non-sequential SSEs.

Figure 4 The 3D Structure of 1a02N with its two domains: p53-like transcription factors and E set domains. There are 18 cores/SSEs (0-
17) with conserved SSEs marked with *. Matched SSEs of 1a02N and 1ikna: (0,1) (1,2) (3,3) (7,5) (13,7) (14,8) (17,11); Matched SSEs of 1a02N and
1nfia: (0,1) (1,2) (3,3) (7,5) (12,7) (13,10) (15,11) (17,13); Matched SSEs of 1a02N and 1a3qa: (3,0) (5,3) (6,4) (7,5) (13,7) (14,8) (16,12) (17,13).
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Detection of several different common substructures. We
test our approach ePC using the four protein structures
(PDB codes: 1a02N, 1iknA, 1nfiA, and 1a3qA) studied in
[8,9]. The proteins share two common domains: “p53-
like transcription factors” and “E set domains”. In [8,9]
two different common substructures were detected, one
for each domain. The first common substructure is part
of the “p53-like transcription factors” domain. It consists
of 114 residues, and it forms a sandwich of nine beta-
strands. The second common substructure is part of the
“E set domains” domain. It consists of 87 residues, and it
forms a sandwich of seven beta-strands.
Please refer to the following testing results of our

approaches, when 1a02N is compared with: 1iknA,
1nfiA, and 1a3qA. Our testing results match the results
in [8,9]. Especially for the second common substructure
that is part of the “E set domains” domain with con-
served matched SSEs: 12, 13, 14, 15, 16, 17 of 1a02N.
Please refer to Figure 4 for its 3D structure and the two
domains.
Three novel folds. The three novel folds were dis-

cussed in [7] to study the unique feature of GANGSTA
+ to conduct non-sequential SSE alignment. Note that

the protein structures that are structurally similar to the
listed three new folds were detected through scanning
the ASTRAL40 database by GANGSTA+. The detected
similar protein structures have non-sequential SSE
alignments with the three novel folds respectively.
Please refer to our testing result in Table 2 Figure 5
and 6.

Discussion
We use an SSE-based graph model for general purpose
protein structure comparison. We presented the compu-
tational complexity results related to the protein struc-
ture comparison problem. An effective algorithm is
developed integrating a novel enumeration of indepen-
dent sets and parameterized computation for the pro-
blem. Our approach is tested for protein structure
comparison using benchmark testing sets. Compared
with other SSE-based approaches, our approach has
comparable performance for the general purpose protein
structure comparison. We also demonstrate that our
approach could be applied to identify common substruc-
ture with non-sequential SSEs and proteins sharing
more than one common substructure.

Table 2 Structure search and comparison of the three novel folds with the structural analogs

New fold Detected analog DaliLite TM-align GANGSTA+ deconSTRUCT SSM ePC

2JMK/7/57 1GO4H/4/93 11.0/0/75 4.0/1/67 1.8/7/61 0/0 1/14 4/100%/8.3

2AJE/7/44 1J7NB/40/738 3.9/3/45 3.4/3/45 2.1/4/53 3/31 3/61 7/100%/10.9

2ES9/5/58 1SXJH/15/267 2.5/4/57 4.0/5/65 1.8/5/69 3/36 2/38 5/100%/9.9

The results for DaliLite, TM-align and GANGSTA+ are from [7]. The format of protein entries: PDB ID/number of SSEs/number of residues in these SSEs. The format
of the testing result for DaliLite, TM-align and GANGSTA+: RMSD/number of aligned SSEs/number of aligned residues. The format of the testing results for
deconSTRUCT and SSM: no. of matched SSEs/no. of aligned AAs, and for our approach ePC: no. of matched SSEs/CORE-COV/score).

Figure 5 Structure alignment of PDB:2AJE and PDB:1J7NB. Structure alignment of the new fold PDB:2AJE and the structural analog
PDB:1J7NB, showing nonsequential order of aligned SSEs.
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