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Abstract

Background: Prostate cancer (PrCa) is the most commonly diagnosed cancer in men in the world. Despite the fact
that a large number of its genes have been investigated, its etiology remains poorly understood. Furthermore, most
PrCa candidate genes have not been rigorously replicated, and the methods by which they biologically function in
PrCa remain largely unknown.

Results: Aiming to identify key players in the complex prostate cancer system, we reconstructed PrCa co-expressed
modules within functional gene sets defined by the Gene Ontology (GO) annotation (biological process, GO_BP).
We primarily identified 118 GO_BP terms that were well-preserved between two independent gene expression
datasets and a consequent 55 conserved co-expression modules within them. Five modules were then found to be
significantly enriched with PrCa candidate genes collected from expression Quantitative Trait Loci (eQTL), somatic
copy number alteration (SCNA), somatic mutation data, or prognostic analyses. Specifically, two transcription factors
(TFs) (NFAT and SP1) and three microRNAs (hsa-miR-19a, hsa-miR-15a, and hsa-miR-200b) regulating these five candidate
modules were found to be critical to the development of PrCa.

Conclusions: Collectively, our results indicated that genes with similar functions may play important roles in disease
through co-expression, and modules with different functions could be regulated by similar genetic components, such as TFs
and microRNAs, in a synergistic manner.
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Background
Prostate cancer (PrCa) is the sixth leading cause of cancer-
related deaths of men in the world [1] and the second lead-
ing cause in the United States [2]. Due to the high risk of
metastasis, it has become fundamentally important to un-
cover the underlying mechanisms of PrCa. Factors such as
age, ethnicity, family history, heritability, diet, lifestyle, en-
vironment, and androgens have long been recognized as
contributors to the risk of PrCa [3-5]. As demonstrated by
twin studies, PrCa’s genetic component is estimated to be
as high as 42-57% [6,7].
To elucidate the underlying pathophysiology and molecu-

lar mechanisms of PrCa, numerous genetic and genomic
studies have been conducted, including gene expression
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profiling [8-12], expression Quantitative Trait Loci (eQTL)
mapping [13-15], somatic copy number alteration (SCNA)
identification [16], gene mutation detection [17], prognostic
gene discovery [18], microRNA (miRNA) expression profil-
ing [14,19], and transcription factor (TF) enrichment [20],
among others. The gene expressions profiled by microarray
technology have been a major strategy to detect mRNA
abundance. Traditional, single, and gene-based strategies
have been widely applied for gene expression analyses, but
they suffered from limitations, such as multiple testing bur-
dens [21], small numbers of differentially expressed genes
[22], lack of interactions/regulations among genes [23], or
low replication rates [24].
Alternatively, gene co-expression module analysis at-

tempts to study combined effects by identifying groups of
genes that are coordinately expressed [21,25-27]. For in-
stance, Horvath and colleagues have developed a widely
used algorithm, the Weighed Gene Co-expression Network
Analysis (WGCNA) [28], to search for co-expression mod-
ules. The R package WGCNA implements a suite of tools
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for network construction, module detection, module sig-
nificance examination, module preservation computation,
and hub gene query, among many others [29-31].
To our knowledge, no co-expression module has been

constructed for the identification of key regulators in PrCa
until now. Moreover, traditional co-expression studies that
start from whole human genes on a chip (or top differen-
tially expressed genes) often result in very large modules
(e.g., >1000 genes). Although functional assessments, such
as GO enrichment, the functional gene/SNP enrichment
test, and hub gene analysis could help to explore the func-
tions of modules, such interpretation typically results in
noisy results (e.g., a lot list of GO terms or genes). In this
study, we developed a framework for gene co-expression
module construction in PrCa using the WGCNA ap-
proach and augmented by Gene Ontology [32] biological
process (GO_BP) annotations. We argued that although
GO_BP terms are broadly defined for each functional
group, there may be subsets of genes in a biological
process (GO_BP term) that are coordinately expressed,
e.g., in a disease-associated fashion. For example, dif-
ferent co-expression modules may underlie different
diseases, although they all execute the same biological
functions as defined by GO_BP terms. To this end, we
developed a systematic framework (Figure 1) to search
for co-expression modules within each GO_BP term
and demonstrated it in PrCa. We primarily found 118
preserved GO_BP terms in two PrCa datasets and con-
structed 55 co-expression modules. We then assessed
these modules for their enrichment of PrCa candidate
genes collected by eQTLs, SCNA, somatic mutation
data, or prognostic studies using the hypergeometric
test. As a result, 5 modules were identified as signifi-
cantly associated with PrCa, and several TFs and miR-
NAs were found to be potential key regulators of these
candidate modules.

Methods
Processing and analysis of microarray gene expression data
Two microarray gene expression datasets were downloaded
from the National Center for Biotechnology Information
(NCBI) Gene Expression Omnibus (GEO) database (http://
www.ncbi.nlm.nih.gov/geo/). To ensure the data quality, we
searched for studies that have a well-defined phenotypic de-
scription for PrCa, have a sample size around 100 or more,
and have preferably been measured using similar platforms
in order to obtain a high proportion of overlapping genes.
We included both case and control samples to determine
disease-specific signals, as similarly done in Chen et al.
[21]. Two datasets that fulfilled these criteria were down-
loaded for our further analyses (Table 1). The first dataset
(GEO accession ID: GSE17951 [33]), which was used as the
training dataset in our work, was generated using the
Affymetrix U133Plus2 array on prostate tissue samples
from 109 cancer patients and 45 control samples [33]
(Table 1). The second dataset (GEO accession ID: GSE6956
[10]), which was used as the testing dataset, was collected
using the Affymetrix Human Genome U133A 2.0 array for
69 fresh-frozen prostate tumors and 20 control samples
from surrounding normal prostate tissue [10]. For each
dataset, we performed the following quality control steps.
First, outlier samples were detected and removed. We cal-
culated the inter-array correlation (IAC) based on Pearson’s
correlation coefficient for tumor and control samples, re-
spectively. We excluded the samples with low mean IAC
and/or those that emerged as a clear outlier by the hier-
archical clustering approach [34]. Second, samples were
quantile-normalized after log2 transformation [35]. Probes
with missing expression values in more than 30% samples
were removed from further analyses. For each gene, we se-
lected the probe with the highest intensity to represent the
expression level of the gene. This resulted in 21,049 genes
involved in 82 tumor and 40 control samples in the training
dataset and 13,211 genes in 60 tumor and 19 normal sam-
ples in the testing dataset, with 13,211 genes shared by the
two datasets.

Highly-preserved GO_BP terms
The GO database provides three annotation categories
(domains): Molecular Function (MF), Biological Process
(BP), and Cellular Component (CC). In this study, we fo-
cused on the BP category, based on the notion that
genes that participate in the same biological processes
tend to be expressed coordinately [36]. We downloaded
the GO_BP gene sets from the Molecular Signatures
Database (MSigDB) [37], including 825 GO_BP terms in
the C5 category. To avoid too broadly or too narrowly
defined GO_BP terms, we only kept the terms with 50
to 500 measured genes. As a result, 226 GO_BP terms
were eligible to build the gene expression matrices for
the following analysis.
Before the construction of the modules, we first evalu-

ated the importance of each term associated with PrCa
by calculating a preservation score. The preservation
score aims to assess the level of preservation between
the training and testing datasets for a gene set (i.e., a
GO_BP term) and is typically measured based on both
density and connectivity patterns among the genes [29].
The parameter Zsummary [29] implemented in WGCNA
[28] was employed to compute the preservation score.
In general, a value of Zsummary <2 indicates no evidence
of preservation between the training and the testing
datasets, 2 < Zsummary <10 implies weak to moderate evi-
dence, and Zsummary >10 indicates strong evidence. At
this stage, we aim to perform pre-selection of GO_BP
terms that are suitable for the following co-expression
clustering analysis. To this end, we chose a moderate
threshold of preservation, Zsummary = 5 [29], to select
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Figure 1 Overview of workflow. (A) GO-based gene co-expression network construction. It has five steps: (1) Raw microarray data processing
and analysis. (2) GO term expression data matrix-building. (3) Pairwise correlation analysis of genes in GO term across different samples. (4) Expression
profile clustering and module identification using WGCNA. (5) Visualization of co-expression modules by Cytoscape. (B) Framework of module significance
analyses. The details are provided in Methods.
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GO_BP terms and denote them as preserved GO_BP
terms in both training and testing datasets.

Application of WGCNA in PrCa
Given that genes within a GO_BP term are well-defined
with similar biological functions, we asked whether they
tend to co-express in a specific disease. Thus, we per-
formed gene co-expression analysis for each preserved
GO_BP term instead of all genes on the chip. We took
the gene expression matrix for each GO_BP term as the
input and applied WGCNA to detect co-expression
modules. Gene co-expression correlation was measured



Table 1 Summarization of PrCa microarray gene expression datasets used in the study

GEO accession ID Type Before QCa After QC # Genes

# Tumors # Controls # Tumors # Controls

GSE17951 Training 109 45 82 40 21049

GSE6956 Testing 69 20 60 19 13211
aQC: quality control.
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by Pearson’s correlation coefficients. In this step, we built
a pairwise co-expression matrix. This GO_BP term-based
matrix was then utilized to construct an initial gene
co-expression network by the blockwiseModules func-
tion in WGCNA. Notably, the initial co-expression net-
work constructed and based only on Pearson’s correlation
coefficients was not always a scale-free network. Rather, to
obtain a scale-free network, a weighted adjacency matrix
needs to be constructed using a selected power deter-
mined through a soft-thresholding approach in WGCNA.
Co-expression modules were then defined by a robust

dynamic hierarchical tree cut algorithm using the meas-
urement of dissimilarity (i.e., 1-topological overlap matrix)
[26,38]. To ensure a suitable number of genes for next-
step analysis, we set the minimum module size as 10. The
adjacent modules were merged based on the parameter of
cutHeight, i.e., modules with a minimum cutHeight at
0.25 were merged. Principle component analysis (PCA) of
the expression matrix for each module was then per-
formed. We denoted the first principal component (PC)
as the module eigengene and used it to represent the over-
all expression profile of the module [39]. For each gene,
we computed a module membership (kME) based on
the correlation between the gene expression and the
module eigengene. Those genes with a lower member-
ship (kME ≤0.3) were removed from the module and
assigned to the grey module.
To validate whether the identified modules were asso-

ciated with PrCa, we conducted a two-step evaluation
procedure. First, for each module, we adopted the mod-
ule eigengene to assess its trait association (denoted as
pcor) based on Pearson’s correlation coefficients. We used
the false positive rate (FDR) for multiple testing correction
[40]. Second, for PrCa-associated modules, we further
evaluated the module preservation in the testing dataset.
Since the size of our identified module was generally less
than 100, we defined a module to be preserved if it has a
Zsummary (module) >5.

Enrichment test
Four types of large-scale, PrCa-associated genetic/genomic
data, eQTL genes, recurrent SCNAs, somatic mutations,
and prognostic genes were collected for the enrichment test
of the identified modules. The eQTL genes were collected
from the online eQTL database, SeeQTL (http://www.bios.
unc.edu/research/genomic_software/seeQTL/), which re-
analyzed nine independent HapMap studies in lympho-
blastoid cell lines (LCLs); performed a consensus meta-
analysis with comprehensive quality control, population
stratification control, and FDR control; and provided the
q-value as the significance measurement [41-47]. We
retrieved a total of 8652 genes regulated by cis-eQL
(7071 genes) or trans-eQTL (4140 genes) from the SeeQTL
database. Here, cis-eQTL represents the cases where the
regulated genes are located within 1 Mb of the regulatory
SNP, while trans-eQTL indicates associations for more dis-
tant eQTL. We denoted them as cis-eQTL and trans-eQTL
gene sets, respectively.
A list of PrCa susceptibility genes located in SCNA

regions was downloaded from the cBio data portal
[48]. These SCNA regions were obtained using GIS-
TIC2 (q-value <0.1) [49], based on The Cancer Genome
Atlas (TCGA) prostate adenocarcinoma data (https://
tcga-data.nci.nih.gov/tcga/). In sum, we retrieved 567
unique genes and denoted them as the SCNA gene set.
Genes with somatic mutations were collected from

two sources. First, we manually collected 47 mutated
genes from the Human Prostate Gene Database (PGDB)
[17]. Second, 107 significantly mutated genes identified
in the TCGA prostate adenocarcinoma (https://tcga-
data.nci.nih.gov/tcga/) samples were retrieved from the
cBio portal. As a result, we obtained 149 unique genes
and denoted them as the mutant gene set.
We downloaded the RNASeqV2 and clinical data for

prostate adenocarcinoma from the TCGA portal (https://
tcga-data.nci.nih.gov/tcga/). The Univariate Cox model
was applied to define the prognostic genes [18]. FDR was
applied for multiple testing correction of the raw Wald p
values. Finally, we obtained 737 genes with FDR < 0.05.
Gene set enrichment analysis for PrCa-associated mod-

ules was performed using the hypergeometric test. Multiple
testing correction was controlled by the FDR method. The
module was taken as a candidate if it significantly enriched
with any of the two gene sets among eQTL, SCNA, muta-
tion, and prognostic genes with FDR < 0.05. We further
performed enrichment tests of the candidate module genes
with TF and miRNA using the online tool WebGestalt [50].
The resultant p values were corrected for multiple testing
using the FDR method. We set the significance level for
FDR at 0.01 and the minimum number of genes for a cat-
egory at two. For simplification, the top 5 enriched TFs or
miRNAs were collected for further analyses.
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Results
The identified GO_BP-based co-expression modules
GO_BP terms categorize genes that function in the same
or similar biological processes. Hence, genes in the same
GO_BP term could be expected to have coordinated ex-
pression patterns. In our study, among the 226 GO_BP
terms that fulfilled our query criteria (size between 50
and 500), 118 had a preservation score of Zsummary

(GO_BP) >5 and were considered well preserved be-
tween the training and the testing datasets. For each of
these 118 GO_BP terms, we built a weighted co-expression
network using the entire training dataset of 82 prostate
tumor samples and 40 control samples (see Methods).
Highly co-expressed genes within a term were then
clustered into modules, each labeled with a specific
color (Figure 1A4). This resulted in 548 modules in
total. To examine their association with prostate can-
cer, we calculated the correlation between the module
expression profiles (represented by the module eigen-
gene) and the PrCa disease status (represented by a
vector of 1 for case and 0 for control). With FDR <0.05,
we identified 294 of the 548 modules that showed statisti-
cally significant association with PrCa in the training data-
set. To further evaluate the association, we calculated
the preservation score, Zsummary, for each single mod-
ule against the testing dataset. 55 of the 294 modules
were preserved with Zsummary (module) >5. As shown
in Additional file 1: Table S1, these 55 modules belong
to 35 GO_BP terms. Many of these terms have been
reported to be associated with cancer development,
such as “biosynthetic process” [18], “cell-cell signaling”
[51,52], “inflammatory response” [53], “response to stress”
[54], “post translational protein modification” [55], “immune
system process” [56], “phosphorylation” [57], “regulation of
apoptosis” [58], and “regulation of cell proliferation” [59] in
many cancer types, including PrCa. Although expected,
these results confirmed that the identified modules are im-
portant to PrCa, and the method for the analysis is reason-
able. In addition, the successful detection indicates that
there are indeed subsets of genes within each single GO_BP
term that are co-expressed and associated with PrCa. This
further verified the rationale of our procedure to examine
co-expression patterns in each GO_BP term, rather than in
the whole gene set on chip, and proved its ability to discover
disease-associated genes and modules.

Characterization of the identified PrCa associated modules
Our enrichment test of the 55 preserved PrCa-associated
modules showed that six modules were significantly
enriched with PrCa candidate genes, such as eQTL,
SCNA, or mutant genes (FDR adjusted p < 0.05) (Additional
file 1: Table S1). Their functions are annotated as “re-
sponse to stress (labeled in green in Figure 1A4)” (pcis-eQTL =
0.017, ptrans-eQTL = 3.16 × 10−3, pmutation = 1.37 × 10−3),
“cellular localization (turquoise)” (pcis-eQTL = 7.30 × 10−3,
pSCNA = 0.024, pprog =1.62 × 10−3), “protein localization
(brown)” (pcis-eQTL = 0.034, pSCNA = 0.039, pmutation = 6.84 ×
10−4), “regulation of apoptosis (green)” (pcis-eQTL = 8.93 ×
10−3, pSCNA = 0.040), “regulation of apoptosis (red)”
(pcis-eQTL = 0.027, ptrans-eQTL = 6.59 × 10−3, pmutation =
6.39 × 10−5), and “apoptosis go (black)” (pcis-eQTL = 8.93 ×
10−3, ptrans-eQTL = 1.08 × 10−3, pmutation = 6.41 × 10−5). We
calculated the pairwise similarities between the six modules
using Fisher’s exact test. As a result, “regulation of apop-
tosis (red)” and “apoptosis go (black)” were found with a
large proportion of overlapping genes (p = 3. 7 × 10−41).
We therefore merged these two modules and referred to
the resultant module as M1. Other modules were listed as
M2-M5, as summarized in Table 2.
For these identified PrCa-associated modules, we recal-

culated the Module Membership (kME) of each gene by
its correlation with the module eigengene (Additional
file 2: Table S2). In particular, we presented the five
modules in Figure 2, in which nodes were ranked by
their kME values and edge thickness reflected the correla-
tions’ coefficients. Node shapes represented different gene
functions, as shown in Additional file 2: Table S2.
Genes with higher kME values were highly intercon-
nected in modules M1, M3, and M4, indicating a strong co-
expression pattern in PrCa (Figure 2). In modules M2 and
M5, relatively moderate connections were observed. This is
likely due to a weak PrCa association (M2, pcor = 0.015) or a
low preservation score (M5, Zsummary = 5.2). The biological
functions of modules M1 and M2 are associated with the
GO_BP term “apoptosis.” Representative genes include IL6
[60], SOCS3 [61], GADD45A [62], PIM1 [63], 1L1B [64],
CDKN1A [65], CCL2 [66], PMAIP1 (also known as NOXA)
[67], and RHOB [68] in module M1, and DHCR24 [69],
BNIP3 [70], and IGF1R [71] in module M2. For modules
M3, M4, and M5, although the corresponding GO_BP terms
were not directly related to cancer, we found PrCa-relevant
genes in these three modules, including BTG2 [72], FOS
(also known as c-Fos) [73], and CXCR4 [74] in module M3;
ARFGAP3 [75] and CDH1 [76] in module M4; and SMAD3
[77] andMXI1 [78] in module M5.
Moreover, we identified TF and microRNA regulators

enriched in the modules, and the results are shown in
Table 3. Some TFs could be seen as associated with sev-
eral modules. For example, modules M1 and M3 were
significantly enriched with the nuclear factor of activated
T-cell transcription factor gene, NFAT (pM1 = 3.59 × 10−7,
pM3 = 2.20 × 10−5). All the other three modules—M2, M4,
and M5—were significantly enriched with the gene speci-
ficity protein 1, SP1 (pM2 = 3.00 × 10−4, pM4 = 4.00 × 10−4,
pM5 = 1.20 × 10−3) (Figure 2). Both NFAT and SP1 were
known to be associated with PrCa [79,80].
To further search for evidence of the coordinated

regulation of each identified module, we explored the



Table 2 Overview of enrichment analyses of the five identified PrCa modules

Module ID cis-eQTL trans-eQTL SCNA Somatic mutation Prognostic genes

Description pcor
a Size Zsummary # genes pcis-eQTL

a # genes ptrans-eQTL
a # genes pSCNA

a # genes pmutation
a # genes pprog

a

M1 Regulation of apoptosis (red) 6.23 × 10−8 29 10.0 17 3.66 × 10−3 13 1.01 × 10−3 NA NA 3 1.99 × 10−4 NA NA

Apoptosis go (black)

M2 Regulation of apoptosis (green) 1.51 × 10−2 26 6.1 15 8.93 × 10−3 7 0.11 2 0.040 NA NA 2 0.081

M3 Response to stress (green) 4.18 × 10−11 37 8.3 19 0.017 14 3.16 × 10−3 NA NA 2 1.37 × 10−3 NA NA

M4 Cellular localization (turquoise) 3.27 × 10−9 70 5.7 35 7.30 × 10−3 9 0.85 6 0.024 NA NA 10 1.62 × 10−3

M5 Protein localization (brown) 8.04 × 10−10 24 5.2 13 0.034 5 0.29 2 0.039 2 6.84 × 10−4 NA NA
ap values were adjusted by FDR method.
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Figure 2 Visualization of the five identified PrCa-associated modules. To better describe the modules, we ranked nodes by their module
membership (kME) values, and the edge widths are proportional to their correlations. Legends are listed at the bottom for clarity.
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module eigengene in tumor and control samples for all
five modules. As shown in Figure 3, the eigengenes of
modules M1, M2, M3, and M4 were consistently over-
expressed in PrCa tumor samples compared to control
samples, while the eigengene of module M5 was under-
expressed. These observations implied that the module
genes might be co-regulated by the same or similar reg-
ulators, e.g., TFs (or their regulators) or miRNAs that
regulate the expression of the module genes. We there-
fore examined the correlation between the candidate
TFs (Table 3) with PrCa. Specifically, the TF NFAT fam-
ily genes, such as NFATC4 (pcor1 = 8.94 × 10−7, pcor2 =
7.66 × 10−4) and NFATC1 (pcor1 = 2.25 × 10−3, pcor2 =
3.61 × 10−2), were associated with PrCa. The activation
of partner gene TRPV6 was reported to be critical to
NFAT [79,81] in prostate cancer cells. Our specific
examination showed that TRPV6 was significantly over-
expressed in PrCa tumor samples (pcor1 = 6.49 × 10−6) in
the training dataset, but not in the testing dataset (pcor2 =
0.12). In addition, other enriched TFs showed promising
evidence (Table 3) for association with PrCa, such as SP1
(pcor1 = 4.60 × 10−7 and pcor2 = 7.50 × 10−5), REL (pcor1 =
8.08 × 10-10, pcor2 = 0.010), and JUN (pcor1 = 5.91 × 10-15,

pcor2 = 7.70 × 10−5) in module M1; RFX1 (pcor1 = 3.67 × 10-5,

pcor2 = 3.10 × 10−6), VSX1 (pcor1 = 1.55 × 10-4, pcor2 = 0.036),
and RORA (pcor1 = 1.29 × 10-3, pcor2 = 3.15 × 10−11) in
module M2; NF1 (pcor1 = 1.14 × 10-3, pcor2 = 6.01 × 10−5) in
module M4; and CDC5L (pcor1 = 0.012, pcor2 = 8.07 × 10−6)
in module M5.
In Table 3, we listed the enriched miRNAs; several of
them have been reported to be associated with PrCa,
such as hsa-miR-19a [82] with modules M1 and M3
(pM1 = 3.50 × 10−3, pM3 = 6.10 × 10−3), hsa-miR-15a [83]
with modules M4 and M5 (pM4 = 4.70 × 10−3, pM5 =
3.00 × 10−4), and hsa-miR-200b [84] with module M2
(pM2 = 9.00 × 10−3). For the other microRNAs, experimen-
tal validation is needed to investigate their roles in PrCa.
In order to validate the regulatory TFs/miRNAs de-

tected above, we retrieved RNASeqV2 and miRNASeq
data for prostate adenocarcinoma from the TCGA portal
to build the expression matrix. The R package edgeR
[85] was applied to obtain the differentially expressed
genes and miRNAs. The FDR method was applied to ad-
just p values for multiple testing. We found that the
identified key TF regulators, including NFAT family genes
(pNFATC4 = 7.85 × 10−12, pNFAT5 = 6.76 × 10−6, pNFATC2 =
6.79 × 10−6, pNFATC3 = 6.95 × 10−3), NFAT regulator TRPV6
(p = 1.40 × 10−6), and SP1 (p = 9.49 × 10−3), were highly dif-
ferentially expressed, as well as the other enriched TFs,
such as REL (p = 1.35 × 10−5), RORA (p = 1.54 × 10−13),
and NF1 (p = 6.24 × 10−4). Similar patterns were also ob-
served in the identified miRNAs, such as hsa-miR-19a (p =
1.72 × 10−12), hsa-miR-15a (p = 8.10 × 10−10), and hsa-miR-
200b (p = 6.39 × 10−3).

Discussion
High-throughput genetic and genomic studies have dem-
onstrated that GO terms are important prior knowledge



Table 3 Transcription factors (TFs) and microRNAs (miRNAs) identified by the analyses of PrCa-associated modules
(M1-M5)

No. Module genes TF symbol pa Module genes miRNA symbol p

Module M1 1 CEBPB CXCR4 CTGF PPP1R15A SELE
CCL4 EREG SERPINE1 FOS THBD

TATA 1.23 × 10−5 BTG2 GAP43 ADM SMAD7 hsa-miR-25 2.70 × 10−3

2 GADD45A CTGF HIF1A GADD45B
CCL4 GAP43 SGK1 ERRFI1 FOS
IL5 ADM

NFAT [79] 2.20 × 10−5 CEBPB GAP43 hsa-miR-191 4.00 × 10−3

3 CEBPB NLRP3 GAP43 EREG HMGB2
ERRFI1 IL5 DUSP1

UNKNOWN 5.19 × 10−5 HMGB2 FOS ADM SMAD7 hsa-miR-181a 6.10 × 10−3

4 ATM HIF1A FOS CCL20 EREG TCF1P 7.40 × 10−5 SGK1 BCL3 CTGF EREG hsa-miR-19a [82] 6.10 × 10−3

5 BCL3 CTGF CCL20 GADD45B ERN1 CREL 7.40 × 10−5 ERRFI1 GADD45A GAP43 hsa-miR-148a 1.19 × 10−2

Module M2 1 DOPEY1 CARTPT RIMS1 CDH1 TLK1
STEAP2 ANP32A TOMM22 CADM1
ADRB2 COG3 XPO7 COPG2 KDELR2
PDIA4

UNKNOWN 6.27 × 10−5 BET1 AP1G1 ARCN1 SEC62 hsa-miR-409-3p 3.50 × 10−2

2 TMEM48 SEC62 CADM1 SYNRG AP3M1
DOPEY1 COPZ1 RIMS1 ARFIP1 ANP32A
ARFGAP3 GSK3B COG3 TIMM17B
LMAN1 AP1G1 SNAPIN

SP1 [80] 4.00 × 10−4 RAB14 AP1G1 ATP2C1 hsa-miR-302b 3.80 × 10−3

3 SEC23IP ARFIP1 ATP2C1 TLK1 TOMM22
AP3B1 COG3 UHMK1 SYNRG MTX2

ELK1 1.50 × 10−3 RAB14 ARCN1 AP3M1 RERE hsa-miR-211 4.70 × 10−3

4 COPZ1 CARTPT ATP2C1 STEAP2 ANP32A
CADM1 UHMK1 AP1G1 SYNRG ARCN1
MTX2 RERE

NFAT 2.60 × 10−3 STRADB CADM1 ADRB2
SYNRG ARCN1 TLK1

hsa-miR-15a [83] 4.70 × 10−3

5 DOPEY1 CARTPT ERGIC1 AP1M2 CDH1
MIPEP SEC22A ANP32A CADM1 ADRB2
SHROOM2 AP3M1 RPAIN

E12 5.90 × 10−3 BET1 AP1G1 ARCN1 SEC62 hsa-miR-1 1.14 × 10−2

Module M3 1 SMAD3 KPNA4 KPNA3 LMAN2L REEP1
FLNA PEX14 OPTN TRPS1

SP1 1.20 × 10−3 SMAD3 MXI1 LRP1B KPNA4
TRPS1

hsa-miR-524 1.00 × 10−4

2 RTP4 KPNA3 OPTN STAT1 4.80 × 10−3 SMAD3 NLGN1 LRP1B KPNA4
LMAN2L

hsa-miR-15a 3.00 × 10−4

3 MXI1 KPNA3 TRPS1 CEBPA 4.80 × 10−3 NLGN1 KPNA4 REEP1 TRPS1 hsa-miR-493 3.00 × 10−4

4 SMAD3 BIN3 LMAN2L PITX2 4.80 × 10−3 MXI1 KPNA3 REEP1 hsa-miR-24 2.40 × 10−3

5 GLI3 MXI1 TRPS1 CDC5L 4.80 × 10−3 SMAD3 KPNA3 hsa-miR-302b 3.70 × 10−3

Module M4 1 CALR EIF5A UNC13B IGF1R TBX3 SOCS2
GLO1 BCL2L1 VEGFA PSEN1

SP1 3.00 × 10−4 BCL2L1 VEGFA DHCR24 hsa-miR-377 3.00 × 10−3

2 EIF5A BCL2L1 PPP1R13B SOCS2 UNKNOWN 6.00 × 10−4 PPP2CA SOCS2 hsa-miR-139 9.00 × 10−3

3 BCL2L1 VEGFA NME5 BIK RFX1 6.00 × 10−4 PPP2CA VEGFA CBX4 hsa-miR-200b [84] 9.00 × 10−3

4 PPP2CA CALR EIF5A PPP1R13B SFN VSX1 1.90 × 10−3 VEGFA TBX3 hsa-miR-140 9.00 × 10−3

5 PPP2CA EIF5A SOCS2 RORA 1.90 × 10−3 PPP2CA VEGFA PPP1R13B hsa-miR-29a 9.60 × 10−3

Module M5 1 TNF BTG1 GADD45A CCL2 IL6 GADD45B
PIM1 CDKN1A RELA RHOB IER3

NFAT 3.59 × 10−7 GADD45A RHOB SOCS3 hsa-miR-527 3.50 × 10−3

2 BCL3 TNFRSF9 TNFSF18 ERN1 GADD45B
IER3

RELA 3.59 × 10−7 BTG1 BCL3 RHOB SOCS3 hsa-miR-19a 3.50 × 10−3

3 BCL3 TNFRSF9 TNFSF18 ERN1 GADD45B
IER3

REL 3.59 × 10−7 NLRP3 RHOB hsa-miR-223 8.40 × 10−3

4 TNF BCL3 TNFRSF9 TNFSF18 ERN1 GADD45B NFKB 3.59 × 10−7 BTG1 PIM1 hsa-miR-183 2.14 × 10−2

5 TNFRSF9 GADD45A IL6 PPP1R15A GADD45B
CDKN1A PIM1 RELA SERPINB2

JUN 4.86 × 10−7 CUL1 SOCS3 hsa-miR-203 2.89 × 10−2

TFs and miRNAs in italics were those shared between modules and associated with prostate cancer.
ap values were adjusted by FDR method.
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in facilitating and interpreting of discoveries in complex
disease studies. In this study, we identified gene co-
expression modules within GO_BP terms for PrCa. We
found 118 GO_BP terms that were preserved between
training and testing datasets, some of them have been
widely studied and reported, such as “programmed cell



Figure 3 Expression of module eigengenes in five modules (M1-M5) across samples. Blue indicates tumor samples, while red indicates
control samples.
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death” [86], “cell-cell adhesion” [87], and “regulation of
apoptosis” [87]. We applied WGCNA to the PrCa expres-
sion data sets and identified five co-expression modules
which were preserved in the training and testing datasets
and enriched with known PrCa genes. In our further
evaluation of these modules, we identified several PrCa as-
sociated TFs and miRNAs as putative key regulators in
PrCa genesis and progression.
To evaluate the performance of our approach, we ap-

plied another popular co-expression network recon-
struction algorithm, K-means [88], to the GO_BP-based
expression matrices. For each GO_BP term, the number
of modules obtained from WGCNA was assigned to
K-means. Among the 548 constructed modules, only
12 modules showed significant association with PrCa
status (FDR < 0.05) and were preserved in the testing
dataset (Zsummary > 5). Further enrichment tests showed
that these 12 modules were poorly enriched in the col-
lected PrCa genes (Additional file 3: Table S3). Since the
module preservation calculation is computationally time-
consuming, we did not perform other algorithms for com-
parison. Although more comparison with other methods
may be needed, the WGCNA approach seems to be effect-
ive on detecting the risk modules for PrCa.
The results revealed that the co-expression modules

that belong to known cancer-related GO terms could
play regulatory roles in PrCa, such as the two apoptosis-
related candidate modules, M1 and M2. The results also
indicated that those modules associated with general
terms, e.g., “response to stress,” “cellular localization,”
and “protein localization,” may contribute to PrCa risk
in a synergistic way. As a core signaling pathway in can-
cers [89-92], apoptosis-blocking has proven to be very
important in cell development [58,93] during the stages
of progression from normal epithelial cells, to androgen-
dependent tumor cells, and further to malignant androgen-
independent ones. On the other hand, cells can be activated
in various ways in response to stress during cell develop-
ment, mainly to maintain the balance between cell death
and cell proliferation [94]. Therefore, cells that experience
too much stress, e.g., an over-expressed module M3, may
bring down the rate of cancer cell death and thus result in
the formation of cancer [95-97]. As indicated by previous
studies [98,99], we then considered that the alternation of
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expression for genes involved in cellular and protein locali-
zations play critical roles during cell-division and cancer
cell proliferation, such as through modules M4 and M5;
studying the localizations of these genes and their encoded
proteins can help us elucidate the molecular basis of cancer
genesis and progression [100,101].
As we found, different modules may share the same

genetic regulator, such as TF and miRNA. An intriguing
example is the TF, NFAT, enriched by both modules M1
and M3. NFAT is reported to promote the epithelial cell
proliferation of human primary PrCa [79,81] with store-
independent Ca2+ entry via the TRPV6 channel. Signifi-
cant expression changes of NFAT family genes and their
regulator TRPV6 were observed in PrCa in the datasets.
Another TF, SP1, was found to be PrCa-associated and
enriched in three modules: M2, M4, and M5. SP1 has
been considered an important target for PrCa therapy,
since it regulates important genes, like the androgen re-
ceptor gene (AR), TGF-β, c-Met and prostate specific
antigen (PSA), and others. These genes are involved in
cell cycle, proliferation, cell differentiation, and apoptosis
[80]. Other enriched TFs, STAT1 and NFKB [102], and
moderately enriched miRNAs, hsa-miR-15a [83] and
hsa-miR-19a [82] (Table 3), are also reported to be asso-
ciated with PrCa. Similar expression patterns were also
observed in another independent TCGA dataset. Taken
together, our findings suggested that these 5 modules
and their TF and microRNA regulators are likely critical
for the genesis and progression of PrCa. These modules
and regulators may be molecular targets for the future
development of drugs and new therapies.
In this study, we chose a relatively stringent signifi-

cance level to detect candidate modules. The identified
modules need to be enriched with both eQTL genes and
SCNA or mutated genes, with a corrected p <0.05. This
might exclude moderately associated modules (e.g., p <0.2),
such as “response to chemical stimulus (in turquoise in
Figure 1A4) (ptrans-eQTL = 0.086, pSCNA = 0.062),” “regula-
tion of apoptosis (turquoise) (pcis-eQTL = 0.075, pSCNA =
0.039),” and “apoptosis go (turquoise) (pcis-eQTL = 0.071,
pSCNA = 0.024)” (Additional file 1: Table S1).
In summary, our findings indicate that genes with

same GO functions can cluster into several co-expressed
modules to contribute to PrCa, as seen in modules M1
and M2. Modules across GO terms may act in the net-
works that are regulated by same genetic factors, such as
modules M1 and M3. These findings indicate the im-
portance of studying PrCa development at a systems
level rather than at a single-gene level, offering insights
into the underlying mechanisms of PrCa.

Conclusions
Using GO_BP terms to start, we conducted gene co-
expression analysis of expression profiles of PrCa. Our
results revealed five modules that were differentially
expressed between tumors and controls, preserved be-
tween independent expression datasets, and enriched
with putative cancer genes. The enrichment analyses fur-
ther identified TF and miRNA as key regulators in PrCa.
Our study provides important insights for the future in-
vestigation of molecular functionality related to PrCa eti-
ology and the development of PrCa diagnosis tools and
targeted therapy strategies.
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