
RESEARCH Open Access

Fast probabilistic file fingerprinting for big data
Konstantin Tretyakov1*, Sven Laur1, Geert Smant2, Jaak Vilo1, Pjotr Prins2,3*

From ISCB-Asia 2012
Shenzhen, China. 17-19 December 2012

Abstract

Background: Biological data acquisition is raising new challenges, both in data analysis and handling. Not only is it
proving hard to analyze the data at the rate it is generated today, but simply reading and transferring data files
can be prohibitively slow due to their size. This primarily concerns logistics within and between data centers, but is
also important for workstation users in the analysis phase. Common usage patterns, such as comparing and
transferring files, are proving computationally expensive and are tying down shared resources.

Results: We present an efficient method for calculating file uniqueness for large scientific data files, that takes less
computational effort than existing techniques. This method, called Probabilistic Fast File Fingerprinting (PFFF),
exploits the variation present in biological data and computes file fingerprints by sampling randomly from the file
instead of reading it in full. Consequently, it has a flat performance characteristic, correlated with data variation
rather than file size. We demonstrate that probabilistic fingerprinting can be as reliable as existing hashing
techniques, with provably negligible risk of collisions. We measure the performance of the algorithm on a number
of data storage and access technologies, identifying its strengths as well as limitations.

Conclusions: Probabilistic fingerprinting may significantly reduce the use of computational resources when
comparing very large files. Utilisation of probabilistic fingerprinting techniques can increase the speed of common
file-related workflows, both in the data center and for workbench analysis. The implementation of the algorithm is
available as an open-source tool named pfff, as a command-line tool as well as a C library. The tool can be
downloaded from http://biit.cs.ut.ee/pfff.

Background
A rapid increase in data generation by recent high-
throughput acquisition technologies for genomics, tran-
scriptomics and metabolomics raises new challenges in
data handling and analysis. Data warehouses containing
petabytes-worth of biological data are increasingly com-
mon [1]. At this scale, routine tasks of data management
such as storage, backup, transfer and synchronization of
files become increasingly problematic.
For example, a typical next-generation sequencer, such

as the Illumina Genome Analyzer II system, produces
approximately 1 terabyte of data per single ten-day-long
run, which must be moved from the capture workstation

to the analysis resource [2]. Other systems have similar
data yields. The transfer of one terabyte over a Gigabit
Ethernet network connection takes more than two hours.
A more typical connection of 10-100 Mbit, like ones
between geographically distant universities, requires
between one and ten days to complete the transfer,
assuming there is no other use of the network.
A common usage pattern is to replicate file collections

at multiple locations for mirroring and backups, therefore
files are moved around to keep copies synchronised. A
number of techniques exist for performing file synchroni-
zation in a smart manner, avoiding transfers whenever the
files are proven to be identical on both ends [3-6].
With these methods, file similarity is tested by calculat-

ing a hash value over the full file using a particular algo-
rithm. This hash value is a number, typically sized
between 64 and 2048 bits, such that the chances of
obtaining the same hash value for two distinct files - the

* Correspondence: Konstantin.Tretjakov@ut.ee; Pjotr.Prins@wur.nl
1Institute of Computer Science, University of Tartu, J. Liivi 2, 50409 Tartu,
Estonia
2Laboratory of Nematology, Wageningen Agricultural University,
Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
Full list of author information is available at the end of the article

Tretyakov et al. BMC Genomics 2013, 14(Suppl 2):S8
http://www.biomedcentral.com/1471-2164/14/S2/S8

© 2013 Tretyakov et al.; licensee BioMed Central Ltd. This is an open access article distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and
reproduction in any medium, provided the original work is properly cited.

http://biit.cs.ut.ee/pfff
mailto:Konstantin.Tretjakov@ut.ee
mailto:Pjotr.Prins@wur.nl
http://creativecommons.org/licenses/by/2.0

situation referred to as a collision - are negligibly small,
on the order of 2-64 to 2-2048. This way, hash values act
like a fingerprinting technique, which allows to compare
files at two sites without actually transferring them.
However, with data volumes exceeding terabytes, even

scanning the files to compute conventional hashes or
fingerprints is already expensive. Indeed, the time
required to scan a terabyte of data is about 25 minutes
even for a modern high-speed 6Gbps drive. The situa-
tion is made worse by the fact that in many data centers
disks are a shared resource. Consequently, a file syn-
chronization method that is based on full file access can
be intolerably slow for this setting.
There are ways of alleviating the problem by storing

the precomputed hashes together with data files or
tracking file changes on a system level. However, as of
today, not many public data warehouses do it consis-
tently. Moreover, biological data sets are often gathered
by independent authorities, such as Array Express [7]
and the NCBI Gene Expression Omnibus (GEO) [8]. As
a result, these collections may contain a number of files
with equal content that bear different filenames, or, con-
trarily, have equal filenames, but differ in content. If file
fingerprinting is not supported by download servers,
then any third party willing to download a consistent
union of all the files has no other choice but to down-
load all the files every time, even if many of them later
turn out to be duplicates.
As a solution, we offer a new hashing algorithm, Prob-

abilistic Fast File Fingerprinting (PFFF), that computes file
fingerprints by sampling only a few bytes from the file in a
pseudorandom fashion. This makes on-demand hashing
tractable. Most importantly, it can be applied over the net-
work to quickly obtain hashes of files stored in remote
third-party warehouses.
Although our approach might seem unorthodox, we

demonstrate in the following sections that due to inherent
variability in large-scale biological data, the risk of false
positives due to sampling is negligible. In addition, we
measure the performance of our approach on several sto-
rage and data access technologies. We discover that the
performance gains due to sampling can vary considerably
depending on the underlying technology. While PFFF out-
performs conventional hashing for most file sizes, when
used via web and on Flash storage, for hashing over the
NFS network protocol, the benefits surface only with strict
variability thresholds or at very large file sizes.

Methods
Standard file fingerprinting algorithms
Hashing is a common method to speed up file compari-
son. A hash function compresses files into short digests
(fingerprints) that are much easier to compare. If two
fingerprints are different, the corresponding files are

different, and whenever the fingerprints are the same,
the files are the same, except for a negligibly small prob-
ability of a collision, i.e., two different files having the
same fingerprint.
Hash functions can be divided into two classes: deter-

ministic and probabilistic. A deterministic hash function
is simply a fixed algorithm f that maps a file to its fin-
gerprint:

f : M → {0, 1}�,

where M is the space of all possible files of interest and
ℓ is the length of the hash. Examples are the well-known
MD5 [9] or SHA-256 [10] algorithms. As the number of
possible fingerprints is finite and the number of possible
files is, in principle, infinite, there may exist infinitely
many files with colliding fingerprints. Thus there is no for-
mal guarantee that for any given pair of files deterministic
hashes would only collide with a negligible probability.
Still, finding collisions for cryptographic hash functions
such as SHA-256 is believed to be extremely difficult, and
hence the probability of accidental collisions is negligible
for all practical purposes [11].
A probabilistic hashing scheme is not a single hash

function but rather a family of functions

F = {fk : M → {0, 1}�|k ∈ K},
where K is the key space. Such a function family is

useful in file fingerprinting if for any two fixed files
x1, x2 ∈ M , and a randomly selected key k, the probabil-
ity of a collision is bounded by a small number εc:

Pr [k ← K : fk(x1) = fk(x2)] ≤ εc.

Function families that satisfy this condition are usually
referred to as εc-almost universal. Efficient algorithms
for such universal hash functions have been known for
decades. See [11,12] for further details.

Inherent variability of biological data
Due to long research history, standard file fingerprinting
methods have reached perfection and it is extremely dif-
ficult to outperform them if no additional assumptions
can be made about the data. However, biological data
collections are quite specific. In particular, the situation
when two large data files meaningfully differ in only a
few bits is very unlikely in practice. Empirical examina-
tion of large repositories of biological data confirms that
whenever two differently named files coincide in more
than 20% of bytes, they are either misformattings of the
same data, or may be treated as equivalent for the pur-
poses of most large-scale analyses. For compressed data
files the similarity bound is as large as 90%. See Results
for further details.

Tretyakov et al. BMC Genomics 2013, 14(Suppl 2):S8
http://www.biomedcentral.com/1471-2164/14/S2/S8

Page 2 of 8

This observation can be postulated as the δ-variability
assumption. Assume that each file is represented as a
sequence of blocks, e.g. bytes. Then a data collection
satisfies δ-variability assumption if any two distinct files
of the same length x = (x1, . . . , xm) and y = (y1, . . . ,
ym) differ at least in δ-fraction of the blocks:

|{i : xi �= yi}| ≥ δm.

New file fingerprinting method
Explicit use of data variability is the key to more efficient
hashing. Let x and y be two files of length m satisfying the
δ-variability assumption. Now, if we sample uniformly
with replacement ℓ indices i1, . . . , iℓ Î {1 , . . . , m}, then
the probability that all the corresponding blocks in two
files coincide (a sampling collision) is bounded from above:

εs = Pr [xi1 = yi1 , . . . , xi� = yi�] ≤ (1 − δ)�.

More generally, for any collection of n distinct files
that satisfies the δ-variability assumption, the probability
that a sample of ℓ blocks coincides for at least one pair
of files is bounded by:

εfail = Pr [Some − collision] ≤ 0.5n(n − 1)εs.

For instance, if the variability threshold is δ = 0.5 and
we sample 103 random blocks, a sampling collision for a
single pair of files may emerge with probability εs ≤ 2-103.
For a set of 106 files, some collision occurs with probabil-
ity εfail ≤ 5 · 10-20, which is comparable to the probability
of a hardware failure.
In general, any desired upper bound for collision

probability εfail can be achieved with

� ≥ log(1/εfail) + 2 log n

− log(1 − δ)
(1)

samples. Observe that ℓ does not depend on the file
size. Also note that ℓ scales logarithmically with 1/εfail
and n, which means that improvements to the desired
failure probability εfail and the number of files n only
moderately increase the required sample size.
Samples x̂ = xi1 ...xi� and ŷ = yi1 ...yi� do not have to be

compared directly. Instead, we can further compress
them by some universal hashing scheme F = {fk} and

compare fk(x̂) and fk(ŷ). As a result, the probability of
collisions increases, because with some probability
fk(x̂) = fk(ŷ) even if x̂ �= ŷ . However, if F is εc-almost
universal, this probability is bounded by εc and conse-
quently the overall probability of a single collision is
only marginally increased:

Pr [fk(x̂) = fk(ŷ)] ≤ εs + εc.

Finally, note that all random bits needed to generate
indices i1, . . . , iℓ and the key k can be replaced with
the output of a pseudorandom number generator. In
practice, any sufficiently complex pseudorandom genera-
tor will be adequate. We choose to use the fast and cur-
rently widely popular Mersenne twister algorithm [13]
in our implementation.

Results
Variability in biological data
The cornerstone of our new hashing algorithm is the
assumption that any two files in a biological data collec-
tion can either be treated as identical or necessarily dif-
fer in at least a δ-fraction of places. To study to what
extent this variability assumption holds for biological
data, we tested several kinds of common biological data-
sets, including both DNA sequence and tabular numeric
data, both in compressed and uncompressed forms
(Table 1).
For each dataset we found the byte-wise most similar

pair of files, ignoring misnamings and differences in file
sizes. The reported δ is the variability metric for this
best pair (i.e. the proportion of pairwise different bytes).
Exact details of this experiment as well as the data files
are provided in the Supplementary Text online [14].
From the results we see that for most datasets, δ is at

least 0.2, and for the majority of compressed datasets δ
is at least 0.9. There seem to be some notable excep-
tions, however: the E61/fa, GPL570/cel, GPL570/cel.gz,
BioC2.7/BSGenome/u datasets have at least a single pair
of highly similar files. To better understand the implica-
tions of this result we examined the corresponding pairs
manually (Table 2). Manual examination showed that
for the non-DNA data used in our experiments, all
cases of similar file pairs are instances of misformattings
of the same raw data, which are irrelevant from the
point of view of data analysis. In the case of DNA data,
there were examples of a few pairs of DNA sequences
which, when unpacked, are highly similar, as they corre-
spond to different haplotypes or genome assemblies of
the same organism.
Those observations largely confirm the assumption of

the wide applicability of PFFF hashing in the context of
biological data. Care should be taken in the case of data-
sets containing uncompressed genome sequences with
minor variations, when those variations are key to the ana-
lysis. In such situations it makes more sense to rely on
consistent file naming, conventional hashing, or, best of
all, compressed representation of the variations. As we can
see in Table 1 even plain gzip compression is sufficient to
ensure high δ-variability. Based on our measurements, we
suggest δ = 0.9 as a reasonable choice for datasets consist-
ing of compressed files and δ = 0.2 as a safe choice for
general-purpose PFFF-hashing. Substituting εfail = 2-64 and

Tretyakov et al. BMC Genomics 2013, 14(Suppl 2):S8
http://www.biomedcentral.com/1471-2164/14/S2/S8

Page 3 of 8

n = 106 into Equation (1) we obtain that for δ = 0.9, a sam-
ple size of just ℓ = 32 blocks guarantees negligible prob-
ability of collisions. For δ = 0.2 the guarantees are satisfied
by ℓ = 325.

Algorithm performance
To compare PFFF to conventional hashing we com-
pared the runtime of our algorithm to the (still) popu-
lar MD5 hashing algorithm in a variety of settings:
hashing over HTTP and NFS network protocols, hash-
ing on a local SSD (Flash) drive and on a portable USB
hard disk. We should note that the choice of MD5 as
the baseline is fairly arbitrary, as the hashing time is
heavily dominated by I/O rather than actual hash value
calculations.
In our experiments we considered the values of ℓ = 32

and ℓ = 325, corresponding to the two common situa-
tions highlighted in the previous section. Results are pre-
sented in Figure 1 and in the Supplementary Text [14].
Several interesting remarks are in order.

Performance of hashing via network
As one might expect, use of PFFF over HTTP outper-
forms conventional MD5 hashing for any file size
(although for smaller file sizes the benefits are minor).
The reason lies in the fact that HTTP protocol supports
range queries [15]. This allows the client to make a sin-
gle request demanding specifically those bytes which are
necessary to compute the PFFF hash. This is much
more efficient than a complete file download performed
in the case of conventional hashing.
Another network protocol, NFS, however, demon-

strates a different result. Contrary to HTTP, in case of
NFS each of the samples has to be queried using a sepa-
rate request. As a result, network latency starts dominat-
ing the processing time and in the case of ℓ = 325, PFFF
hashing is actually slower than straightforward file scan
for file sizes up to about 500MB (50MB for ℓ = 32). Of
course, as file size grows larger, the timing of MD5 hash-
ing continues to increase linearly while PFFF time stays
constant, but for practical purposes of contemporary data

Table 1 Variability in biological data

Dataset Description File type Number
of files

Total size (in GB) File size
(in MB)

δ

Min Max

E61/dat Ensembl v61 genome annotation (DAT) and
DNA sequence (FASTA) files in both
compressed (gzip) and uncompressed forms.

dat 5544 169.57 5.04 1385.14 0.782

E61/dat.gz dat.gz 5544 42.92 1.02 400.21 0.996

E61/fa fa 1484 498.51 3.47 13306.96 0.015

E61/fa.gz fa.gz 1484 95.25 1.0 973.15 0.594

GPL570/cel Microarray files for the HG U133 Plus chip from
GEO (all files of GPL570 platform as of 03.2011).
Affymetrix CEL and CHP format files, in
compressed (gzip) and uncompressed form.

cel 59892 1022.29 1.92 173.27 0.000

GPL570/cel.gz cel.gz 59892 330.09 1.13 48.84 0.000

GPL570/chp chp 2535 63.30 1.67 36.50 0.209

GPL570/ch.gz chp.gz 2535 26.36 1.02 23.05 0.995

BioC2.7/BSGenome Raw DNA sequence from the Bioconductor
package BSGenome, in compressed and
uncompressed forms

rda 513 8.45 1.00 117.17 0.981

BioC2.7/BSGenome/u un-packed 513 32.41 1.62 447.40 0.000

YaleTFBS/bedGraph4 Raw ChIP-seq data from the YaleTFBS dataset
of the ENCODE project. Four different file
types, both in compressed and uncompressed
forms.

bed-Graph4 171 139.91 216.73 2447.62 0.924

YaleTFBS/bedGraph4.gz bed-Graph4.gz 171 31.45 52.89 551.80 0.996

YaleTFBS/fastq fastq 388 541.99 199.25 4469.89 0.919

YaleTFBS/fastq.gz fastq.gz 388 160.75 49.55 1564.84 0.996

YaleTFBS/tagAlign tagAlign 520 279.45 79.95 2357.32 0.544

YaleTFBS/tagAlign.gz tag-Align.gz 520 96.70 27.86 815.63 0.994

YaleTFBS/wig wig 33 10.66 188.92 693.66 0.912

YaleTFBS/wig.gz wig.gz 33 3.27 59.76 207.93 0.996

Measurements of δ-variability in several biological datasets. Exact description of the experiment is available in the Supplementary material online [14].

Tretyakov et al. BMC Genomics 2013, 14(Suppl 2):S8
http://www.biomedcentral.com/1471-2164/14/S2/S8

Page 4 of 8

analysis we must conclude that PFFF is not useful over
NFS, not at least with the “safe” ℓ = 325 setting.
Performance on rotational and solid-state media
Random access to data on hard disk (HDD) and solid-
state (SSD) drives does not come for free, as we can
observe in the two rightmost panels of Figure 1. For file
sizes up to about 10MB, timings of 325-sample PFFF are
no better than that of a complete file scan. For larger
files, PFFF becomes beneficial, but the situations in the
case of SSD and HDD storage differ slightly. For SSD sto-
rage, the timing characteristic of PFFF flattens out fairly
quickly (e.g. after reaching 0.3 seconds at 10MB for ℓ =
325). For a rotational hard drive, however, timing con-
tinues to grow slowly with file size until for ℓ = 325 it pla-
teaus somewhere around 2.5 seconds for file sizes of
200MB or larger.
The main reason for this effect lies in the operation of a

rotational drive. On such drives, data is accessed via con-
tinuously rotating magnetic heads reading data off tracks.
For smaller files, multiple PFFF samples can often hap-
pen to be located on the same track and thus read within
a single revolution of the disk. As file size becomes large
enough, however, each byte request will typically require
a track switch followed by a seek operation. Such an
operation requires, on average, half a revolution. As the
time per revolution for a 5400rpm drive is approximately
11ms, randomly accessing 325 samples requires about 1.8
seconds. Our actual measured time is just slightly larger
as it also includes file system access and USB communi-
cation overhead.

In general, assuming that a typical rotational hard
drive can read as much as 0.5M of data in a single revo-
lution, we can estimate that for sufficiently large files, an
ℓ-sample PFFF hash computation requires approximately
as much time as a full scan of a 0.25ℓ-megabyte file.
Note that we observe the same effect in our HTTP

experiment for ℓ = 325, due to the fact that the HTTP
server was also using a HDD backend.
This observation limits the usefulness of PFFF for rota-

tional media to some extent. The situation may be alle-
viated by using a small number of large blocks instead of a
large number of single bytes in PFFF hashing. In fact, our
measurements confirm that among all the files in our
datasets except for uncompressed haplotype variations, no
two distinct files (misformattings not taken into account)
share even a single common block of size 0.5M, which
means that δ for such a large block size is close to 1.

Application in duplicate detection
An interesting alternative application for PFFF is fast
detection of unwanted duplicates or format errors in
large scientific data warehouses. Intuitively, if two dis-
tinct files yield the same PFFF hash value then they are
either identical or highly similar and thus deserve
further investigation.
More formally, we can regard duplicate detection as a

classical statistical hypothesis testing problem, where the
null hypothesis states that all the n files in a data ware-
house satisfy the δ-variability condition. We can now fix
εfail = 0.05 (a significance level threshold commonly used

Table 2 Detailed inspection of similar file pairs

Dataset File pair and remarks File sizes
(in MB)

δ

E61/fa Homo_sapiens.GRCh37.61.dna_rm.chromosome.HSCHR6_MHC_SSTO.fa 166.04 0.015

166.06

These are two alternative haplotype “patch” files for the same chromosome locus. The dataset contains 11
other examples of similar file pairs with δ < 0.06 (when unpacked). All are related to the alternative
haplotypes for the MHC locus. The next most similar pair of files has δ > 0.8.

GPL570/cel GSM405175.CEL 12.93 8e-6

GSM341406.CEL 12.93

The second file differs from the first by a single Affymetrix probe measurement. According to GEO metadata
the two files are simply different packagings of the same experimental data by two researchers. The GEO570
dataset contains 9 other examples of similar file pairs with δ < 0.002. The next most similar pair of files has δ
> 0.3.

GPL570/cel.gz GSM405175.CEL.gz 4.31 6e-4

GSM341406.CEL.gz 4.31

A gzip-compressed version of the pair above. Same remarks apply. The most similar pair of actually different
datafiles has δ > 0.9.

BioC2.7/B
SGenome/u

BSgenome.Athaliana.TAIR.01222004/extdata/chr1.rda 29.04 2e-4

BSgenome.Athaliana.TAIR.04232008/extdata/chr1.rda 29.04

Consequtive versions of A.thaliana reference genome. The next most similar file pair in this dataset has δ >
0.5. Note that the compressed versions of the same files have δ > 0.9.

The table lists the suspiciously similar pairs of files from the studied datasets.

Tretyakov et al. BMC Genomics 2013, 14(Suppl 2):S8
http://www.biomedcentral.com/1471-2164/14/S2/S8

Page 5 of 8

in hypothesis testing), compute the corresponding ℓ value
using Equation (1) and apply PFFF with this value of ℓ to
all files in the warehouse. Any hash collisions can now be
regarded as evidence, rejecting the null hypothesis.
To provide a more specific example, consider the

GPL570/cel.gz dataset from the GEO warehouse, listed in
Table 1. Considering that it consists of gzip-compressed
files we can postulate a true δ-variability between mean-
ingfully distinct files of at least 0.9. Substituting δ = 0.9,
n = 59892, εfail = 0.05 into Equation (1) we obtain ℓ ≈ 11.
Having applied PFFF with ℓ = 11 on the files of the dataset
we discovered 8165 groups of equal or equivalent files, the
largest of them comprising 10 files. The total volume of
redundant files was more than 54 gigabytes, unnecessarily
hogging more than 16% of the dataset space!

Implementation details
The implementation of our algorithm is available as
an open-source tool pfff available for download at

http://biit.cs.ut.ee/pfff. Besides the basic probabilistic
hash function, the tool provides several additional con-
venience features, such as the ability to include file
headers and file size in the hash. The whole package is
available under the open source BSD License, both as as
stand alone tool and a C library.

Discussion
The main requisite for PFFF is that the data to be ana-
lysed must satisfy the variability assumption. Biological
data sets are likely to satisfy this requirement for two
reasons. First, there is inherent variability in the biologi-
cal systems - no two cells are identical. Secondly, even if
the measurements are taken from the same cell at the
same time point, the complicated measurement proce-
dures result in sufficient amount of measurement errors.
It is highly unlikely to obtain exactly the same results in
two different experiments. Nonetheless, situations are
possible, where the level of variability is rather low. For

Figure 1 Comparison of PFFF to conventional hashing. The plots demonstrate time for hashing a single file of a given size by MD5 and by
PFFF. Note that axis scales on the four plots are different.

Tretyakov et al. BMC Genomics 2013, 14(Suppl 2):S8
http://www.biomedcentral.com/1471-2164/14/S2/S8

Page 6 of 8

http://biit.cs.ut.ee/pfff

instance, raw sequencing data of individuals has low var-
iance, as only 2-5% of base pairs differ from the refer-
ence sequence. In such cases, it is normally more
advantageous to store and transfer differences (SNP’s,
insertions and deletions) to save the storage space and
network load. Such compression increases variability
and enables the application of PFFF. Other file compres-
sion techniques (e.g. gzip) have roughly the same effect,
as they remove repeating patterns that are shared over
files.
In addition, PFFF’s reliability may be boosted to near

certainty for all practical purposes by including into the
fingerprint the size of the file and the first megabyte or
so of data. Indeed, in most file formats the header
usually contains most of the important identifying
information.
In our experiments we discovered that despite the theo-

retical guarantees of constant runtime for PFFF, several
practical aspects, such as network latency, rotational
operation of hard disks and sequential access optimiza-
tions implemented on the operating system level (e.g. data
prefetching), may limit the advantages of the approach
over conventional hashing. We observed that the benefits
of PFFF hashing are strongest when data must be accessed
over HTTP or when SSD storage is involved. In other con-
texts, application of PFFF requires further assumptions in
order to provide significant advantages.
In particular, for very large files (with sizes approaching

and exceeding a gigabyte) PFFF is nearly always meaning-
ful. Alternatively, higher δ-variability in the data allows to
reduce the ℓ parameter, drastically reducing the number of
requests. As we noted, δ = 0.9 and the corresponding ℓ =
32 are meaningful settings for collections of compressed
files.
Higher δ-variability can also often be assumed by

increasing block size. Moreover, for rotational storage,
meaningful block sizes are anyway on the order 0.5 mega-
bytes, as this is the the chunk of data read by the disk dur-
ing a single revolution.
Finally, note that the need for our method would be

greatly diminished if the prominent warehouses agreed
on publishing deterministic hashes together with the
data files. Unfortunately, it may still take a few years
before such agreement emerges. After that, the PFFF
hash could still provide a useful fallback mechanism.

Conclusion
We have proposed a specially tailored method for finger-
printing biological data files, which can significantly
reduce consumption of critical resources in several com-
mon usage patterns of big data analysis workflows. Our
PFFF algorithm allows for rapid checking of equivalence
of large files acquired from biological samples with little
computational overhead, thus possibly reducing the

number of files read and transferred between and within
data centers.
The application of PFFF is not limited to biological

data. Indeed, probabilistic fingerprinting applies to any
data with high variability. This includes, in particular,
data that contains noisy measurements, such as scienti-
fic data in astronomy or particle physics, as well as
sound and video files.

Authors’ contributions
PP conceived the idea of the approach and drafted the manuscript. SL
developed the idea theoretically and helped draft the manuscript. KT
developed the idea theoretically, implemented the algorithm, performed
experiments, prepared figures and supplementaries, and wrote the final
manuscript. GS and JV participated in the coordination of the study and
helped draft the manuscript. All authors read and approved the final
manuscript.

Competing interests
The authors declare that they have no competing interests.

Acknowledgements
Authors would like to acknowledge Marti Taremaa for invaluable advice as
well as administration of the server-side hardware used in the experiments.
Research was funded by Estonian target funding SF0180008s12, Complexity-
Net CIESCI, ERF CoE EXCS, and University of Tartu (SP1GVARENG).

Declarations
The publication costs for this article were funded by the European Regional
Development Fund through the Estonian Center of Excellence in Computer
Science, EXCS.
This article has been published as part of BMC Genomics Volume 14
Supplement 2, 2013: Selected articles from ISCB-Asia 2012. The full contents
of the supplement are available online at http://www.biomedcentral.com/
bmcgenomics/supplements/14/S2.

Author details
1Institute of Computer Science, University of Tartu, J. Liivi 2, 50409 Tartu,
Estonia. 2Laboratory of Nematology, Wageningen Agricultural University,
Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands. 3Groningen
Bioinformatics Center, University of Groningen, P.O. Box 14, 9750 AA Haren,
The Netherlands.

Published: 15 February 2013

References
1. Doctorow C: Big data: Welcome to the petacentre. Nature 2008,

455(7209):16-21[http://dx.doi.org/10.1038/455016a].
2. Richter BG, Sexton DP: Managing and analyzing next-generation

sequence data. PLoS Comput Biol 2009, 5(6):e1000369.
3. Tridgell A: Efficient algorithms for sorting and synchronization. PhD thesis

The Australian National University; 1999 [http://www.samba.org/~tridge/
phd_thesis.pdf].

4. Carter LJ, Wegman MN: Universal classes of hash functions. Proceedings of
the ninth annual ACM symposium on Theory of computing New York, NY,
USA: ACM; 1977, 106-112 [http://dx.doi.org/10.1145/800105.803400].

5. Trachtenberg A, Starobinski D, Agarwal S: Fast PDA synchronization using
characteristic polynomial interpolation. INFOCOM 2002, 3:1510-1519
[http://people.bu.edu/staro/infocom02pda.pdf].

6. Minsky Y, Trachtenberg A, Zippel R: Set reconciliation with nearly optimal
communication complexity. IEEE Transactions on Information Theory 2003,
49(9):2213-2218.

7. Parkinson H, Kapushesky M, Shojatalab M, Abeygunawardena N, Coulson R,
Farne A, Holloway E, Kolesnykov N, Lilja P, Lukk M, Mani R, Rayner T,
Sharma A, William E, Sarkans U, Brazma A: ArrayExpress-a public database
of microarray experiments and gene expression profiles. Nucleic Acids Res
2007, 35(Database):D747-D750.

Tretyakov et al. BMC Genomics 2013, 14(Suppl 2):S8
http://www.biomedcentral.com/1471-2164/14/S2/S8

Page 7 of 8

http://www.biomedcentral.com/bmcgenomics/supplements/14/S2
http://www.biomedcentral.com/bmcgenomics/supplements/14/S2
http://www.ncbi.nlm.nih.gov/pubmed/18769411?dopt=Abstract
http://dx.doi.org/10.1038/455016a
http://www.ncbi.nlm.nih.gov/pubmed/19557125?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19557125?dopt=Abstract
http://www.samba.org/~tridge/phd_thesis.pdf
http://www.samba.org/~tridge/phd_thesis.pdf
http://dx.doi.org/10.1145/800105.803400
http://people.bu.edu/staro/infocom02pda.pdf
http://www.ncbi.nlm.nih.gov/pubmed/17132828?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17132828?dopt=Abstract

8. Barrett T, Troup DB, Wilhite SE, Ledoux P, Evangelista C, Kim IF,
Tomashevsky M, Marshall KA, Phillippy KH, Sherman PM, Muertter RN,
Holko M, Ayanbule O, Yefanov A, Soboleva A: NCBI GEO: archive for
functional genomics data sets-10 years on. Nucleic Acids Res 2011,
39(Database):D1005-D1010.

9. Rivest R: The MD5 Message-Digest Algorithm. US; 1992.
10. National Institute of Standards and Technology: FIPS 180-3, Secure Hash

Standard, Federal Information Processing Standard (FIPS), Publication
180-3. Tech. rep., Department of Commerce; 2008.

11. Menezes AJ, van Oorschot PC, Vanstone SA: Handbook of Applied
Cryptography. CRC Press; 2001 [http://www.cacr.math.uwaterloo.ca/hac/].

12. Carter JL, Wegman MN: Universal classes of hash functions (Extended
Abstract). STOC ‘77: Proceedings of the ninth annual ACM symposium on
Theory of computing New York, NY, USA: ACM; 1977, 106-112.

13. Matsumoto M, Nishimura T: Mersenne twister: a 623-dimensionally
equidistributed uniform pseudo-random number generator. ACM Trans
Model Comput Simul 1998, 8:3-30.

14. PFFF: Supplementary text, materials, software and code (online). [http://
biit.cs.ut.ee/pfff/].

15. Fielding R, Gettys J, Mogul J, Frystyk H, Masinter L, Leach P, Berners-Lee T:
Hypertext Transfer Protocol-HTTP/1.1. RFC 2616 (Draft Standard) Internet
Engineering Task Force; 1999 [http://www.ietf.org/rfc/rfc2616.txt], Updated
by RFCs 2817, 5785, 6266, 6585.

doi:10.1186/1471-2164-14-S2-S8
Cite this article as: Tretyakov et al.: Fast probabilistic file fingerprinting
for big data. BMC Genomics 2013 14(Suppl 2):S8.

Submit your next manuscript to BioMed Central
and take full advantage of:

• Convenient online submission

• Thorough peer review

• No space constraints or color figure charges

• Immediate publication on acceptance

• Inclusion in PubMed, CAS, Scopus and Google Scholar

• Research which is freely available for redistribution

Submit your manuscript at
www.biomedcentral.com/submit

Tretyakov et al. BMC Genomics 2013, 14(Suppl 2):S8
http://www.biomedcentral.com/1471-2164/14/S2/S8

Page 8 of 8

http://www.ncbi.nlm.nih.gov/pubmed/21097893?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21097893?dopt=Abstract
http://www.cacr.math.uwaterloo.ca/hac/
http://www.ncbi.nlm.nih.gov/pubmed/23301060?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/23301060?dopt=Abstract
http://biit.cs.ut.ee/pfff/
http://biit.cs.ut.ee/pfff/
http://www.ietf.org/rfc/rfc2616.txt

	Abstract
	Background
	Results
	Conclusions

	Background
	Methods
	Standard file fingerprinting algorithms
	Inherent variability of biological data
	New file fingerprinting method

	Results
	Variability in biological data
	Algorithm performance
	Performance of hashing via network
	Performance on rotational and solid-state media

	Application in duplicate detection
	Implementation details

	Discussion
	Conclusion
	Authors’ contributions
	Competing interests
	Acknowledgements
	Declarations
	Author details
	References

