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Abstract

Background: Genomic selection (GS) may improve selection response over conventional pedigree-based selection
if markers capture more detailed information than pedigrees in recently domesticated tree species and/or make it
more cost effective. Genomic prediction accuracies using 1748 trees and 6932 SNPs representative of as many
distinct gene loci were determined for growth and wood traits in white spruce, within and between environments
and breeding groups (BG), each with an effective size of Ne ≈ 20. Marker subsets were also tested.

Results: Model fits and/or cross-validation (CV) prediction accuracies for ridge regression (RR) and the least absolute
shrinkage and selection operator models approached those of pedigree-based models. With strong relatedness
between CV sets, prediction accuracies for RR within environment and BG were high for wood (r = 0.71–0.79) and
moderately high for growth (r = 0.52–0.69) traits, in line with trends in heritabilities. For both classes of traits,
these accuracies achieved between 83% and 92% of those obtained with phenotypes and pedigree information.
Prediction into untested environments remained moderately high for wood (r≥ 0.61) but dropped significantly
for growth (r≥ 0.24) traits, emphasizing the need to phenotype in all test environments and model genotype-by-
environment interactions for growth traits. Removing relatedness between CV sets sharply decreased prediction
accuracies for all traits and subpopulations, falling near zero between BGs with no known shared ancestry. For marker
subsets, similar patterns were observed but with lower prediction accuracies.

Conclusions: Given the need for high relatedness between CV sets to obtain good prediction accuracies, we
recommend to build GS models for prediction within the same breeding population only. Breeding groups could be
merged to build genomic prediction models as long as the total effective population size does not exceed 50
individuals in order to obtain high prediction accuracy such as that obtained in the present study. A number of
markers limited to a few hundred would not negatively impact prediction accuracies, but these could decrease
more rapidly over generations. The most promising short-term approach for genomic selection would likely be
the selection of superior individuals within large full-sib families vegetatively propagated to implement
multiclonal forestry.
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Background
Genomic selection GS, [1] has been proposed as an al-
ternative to conventional pedigree-based selection (PS),
where pedigree information is replaced with dense gen-
etic marker information to estimate the genetic worth of
each individual. In GS, thousands of markers are mod-
eled simultaneously and the marker effects are summed,
in order to compute the genomic (GEBV) equivalent of
estimated additive genetic (breeding) values (EBV). GS
allows small-effect loci to be captured, obviating signifi-
cance testing in association and linkage studies. PS has
been very effective at capturing the parent average com-
ponent of the EBV, but cannot capture variation in the
proportion of genome shared by pairs of relatives due to
Mendelian sampling in the absence of an individual’s
own phenotypic record or those of its descendants [2,3].
Conversely, GS can theoretically capture the Mendelian
sampling component in the absence of recorded pheno-
types because at an appropriate marker density, all loci
that explain some of the phenotypic variation are pre-
sumably tagged.
Theoretical [4-6] and empirical studies in breeding pop-

ulations of forest trees [7-9] and other long-generation
plant species [10,11] have shown that substantial genetic
gains can be achieved through GS. It came out that the
main advantage of GS over conventional breeding in long-
lived species was the possibility to reduce the generation
time through the selection based on marker effects before
phenotypes are available. Thus, any (possible) loss of EBV
precision could be compensated for by completing ad-
ditional (faster) cycles of recurrent selection. However, less
attention has been paid to the effect of relatedness bet-
ween cross-validation (CV) training and testing sets,
choice of model and/or the possibility of predicting in
new, unknown environments.
The main assumption of GS is that marker coverage is

sufficiently dense so that linkage disequilibrium (LD) be-
tween markers and causal loci will not be considerably
broken up following recombination/meiotic events. One
way to increase the chance that markers are in LD with
causal loci is to reduce the effective population size (Ne),
as it is easily controlled by the plant and tree breeders
[4]. It has been shown that the increase in prediction ac-
curacy with a reduction of Ne is striking at lower marker
densities, but minor at higher marker densities [4]. Thus,
one could expect that when working with a population of
small effective size, a small number of markers might be
sufficient to capture the LD and obtain high prediction ac-
curacies. However, reducing Ne also increases within-
population relatedness, and because markers, even at low
density coverage, can capture close relatedness between
individuals in the training (estimation) and testing (valid-
ation) sets, EBV predictions in CV testing sets can be
non-zero despite the absence of LD [12]. Indeed, empirical
studies removing relatedness between training and testing
sets at the level of the population (breed) [13], subpopula-
tion [14] or family [15-17] levels, including a previous
study on white spruce [18], found predictive abilities to be
drastically reduced or to fall to zero. Similarly, it was sug-
gested that predictive accuracy was driven by markers tra-
cing family relatedness in pine [19,20]. This stresses the
importance of designing training and testing sets appro-
priate to the conditions under which GS might be used
[17] so that correct conclusions can be drawn and, also, so
that marker densities that make it possible to capture not
only relatedness but also LD can be used.
Model choice may be important insofar as it must

align with the genetic architecture of the trait. Ridge re-
gression (RR) [21,22] is a model appropriate for traits
controlled by a large number of small-effect loci, such as
growth and wood traits e.g. [23-25], closely resembling
assumptions of the infinitesimal pedigree-based (poly-
genic) model. Methods such as BayesA/BayesB [1] or
least absolute shrinkage and selection operator (LASSO)
[26] are more relevant for traits controlled by few(er)
genes of large(r) effect and are supposedly better at zero-
ing out (shrink) loci of negligible effect [27]. The sim-
pler, more parsimonious RR is widely used in GS as it
often performs as well as more complex models e.g.
[9,28], even though RR is known to better capture re-
latedness [12], which complicates the interpretation of
its effectiveness.
So far, GS prediction accuracy has mostly been evalu-

ated within single environments. However, as reforestation
programs take place on a variety of sites, genotype-by-
environment (GE) effects can be substantial and should be
considered. It has been shown that a multivariate model,
where traits measured on different sites are treated as dif-
ferent correlated traits, could improve predictive ability
(correlation between observed and predicted phenotype)
for lines tested in one environment but not in the other,
thus capitalizing on correlated information between envi-
ronments [29]. However, this model was less powerful for
a line not tested in any of the two environments, with pre-
dictions drawn solely from information on relatives [29].
Similarly, univariate prediction accuracies dropped when
marker effects estimated in a given environment were
used to make predictions in different environments [7,14],
although a recent study on white spruce in eastern Canada
showed that prediction accuracy could only be slightly
reduced in such situations [18]. Thus, given species-
specific considerations and the potential variability of
the reforestation landscape, it appears important to de-
termine whether the estimated marker effects have ac-
curate predictive value in the different reforestation
environments.
The objectives of this study were 1) to evaluate how

type of model, relatedness between training and testing



Table 1 Number of sampled trees across test sites (S) and
breeding groups (BG)

Site* BG1 BG2 Total

S1 411 440 851

S2 430 467 897

Total 841 907 1,748

*S1: Asselin Township (S1-C); S2: St. Casimir (S2-D).
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sets, marker subsets, and across-environment predic-
tions affect model fit or prediction accuracy for wood
and growth traits, 2) to estimate the relative efficiency of
marker-based versus pedigree-based models, and 3) to
discuss implications for the use of GS in the context of
spruce improvement and its long breeding cycles.

Methods
Data
Phenotypes
Genetic material was sampled from a larger test series
(E952) designed to assess the genetic merit of first-
generation selections, which had been subdivided into
breeding groups delineated by their provenance or geo-
graphic region [30]. Crosses were made using a partial
diallel mating design within each of six distinct breeding
groups (BG) or sublines [31], which were designed to limit
future inbreeding to within group. Each parent was used
in crosses 1–3 times, giving rise to a mixture of full- and
half-sib families within breeding groups. Genetic tests
were established in 1997 from 2-year-old nursery-grown
seedlings near Asselin Township (S1-C, located in the bal-
sam fir–yellow birch ecological zone; cool weather), and
St. Casimir (S2-D, located in the maple–basswood eco-
logical zone; warm weather), Québec, Canada, in a ran-
domized complete block design. Trees were assigned to
row-plots of five trees/plot (2 m × 2 m spacing).
For the current study, the base population (n = 39) con-

sisted of 19 parents in a first breeding group (BG1) and 20
parents in a second (BG2) with 27 and 32 full-sib crosses
(59 total) made within each group, respectively. The sam-
pled trees were drawn from 16 blocks over the two sites
and 25–33 individuals were sampled per full-sib cross.
In 2012, wood cores were extracted from 17-year-old

trees with a diameter at breast height (DBH17) ≥ 5 cm
on both sites for determination of wood density (ADEN)
and microfibril angle (AMFA). AMFA was measured by
scanning the radial face of the last complete growth ring
closest to the bark with a D8 Discover X-ray diffractome-
ter (Bruker AXS, Madison, WI, USA). Diffraction profiles
of a few samples were first calibrated by comparison with
values obtained using compound light microscopy before
the complete population of samples was scanned. Density
was determined by scanning increment cores from pith to
bark along the radial face at a resolution of 25 μm in the
QTRS-01X Tree Ring Analyzer (Quintek Measurement
Systems Inc., Knoxville, TN, USA). A weighted mean
density trait was obtained by summing the product bet-
ween annual density measures and the ratio of respective
radial areas to total radial area. Before collecting wood
cores, trees were measured for age 17 height (HT17) and
diameter (DBH17) growth. Phenotypes outside ±3 pheno-
typic standard deviations following adjustment for fixed
block effects were considered as outliers and set to
missing. A total of 1,748 offspring, with at least one non-
missing record among the four traits, were retained after
cleaning the genotype data (see below); i.e. 851 and 897
from sites S1-C and S2-D, 841 and 907 from breeding
groups BG1 and BG2, respectively (Table 1).

Genotypes
Parents (n = 39) and progeny (n = 1,748) were genotyped
with the white spruce Infinium SNP array PgLM3 [32]
at a rate of about one SNP per target gene locus. SNP
loci were cleaned by removing those loci that failed; they
were monomorphic, displayed a call rate < 0.85, had a
minor allele frequency (MAF) < 0.005 (less than 10 het-
erozygous individuals), or a mismatch with both parental
genotypes. A total of 6,932 high quality SNPs with a
mean MAF = 0.20 were retained for GS analyses. These
SNPs were distributed among 6,918 distinct gene loci.
Individual genotypes with call rates < 0.80 were removed.
Missing genotypes (~ 2.7%) were imputed from the bi-
nomial distribution, with success probabilities given the
observed allele frequencies.
In order to test for population structure and control for

relatedness as an alternative to the numerator relationship
matrix (NRM) for association testing, an identity by state
(IBS), allele-sharing, realized genomic relationship matrix
(GRM, K) was constructed as:

K ¼ QQT=k ¼ M − Pð Þ M − Pð ÞT=k ð1Þ

where M is an n × m (individuals × loci) matrix of SNPs
coded as 0, 1 and 2 for genotypes 11, 12 and 22, respec-
tively, and P is an n × m matrix with columns containing
the frequency of the second allele pm (here the minor
allele) at locus m. Subtracting P from M gives Q, which
sets mean values of the allele effects (and thus BVs) to
zero. Finally, dividing QQT by k = tr (QQT)/m (i.e. the
mean of the diagonal) normalizes the GRM to a scale
analogous to elements in the A matrix [33]. To test for
population structure, the K matrix (= VDVT) was decom-
posed spectrally with the eigen() function in R v2.15.2
[34], where D is a diagonal matrix of eigenvalues and col-
umns of V are the corresponding eigenvectors of K. Spec-
tral decomposition of the K matrix made it possible to
estimate the variation captured by the first eigenvector,
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which helped determine the extent of the population
structure among the breeding groups.

Statistical models
Univariate polygenic model
The univariate, individual tree (“animal”) mixed model
for each trait (t) was:

yt ¼ Xtbt þ Ztat þ et ð2Þ
where yt is a vector of phenotypic measurements at age
17, b is a vector of fixed block effects, ai is the vector of
additive genetic (breeding) values (EBVs), e is the vector
of residual error effects, and X and Z are incidence
matrices linking phenotypic records (y) to estimates of
effects. Expectation of the model is E(a), E(e) = 0 and
E(y) =Xb, with additive genetic and error effects distri-
buted as aeN 0;Aσ2

a

� �
and eeN 0; ∼I σ2e

� �
where A is the

NRM describing the additive genetic relationships among
individuals and I is an identity matrix.

Bivariate polygenic model
To test the assumption that a trait measured in different
environments is affected by the genotype-by-environment
interaction (GEI), the univariate model can be extended to
its bivariate counterpart by stacking up the vectors for the
two traits as:

y1
y2

� �
¼ X1 0

0 X2

� �
b1
b2

� �
þ Z1 0

0 Z2

� �
a1
a2

� �
þ e1

e2

� �
ð3Þ

where the total vectors of random effects have covariance
structures var[(α1, α2)

T] =G =C⊗A and var[(e1, e2)
T] = R =

E⊗ I for the additive genetic and residual effects, respec-
tively, where ⊗ is the direct (kronecker) product and C and
E are matrices containing the additive genetic and residual
(co)variance parameters to be estimated as:

C ¼ σ2a1 σ2a12
σ2a21 σ2a2

� �
; and R ¼ σ2e1 0

0 σ2e2

� �
ð4Þ

which indicates that there is a genetic covariance across
sites (with information flowing through A) but that
the residual covariance across sites is zero because mea-
sures took place on different individuals in different
environments.
Model parameters were sampled from the posterior

distribution using the MCMCglmm v2.16 package [35]
in R v2.15.2 [34]. Each model was run for 260,000 itera-
tions with a burn-in of 60,000 and thinning interval of
200, resulting in 1,000 samples saved per chain. Fixed-
effect priors were drawn from the default normal distri-
bution with large (108) variance. Weak, proper priors
drawn from the inverse-Wishart distribution were set to
the phenotypic variance divided by the number of ran-
dom effects in the model with the degree of belief
parameter set to 1 and 2 for uni- and bivariate models,
respectively. Mixing and stationarity of the chains was
assessed with trace plots of samples from the posterior
distribution using the coda package [36]. Posterior distri-
butions of the parameters were summarized using the
mode and the highest probability density (HPD) interval
(95%) with the MCMCglmm and coda packages. Posterior
distributions of heritability (h2) and genetic correlations
between traits (r12) were calculated as h2 ¼ σ2a= σ2a þ σ2e

� �
and r12 ¼ σ2a12=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ2a1x σ

2
a2

p
respectively. Estimated breed-

ing values ((EBVs; âi) obtained from the bivariate analyses
were stored on the site where phenotypes were observed
and were subsequently used to determine prediction ac-
curacies with univariate SNP-based GEBVs (see next).
Following bivariate analyses, phenotypes were adjusted

for fixed block effects and scaled by within-site pheno-
typic standard deviation in order to account for (small)
differences in phenotypic variation for traits on different
sites. No differences in genetic means between the
breeding groups were detected. Phenotypes were then
combined across sites for use in marker regressions, as-
suming that traits on different sites were a single trait
with a genetic correlation equal to unity.

Marker regression models
In multiple-marker regression, many SNPs are simultan-
eously estimated as random effects in the individual tree
model:

ys ¼ 1μþ Za þ Zu þ e ð5Þ

where ys is a vector of adjusted and standardized
phenotypic measurements at age 17, 1 is a vector of
ones, μ is an intercept, ai is the vector of additive gen-
etic (breeding) values, uk is a vector of random
marker effects with the n x m incidence matrix con-
taining marker covariates coded as Zki = (0, 1, 2)
so that the sum of marker effects approximates
the individual (additive) genomic estimated breeding

value (GEBV) gi ¼
Xm

k¼1
zikuk ; and ei is the vector of

residual error effects. Additive genetic (polygenic)
and error effects were assumed to be distributed as in
eq. 2. The intercept was assigned a flat (uninfor-
mative) prior, whereas variance components were
assigned a scaled inverse- χ2 prior density with degrees
of freedom (df ) and scale (S) parameters set to
χ−2

�
σ2e S ¼ 2:5; df ¼ 3j Þ; χ−2 σ2

α S ¼ 1:25; df ¼ 3j Þ; χ−2 σ2ujS ¼ 3:7x 10−4; df ¼ 3
� ��

for the error, additive genetic and marker effects, re-
spectively, as recommended in [37].
Two types of marker regression were performed that dif-

fer in the prior distribution of SNP effects. In ridge regres-
sion (RR), all SNP effects are assumed to have a common
variance by assigning a Gaussian prior as uRR;ke N 0; σ2u

� �
.
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Under this assumption all marker coefficients are shrunk to
the same extent, which is appropriate for traits controlled
by many genes of small effect, similar to the assump-
tions of the infinitesimal pedigree-based (polygenic)
model. In contrast, the LASSO allows for marker-
specific shrinkage effects, making it appropriate for traits
thought to be under control of fewer genes of moderate to
large effect. In the LASSO, the distribution of SNP
effects are assigned a double exponential (DE) prior
as E uL;k λj Þ Πm

k¼1N uL;k0; σ2
eτ

2
k

� �
Πm

k¼1exp τ2kλ
2� �� �

p λð Þ;�
which

states that the marker-specific prior is Gaussian, with
marker-specific shrinkage of effects depending on τ2,
which is in turn controlled by the prior distribution of the
regularization parameter (p(λ)) [37]. The regularization
parameter (λ), which allows the degree of shrinkage to be
estimated from the data, was assigned a prior Beta distri-
bution as outlined in [37], with parameters shape = 0.52
and rate = 1 × 10−4 yielding λ = 57.5 for our data. Large
values of λ produce more informative (sharper) priors on
marker effects [26], which will shrink (truly) small effects
towards zero to a greater degree than in RR. Pedigree-
based (A) best linear unbiased prediction (BLUP), ridge
regression (RR) BLUP, and LASSO (L) regression were per-
formed using the BLR package [38] in R v2.15.2 [34].
Single-marker regression (SMR; association testing)

was also conducted to test the hypothesis that individual
marker loci were in partial or complete linkage disequi-
librium with a causal gene and to delineate subsets of
markers for further marker regressions. Marker effects
were treated as fixed effects (unlike in eq. 5) in SMR and
relatedness structure was controlled using the numerator
(A) or genomic relationship (K) matrix using the EMMAX
algorithm [39] in the rrBLUP (v4.1) package [40] in R
(v2.15.2) [34]. Variance components are estimated only
once in a base model without SNPs using EMMAX and,
subsequently, each SNP is added to the model in turn,
equations are solved, and a F-test is constructed for each
SNP to test the hypothesis that the SNP effect uk ≠ 0.
Traits were modeled using 1) all individuals with all

SNPs and/or the pedigree and 2) subpopulations of indi-
viduals with all or subsets of SNPs and/or the pedigree in
cross-validation (CV). SNP subsets for CV were retained
for reevaluation using RR in five different ways. First, the
SNPs with the largest absolute effects (P < 0.05) using
SMR were retained, controlling for relatedness with A or
K. Next, the 600 SNPs with largest absolute effects were
retained from the full model (all individuals and SNPs)
using RR and pedigree information (FM-RRA), which ap-
proximated the maximum number of significant SNPs
from SMR. SNP effects were estimated in a subpopulation
(see below) and subsequently re-evaluated using RR in the
same (e.g. BG1) or complementary subpopulation (e.g.
BG1→ BG2). In the former case, SNP effects treated as
fixed effects in SMR may be biased when estimated and
validated in the same non-independent data [41,42]. Fi-
nally, as controls, two sets of 600 SNPs were built by
selecting SNPs randomly or by selecting those with the
highest observed minor allele frequencies. For each of
these controls, the selected SNPs remained the same
across traits and subpopulations.
For cross-validation (CV) analyses, individuals (CV1)

or full-sib families (CV2) were assigned to 10 folds ran-
domly. In each of 10 rounds of CV, 9 folds acted as the
training set in which SNP effects were estimated in
order to predict the genetic values of individuals in the
remaining fold, whose phenotypes had been withheld.
For models tested across subpopulations (BG1→ BG2 or
S1→ S2), that is training the models in one subpopulation
and testing them in the other one, each CV round used 9
of 10 folds as the training set from subpopulation 1, with a
different fold used as the testing set for each round of CV
from subpopulation 2. Prediction accuracies were calcu-
lated as the correlation (cor (ĝ, â)) between the sum of CV
SNP estimates (ĝ) or GEBVs and the additive genetic
(breeding) value (â) or EBVs estimated using the bivariate,
pedigree-based model and all phenotypic data, which was
considered the best estimate of the “true” breeding value.
Subsets of individuals with mean training and testing

set sizes of 787 and 87 individuals, respectively, were
used to perform marker regressions and test prediction
accuracy four different ways:

� BG1 (or BG2) – within-breeding group CV
simulates a situation where related individuals have
already been phenotyped on both (or similar) sites,
as BG members were distributed across sites. GEI
could lower prediction accuracy if present.

� BG1→ BG2 – between-breeding group CV removes
all known relatedness between CV sets, establishes
baseline accuracy due to (short-range) LD and thus
tests if the model is transferable beyond the study
material. As members of both BGs are present in
both environments, GEI could have an impact.

� S1 (or S2) – within-site CV simulates a situation
where models are trained by pooling individuals
across BGs, with no known relatedness between BG.
Evaluation occurs within site, thus GEI cannot affect
the results.

� S1→ S2 – between-site CV simulates a situation
where no phenotypes have been observed on related
individuals in the second environment, testing the
assumption that the traits on different sites have a
genetic correlation of one.

Results
Univariate heritabilities (not shown) were similar to their
bivariate counterparts (Table 2), suggesting homogeneous
phenotypic variance across sites. Although the genetic



Table 2 Bivariate heritabilities (h2), genetic correlations (r12), and highest probability density interval (95%) for wood
quality and growth traits considered as correlated traits when measured on different sites

Site* ADEN† AMFA HT17 DBH17

S1 h2 0.33 (0.251, 0.585) 0.30 (0.169, 0.516) 0.39 (0.229, 0.640) 0.39 (0.172, 0.542)

S2 h2 0.34 (0.181, 0.494) 0.32 (0.183, 0.510) 0.57 (0.378, 0.816) 0.32 (0.185, 0.561)

S1//S2 r12 0.83 (0.548, 0.919) 0.83 (0.570, 0.948) 0.73 (0.432, 0.879) 0.73(0.432, 0.879)

*S1: Asselin Township (S1-C); S2: St. Casimir (S2-D).
†ADEN: average wood density; AMFA: average microfibril angle; HT17: 17-year height; DBH17: 17-year diameter at breast height.
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correlation (r12) was not equal to 1 across sites (Table 2),
it was moderately high (for growth traits; r12 = 0.73), to
high (for wood quality traits; r12 = 0.83). This implied that,
biologically, the GEI was not strong enough to warrant
the more complex (bivariate) model for wood traits (less
so for growth traits) and that data might be pooled across
sites and considered as a single trait.
Spectral decomposition of the Kmatrix revealed that < 5%

of the variation was captured by the first eigenvector. This
indicated that population structure was not important
among the breeding groups and that A or K was sufficient
to capture the relatedness among individuals. The lack of
phenotypic differences observed between the two breeding
groups, BG1 and BG2, supported this lack of structure.
The K matrix captured a low level of relatedness between
the two BGs (Figure 1), implying that some pedigree er-
rors or cryptic relatedness between groups was present.
The elements in K underestimated the corresponding
non-zero, expected relationship values in A, with median
(first and third quartiles: range) values for half- and full-
sibs of 0.20 (0.15, 0.25; −0.12 – 0.90) and 0.44 (0.38,
0.49; −0.09 – 1.05), respectively.
Figure 1 The realized genomic relationship (K) matrix. K matrix
sorted by breeding group (BG) and full-sib family, with BG1 in the
upper left and BG2 in the lower right.
Full model with all SNPs
Modeling all individuals (n = 1,748) and SNPs (m = 6,932)
simultaneously with ridge regression (FM-RR), which as-
sumes a common variance across SNPs, only improved
model fit (lower DIC) and reduced the error variance for
ADEN, compared with the pedigree-based model (FM-A)
(Table 3). For the other three traits (AMFA, HT17,
DBH17), FM-RR resulted in poorer model fits and inflated
error variance, signifying either that the pedigree con-
tained valuable information not captured by the mar-
kers (despite some potential pedigree errors) and/or that
markers were overfitting to spurious effects in the data.
Comparing models with both pedigree and marker (FM-
RRA) and pedigree-only (FM-A) information confirmed
that the pedigree accounted for a large proportion of the
variance, even with markers present in the model. How-
ever, both sources of information (FM-RRA) resulted in
better fits and lower error variances compared with both
the FM-A and the FM-RR models (Table 3), implying that
markers were partially capturing non-redundant informa-
tion to the pedigree.
Allowing marker-specific shrinkage with the LASSO

(FM-L and FM-LA) resulted in only very minor improve-
ment in model fit and reduced error variance over the
corresponding models using a common SNP variance
(FM-RR and FM-RRA) for all traits (Table 3). The variance
of the λ parameter increased from the starting values, indi-
cating a tendency to shrink marker effects more severely
towards zero (Table 3). Again, pedigree information proved
important in the FM-LA model, allowing λ to further in-
crease, providing even sharper shrinkage. Nevertheless,
correlations between SNP effect estimates in complemen-
tary models (FM-L vs FM-RR, FM-LA vs FM-RRA) were
very high (r ≥ 0.98, data not shown) and, given the limited
improvement in LASSO fits, this model was not further
considered.

Cross-validation (CV1: individual assignment) with
all SNPs
For CV1, prediction accuracies were high for pedigree-
only (CV1-A) models because the CV sets were highly
related. Marker-only models (CV1-RR) captured a high
proportion (0.87 ≤ 0.92) of the CV1-A prediction accu-
racy for all traits, when modeled within breeding groups



Table 3 Full-model posterior means of variance components using all SNPs (m = 6,932), all individuals (n = 1,748), and
deviance information criterion (DIC) for wood quality and growth traits

Trait† Model* σ2
a σ2

g λ2 σ2
e DIC

ADEN FM-A 0.33 – – 0.67 4558

FM-RR – 1.7 × 10−4 – 0.65 4493

FM-RRA 0.19 1.4 × 10−4 – 0.58 4433

FM-L – – 88 0.65 4491

FM-LA 0.18 – 90 0.57 4431

AMFA FM-A 0.32 – – 0.72 4660

FM-RR – 1.1 × 10−4 – 0.77 4679

FM-RRA 0.21 7.5 × 10−5 – 0.69 4634

FM-L – – 115 0.77 4275

FM-LA 0.22 – 144 0.69 4633

HT17 FM-A 0.47 – – 0.62 4608

FM-RR – 1.2 × 10−4 – 0.77 4740

FM-RRA 0.37 5.4 × 10−5 – 0.61 4602

FM-L – – 115 0.77 4739

FM-LA 0.41 – 160 0.59 4577

DBH17 FM-A 0.29 – – 0.76 4786

FM-RR – 9.1 × 10−5 – 0.83 4824

FM-RRA 0.21 6.1 × 10−5 – 0.74 4769

FM-L – – 134 0.83 4823

FM-LA 0.23 – 158 0.72 4759

MSE‡ 0.093 2.1 × 10−5 16.9 0.047
†ADEN: average wood density; AMFA: average microfibril angle; HT17: 17-year height; DBH17: 17-year diameter at breast height.
*FM-A: Full model - pedigree-based; FM-RR: Full model - ridge regression with marker data; FM-RRA: Full model - combined ridge regression with markers and
pedigree data; FM-L: full model - the least absolute shrinkage and selection operator; FM-LA: full model – combined least absolute shrinkage and selection
operator, and pedigree information.
‡Mean standard error over models.
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(BG1) or environment (S1) (Table 4). Modeling both
pedigree and marker effects (CV1-RRA) led to pre-
diction accuracies that approached but did not reach
those obtained using the pedigree-only model, meaning
that the previously seen better model fits for FM-RRA
(Table 3) did not necessarily translate into better pre-
dictability in CV. This might have been due to the over-
fitting of marker effects and/or high multicollinearity
between the marker and pedigree components. The
same pattern was observed within BG2 and S2 (data not
shown). Prediction accuracies were reduced somewhat
for wood traits (ADEN, AMFA) across models when the
training and testing sets were in different environments
(S1→ S2) compared to evaluation within the same en-
vironment (S1, Table 4). However, this reduction in ac-
curacy was much more pronounced for growth traits
(HT17, DBH17), especially for DBH17. Prediction accu-
racies were near zero for all traits across models when
training and testing sets were in different, genetically un-
related, breeding groups (BG1→ BG2, Table 4), as sus-
pected from previous results with half-sib families [18].
Cross-validation (CV2: family assignment) with all SNPs
Overall in cross-validation using family assignment
(CV2) where relatedness between CV sets did not ex-
ceed those of half-sibs, prediction accuracies decreased
sharply (e.g. 0.12 – 0.41 for BG1 and S1 with RR) for all
models, traits and subpopulations (Table 5), compared
with those in CV1, i.e. cross-validation where indi-
viduals were assigned to the various sets (Table 4).
However, the same trend was also observed for the
pedigree-based prediction (CV2-A) and as for CV1, the
models based on markers only (CV2-RR) captured bet-
ween 75% and 104% of the CV2-A prediction accuracy
(Table 5). As CV1 and CV2 evaluate exactly the same
set of individuals for BG1 and S1, differences in predic-
tion accuracy can only be due to lower relatedness bet-
ween CV sets, not to different LD patterns across
different sets of individuals. That is, if markers were in
LD with causal loci, prediction accuracies for marker-
based models (CV2-RR) should be superior to those of
pedigree-based models (CV2-A), which was not usually
observed. Part of the lower prediction accuracy in CV2-



Table 4 Prediction accuracies for wood quality and growth traits estimated with cross-validation sets built with individuals
within full-sib families using pedigree (CV1-A), ridge regression (CV1-RR) or both (CV1-RRA) sources of information with all
SNPs (m = 6,932) and various subpopulations of individuals

Cross-validation

Trait† Subpopulation* Pedigree (CV1-A) Markers (CV1-RR) Markers and pedigree (CV1-RRA) Relative efficiency markers/pedigree (%)

ADEN BG1 0.86 0.79 0.83 92

BG1→ BG2 −0.02 0.06 0.22 –

S1 0.83 0.75 0.80 90

S1→ S2 0.72 0.66 0.71 92

AMFA BG1 0.84 0.77 0.82 92

BG1→ BG2 0.03 0.03 0.03 –

S1 0.79 0.71 0.77 90

S1→ S2 0.70 0.61 0.67 87

HT17 BG1 0.67 0.58 0.65 87

BG1→ BG2 0.02 −0.10 −0.08 –

S1 0.76 0.68 0.74 89

S1→ S2 0.40 0.34 0.40 85

DBH17 BG1 0.60 0.52 0.58 87

BG1→ BG2 −0.01 −0.16 −0.14 –

S1 0.78 0.69 0.76 88

S1→ S2 0.29 0.24 0.30 83

MSE‡ 0.026 0.024 0.021 –
†ADEN: average wood density; AMFA: average microfibril angle; HT17: 17-year height; DBH17: 17-year diameter at breast height.
*BG1: both training and testing sets from breeding group 1; BG1→ BG2: training sets from breeding group 1 and testing sets from breeding group 2; S1: both
training and testing sets from site 1; S1→ S2: training sets from site 1 and testing sets from site 2.
‡Mean standard error over cross-validation iterations and subpopulations.
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RR was captured with CV2-RRA, i.e. when combining
pedigree and marker information, meaning that even
the weaker pedigree structure (i.e. half-sibs; some fami-
lies across the training and testing sets sharing one of
the parents but not both) provided useful information
not captured when using markers only. Furthermore,
this lower relatedness between training and testing sets
in CV2 resulted in three times greater variability in pre-
diction accuracy among CV folds (MSE, Table 5) than in
CV1. Similar to CV1, CV2 prediction accuracies were
higher within the same environment (S1) than when
predicting between environments (S1→ S2), where pre-
diction accuracies for growth traits were more reduced
than those for wood traits (Table 5). As suspected, by
removing all known relatedness between training and
testing sets (BG1→ BG2), prediction accuracies for RR
models fell to around zero for all traits. The fact that
the expected prediction accuracy between BGs (BG1→
BG2) for the pedigree-only model (CV2-A) was close
to zero indicates that sampling error might have con-
tributed to small, non-zero prediction accuracies for
models including markers, such as for wood density
(Table 5).
Cross-validation with SNP subsets
For SNP subsets that were identified and re-evaluated
within the same population (BG1 or S1), all model-based
methods used to select subsets performed relatively well
(Table 6). SNP subsets selected for their largest absolute
effects had accuracies slightly superior to those of ran-
domly selected (CVSSRAN) or highest minor allele fre-
quency (CVSSHMAF) subsets for growth traits, but
differences for wood traits were less clear. Prediction ac-
curacies were slightly higher when SNP effects had been
treated as fixed effects (CVSSA or CVSSK) and then re-
evaluated in the same population (BG1 or S1). This trend
suggests that, in some cases, completely eliminating many
markers of supposedly zero effect did not hamper much
the estimation of the fewer “true” marker effects, as was
previously hypothesized from results obtained using the
LASSO models. However, in many instances, the accuracy
estimates were slightly lower than those obtained with the
full set of markers. This might be due to the removal of
some markers that were in LD with QTLs associated with
the traits of interest.
When SNP subsets selected in BG1 were re-evaluated in

a complementary subpopulation (BG2) with no known



Table 5 Prediction accuracies for wood quality and growth traits estimated with cross-validation sets built with full-sib
families, using pedigree (CV2-A), ridge regression (CV2-RR) or both (CV2-RRA) sources of information with all SNPs
(m = 6,932) and various subpopulations of individuals

Cross-validation

Trait† Subpopulation* Pedigree (CV2-A) Markers (CV2-RR) Markers and pedigree (CV2-RRA) Relative efficiency markers/pedigree (%)

ADEN BG1 0.57 0.59 0.62 104

BG1→ BG2 0.10 0.10 0.19 –

S1 0.71 0.63 0.69 89

S1→ S2 0.59 0.53 0.57 90

AMFA BG1 0.55 0.36 0.47 65

BG1→ BG2 0.13 0.04 0.05 –

S1 0.62 0.52 0.61 84

S1→ S2 0.52 0.41 0.50 79

HT17 BG1 0.44 0.33 0.42 75

BG1→ BG2 −0.01 −0.01 −0.01 –

S1 0.66 0.55 0.64 83

S1→ S2 0.33 0.22 0.29 67

DBH17 BG1 0.30 0.29 0.34 97

BG1→ BG2 0.13 −0.06 −0.07 –

S1 0.53 0.48 0.53 91

S1→ S2 0.23 0.15 0.20 65

MSE‡ 0.081 0.075 0.074 –
†ADEN: average wood density; AMFA: average microfibril angle; HT17: 17-year height; DBH17: 17-year diameter at breast height.
*BG1: both training and testing sets from breeding group 1; BG1→ BG2: training sets from breeding group 1 and testing sets from breeding group 2; S1: both
training and testing sets from site 1; S1→ S2: training sets from site 1 and testing sets from site 2.
‡Mean standard error over cross-validation iterations and subpopulations.
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relatedness to BG1, prediction accuracies fell to near zero
for all subsets and traits (BG1→ BG2, Table 6), similarly
to what was observed with the full set of markers (Table 4).
For models built on site S1 and evaluated in S2 (S1→ S2),
prediction accuracies were moderate for wood traits
(r > 0.44), but low for growth traits (r > 0.17, Table 6);
again, they were lower than those obtained with all the
markers (Table 4).

Discussion
Accuracy of GS models under various scenarios
It is clear from this and other studies on forest tree spe-
cies e.g. [18,19], that current moderately dense SNP
panels can be used to capture additive genetic effects
remarkably well under certain conditions. GS model
accuracy is known to be affected strongly by Ne and
marker density. For instance, it was shown for a white
spruce training set of about the same size as the one
used in the present study, and with similar marker den-
sity, that prediction accuracy of less than 0.40 could be
achieved when the effective population size was over
600 [18]. However, although the number of SNPs in [18]
and in this study was about the same, the number of dis-
tinct gene loci involved in the present study was more
than twofold. This higher genome coverage might have
also contributed slightly to improve accuracy estimates
as expected from simulation studies for similar popula-
tion sizes [4]. However, such improvement in accuracy
appears to be modest at best, as indicated by accuracies
obtained with subsets of random markers or with those
with the highest MAF, which were almost the same as
those estimated using all markers (Tables 4 and 6).
The prediction accuracy is also affected, to a lesser ex-

tent, by trait heritability and the training set size, once a
minimum of n ≈ 1,000 – 2,000 individuals has been
reached [4]. Given the number of SNPs (m = 6,932) and
distinct loci (l = 6,918) used in this study and a white
spruce genome size of ~ 2,100 cM [43], one would ex-
pect ~ 3.3 SNPs/cM if marker coverage was evenly distri-
buted across the genome. At 2 – 3 SNPs/cM, Ne = 30 – 60
and a training set with n = 1,000 individuals, one should
theoretically achieve GS model accuracies of 0.55 – 0.70
[4]. This was seen in this study (and surpassed in some
cases) for predictions within breeding groups (Ne ≈ 20) or
for the same environment when combining both breeding
groups (Ne ≈ 40) using slightly smaller (mean n = 787)
training sets. However, as for pedigree-based models, pre-
diction accuracy of marker-based models decreased and
fell near zero when close (CV2, Table 5) and all known re-
latedness (BG1→ BG2, Tables 4 and 5) was removed



Table 6 Prediction accuracies for wood quality and growth traits estimated with cross-validation sets built with individuals
within full-sib families for wood quality and growth traits using ridge regression (RR) for subsets (SS) of SNPs from
single-marker regression controlling for A or K, the largest absolute effects from the full model (RRA), the highest minor
allele frequencies (HMAF), and a random selection (RAN) for various subpopulations of individuals

Accuracies obtained in cross-validation with various marker subsets

Trait† Number of
markers (m) and
subpopulation*

Association tests
using pedigree

informationⱡ (CVSSA)

Association tests using
genotypic information₸

(CVSSK)

Markers with largest
absolute effects

(CVSSRRA)

Markers chosen
randomly
(CVSSRAN)

Markers with highest
minor allele frequencies

(CVSSHMAF)

ADEN m 640 404 600 600 600

BG1 0.76 0.78 0.74 0.78 0.78

BG1→ BG2 0.20 0.06 0.03 0.06 0.16

S1 0.74 0.77 0.74 0.71 0.73

S1→ S2 0.55 0.51 0.52 0.58 0.61

AMFA m 406 359 600 600 600

BG1 0.74 0.78 0.72 0.75 0.74

BG1→ BG2 0.03 0.04 0.01 −0.12 0.11

S1 0.73 0.76 0.69 0.65 0.66

S1→ S2 0.51 0.54 0.44 0.55 0.52

HT17 m 476 426 600 600 600

BG1 0.64 0.70 0.69 0.56 0.57

BG1→ BG2 −0.03 −0.04 −0.07 0.00 −0.19

S1 0.72 0.77 0.74 0.63 0.64

S1→ S2 0.28 0.29 0.29 0.32 0.29

DBH17 m 482 403 600 600 600

BG1 0.56 0.61 0.58 0.49 0.51

BG1→ BG2 −0.12 −0.13 −0.25 −0.05 −0.23

S1 0.71 0.77 0.70 0.63 0.65

S1→ S2 0.17 0.18 0.18 0.22 0.20

MSE‡ 0.025 0.024 0.023 0.024 0.023
ⱡSubset of significant SNPs (P < 0.05) identified after an association study using relatedness estimated with pedigree information.
₸Subset of significant SNPs (P < 0.05) identified after an association study using the realized genomic relationship matrix.
†ADEN: average wood density; AMFA: average microfibril angle; HT17: 17-year height; DBH17: 17-year diameter at breast height.
*BG1: both training and testing sets from breeding group 1; BG1→ BG2: training sets from breeding group 1 and testing sets from breeding group 2; S1: both
training and testing sets from site 1; S1→ S2: training sets from site 1 and testing sets from site 2.
‡Mean standard error over cross-validation iterations and subpopulations.
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between the training and testing sets, respectively, simi-
larly to what was observed in another GS study on a white
spruce population of larger effective size [18]. This sug-
gests that short-range LD, i.e. that between SNPs and
causal loci still persisting in populations after several gene-
rations of random mating, might be more limited than ex-
pected, or that only a few of the SNPs used were in LD
with causal loci (QTLs). Such an observation is reinforced
by the trends in accuracy values seen when using subsets
of random markers or those with the highest MAF, where
accuracies did not decrease much compared with those
estimated using all markers (Tables 4 and 6).
Low prediction accuracy between breeding groups in

our study was not due to lack of modeling a group factor,
as negligible phenotypic and genotypic differences were
observed among breeding groups. This is consistent with
the very weak genetic differentiation seen among white
spruce populations in Québec [44,45], making the 39 base
parents in our study members of one large historical
population. These base parents are still mostly unrelated,
as spruce pedigrees in Québec have only been docu-
mented for two generations. In cattle, 50 K SNPs were
deemed adequate to capture causal loci within breed,
whereas 300 K SNPs were recommended for consistent
cross-breed prediction accuracies, based on simulations
and historical knowledge of Ne [46]. As expected, empir-
ical cross-breed predictions in cattle fell to zero using
50 K SNPs, although combining breeds into a single train-
ing set resulted in prediction accuracies comparable to
within-breed predictions [13]. At first glance, this appears
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analogous to predictions across and within breeding
groups obtained in the present study, especially given that
when we simultaneously considered both breeding groups
when training the genomic prediction models, accuracies
did not decrease much compared with those obtained by
training models specific to each breeding group. When
combining both breeding groups, a breeding group struc-
ture was introduced, although short-range LD should not
differ between these breeding groups as they are believed
to belong to the same ancestral population [18]. Any mi-
nor differences between breeding groups would have been
absorbed by the marker effects thus biasing them, leading
to prediction accuracies that may not be superior to mo-
deling known subpopulation memberships [14].

Reducing marker density and impact on prediction
accuracies
Removing uninformative loci from the models appeared
to have a positive, although not statistically significant
effect on cross-validation for some traits within breeding
group (BG1) or site (S1). Compared with the prediction
accuracies obtained with all markers, a slight increase was
indeed seen when using markers found significantly asso-
ciated with traits when using either pedigree information
(CVSSA) or realized genomic relationships (CVSSK),
or markers with the largest absolute effects (CVSSRRA)
(Table 6). This increase in accuracy can certainly be
accounted for, at least in part, by the fact that these sub-
sets of significant markers were not identified in an in-
dependent dataset [41,42], and the accuracy estimates
obtained could consequently be slightly biased upwards,
thus accounting for the slight increase observed in accu-
racy. Such an increase in prediction accuracy was not ob-
served for subsets of random markers, nor for those of
highest minor allele frequency.
In a recent study on wood and growth traits in loblolly

pine full-sib families, no increase in prediction accuracy
was reported for various subsets of markers selected
after association studies or randomly selected markers
up to a maximum number of about 3,400 markers [20].
However, in another loblolly pine population that was
clonally replicated, two different patterns were observed
with regard to the influence of marker density on pre-
dictive ability [9]. For some traits such as growth, develop-
ment and wood traits, the maximum value was reached
with a few hundred markers and this value did not vary
with a larger number of markers (total of 4,825 SNPs),
whereas for traits such as wood density and disease-
resistance-related traits, a small number of markers as-
sociated with these traits (100 to 500 markers) made it
possible to reach the maximum value, which decreased
with the addition of more markers. For wood density,
the predictive ability obtained using subsets of several
hundred markers was somewhat higher than, but not
different from, subsets of randomly selected markers of
similar size, as observed in the present study on white
spruce. In a cattle population, genotypes from a 54 K
SNP array made it possible to increase, on average, the
prediction accuracies for daughter yield deviations by
about 0.22 over those obtained with the pedigree infor-
mation only, which represents an increase of about 60%
[27]. Although removing uninformative SNPs did not
reduce predictive ability estimates obtained with a 54 K
SNP array, the high density arrays used allowed up to
tens of thousands of SNPs to remain in the final model.
These various results suggest that higher prediction accur-
acy might also be obtained in trees with subsets of
markers significantly associated with the traits, but likely
not until much higher density arrays than the current ones
are available. The BayesCπ model [47] could be useful for
single-step subset selection at higher marker densities be-
cause it appears to align more closely with the distribution
of marker effects for wood and growth traits. BayesCπ
simultaneously performs variable selection and shrinkage
of SNP effects remaining in the model with a common
variance, although empirical studies in plants have not
proven it superior to the simpler RR model [9,28].
Capture of relatedness and long-range and short-range
linkage disequilibrium
The observation that GS prediction accuracies sharply de-
creased when training and validation individuals were
completely unrelated (BG1→ BG2) may be due to va-
rious causes. The first could be related to the fact that the
long-range LD (co-segregating linkage blocks) generated
through controlled crosses among the closely related indi-
viduals making up the training set may not be present in a
non-related testing set. Linkage studies have shown that
marker effects are generally limited to the family (genetic
background) in which they were estimated [48] because
the full variation of the causal loci in the population is not
sampled. Linkage has nevertheless been found to be useful
to increase genetic gain, even when no major effects were
present, by increasing the precision of the relationship
matrix [49]. In GS, where estimation occurs over the
entire population, co-segregation of linkage blocks (long-
range LD) was found to contribute significantly to pre-
diction accuracy across full-sib families in maize [50]. In
white spruce breeding groups such as those used in the
present study, the contribution of long-range LD is also
likely important, but it would decay more rapidly in subse-
quent generations than short-range LD [50]. However,
combining full-sib families of several breeding groups
could make it possible to develop GS models with high
accuracies, as it was observed in the present study when
individuals were pooled across breeding groups (scenarios
S1 or S1→ S2). The persistency of that accuracy will
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depend on how quickly those linkage blocks decay over
generations.
A complementary explanation for the loss of predic-

tion accuracy among unrelated individuals could be that
markers were largely capturing existing relationships
between CV training and testing sets [15,16]. It has been
reported that genomic prediction accuracies can increase
with the number of markers even in the absence of LD
because markers capture additive relationships, but these
accuracies will only be superior to the pedigree-based
ones if markers are in LD with causal loci [12]. In line
with [12], we observed in this study that the marker-
based (RR) models implicating all markers or subsets of
markers did not perform in most cases as well as the
pedigree-based models using all the available trees or in
most cases of cross-validation. Also in agreement with
[12], prediction accuracies generally increased with the
marker density used (m = 600 versus m = 6,932), but only
slightly (Table 4: all markers versus Table 6: subsets of ran-
dom markers). These observations imply that larger family
sizes (n ≥ 100 individuals per family) might be needed in
order to demonstrate the superiority of marker- over
pedigree-based prediction accuracies [51] or that the con-
tribution of LD to prediction accuracy was limited. For the
former, more family members would allow SNP effects to
be estimated more accurately, which would increase pre-
diction accuracy [50]. The latter would mean that predic-
tion accuracies are specific to a group of closely related
individuals and may be overestimated because the larger
contributions from relatedness and smaller contributions
from short-range and long-range LD cannot be disen-
tangled. This observation would argue in favor of GS
models developed and implemented within the same
population (or within a group of pooled populations, as
discussed above) at least for the time being and conside-
ring the financial resources generally available to breeders.
One way to think about the level of LD in a population

is to consider the relationship matrix estimated with the
markers, which can be partitioned into 1) the expected
(known) relationships obtained from pedigree informa-
tion, 2) the deviations around these relationship values
due to Mendelian sampling, i.e. those due to the fact
that each offspring receives a different set of genes from
its parents and that each offspring is different from its
expected degree of kinship, and 3) the sampling error
[52]. At high marker densities, the Mendelian sam-
pling component can vary, for example, by as much as
aij = 0.4 − 0.6 [53,54] relative to the pedigree-based rela-
tionship coefficient (expected degree of kinship) of aij = 0.5
for full-sibs, and can be used to approximate the level of
LD in a population [52]. Thus, to surpass pedigree-based
prediction accuracies, it is clear that the precision of
relatedness in the numerator relationship matrix (based on
expected degree of kinship) needs to be increased. At
high marker densities, genetic parameters can be esti-
mated solely from Mendelian sampling components [53],
implying that the genomic relationship matrix can be used
to model the covariance among distantly related indivi-
duals [55], which establishes baseline accuracy due to LD
[56]. In this case, however, large (training) population sizes
would be required as the precision of quantitative genetic
parameters is inversely proportional to the size of the esti-
mated relatedness [55]. In our study, genomic relatedness
likely underestimated pedigree-based relatedness, given
that the scaling of the genomic relationship was appro-
priate. This observation suggests that many more markers
would be necessary to obtain prediction accuracies super-
ior to those using pedigree information. On the other
hand, the “true” breeding values for wood and growth traits
of the white spruce population considered in this study are
not known and have been estimated using the pedigree in-
formation of the complete population and the bivariate
individual-tree mixed model. One might think that “true”
breeding values are closer to breeding values estimated
with the realized genomic relationship matrix, which might
influence the comparison of the pedigree-based and
marker-based accuracies. As an attempt to answer this
question, we re-estimated the accuracies replacing the
“true” breeding values by the phenotypes, which are not in-
fluenced by the method of estimation as are the breeding
values. For most of the scenarios tested, accuracies based
on pedigree information were higher than either the
genomic-based estimated breeding values or those esti-
mated with combined genomic and pedigree information.
Thus, this observation suggests that using the pedigree-
based estimated breeding values as proxy for “true” breed-
ing values has no significant impact on the estimation of
prediction accuracies.

Genotype-by-environment interaction
The results obtained with the two CV scenarios that tested
the impact of GEI (BG1 and S1→ S2) were different for
wood and growth traits. Wood traits were relatively un-
affected by GEI in the bivariate model (r12 = 0.83), which
was reflected in high (BG1) and moderately high (S1→ S2)
prediction accuracies when phenotypes obtained in the
second site (S2) were included or not in the training
model, respectively (Table 4). These good prediction ac-
curacies between environments would support the pooling
of wood trait observations across sites and treat them as a
single trait over environments. The situation might be
different in more heterogeneous environments where
GEI might be more important, as generally reported for
western North America for instance [57], thus necessita-
ting a careful case-by-case analysis.
Growth traits were more sensitive to GEI than wood

traits, as prediction accuracies fell to moderate (BG1)
and low (S1→ S2) levels, when phenotypes measured in
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the second site (S2) were included or not in the training
model, respectively (Table 4). Such GEI was previously ob-
served to be modest for growth traits in white spruce,
though statistically significant [58]. This trend suggests that
not only could a GEI component be beneficial in the statis-
tical model, but information on relatives (markers or pedi-
gree) alone is insufficient to predict genetic values in an
environment where phenotypes have not been assessed.
Borrowing correlated information (phenotype of re-

lated individuals assessed on all experimental sites) to
make predictions across environments was found useful
in wheat [29], which may have been facilitated by the
evaluation of homogeneous genetic (inbred) lines as op-
posed to the families or populations used in forestry,
which are genetically heterogeneous. For both wood and
growth traits, removing information quality (closeness of
relatedness, Table 5) and quantity (number of markers,
Table 6) between cross-validation sets weakened predic-
tion accuracies, emphasizing the importance of close re-
latedness when making predictions across environments.
When looking at growth traits in particular, it is encour-
aging to notice that the decrease in accuracy between
sites was less pronounced for height than for DBH.
Height is generally the preferred selection trait for fast
growth by tree breeders [59]. This observation is in line
with results reported for low GEI in white spruce for this
trait [58], and also with the small reduction in accuracy
observed across sites in a previous application of gen-
omic selection to white spruce half-sib families in east-
ern Canada [18].
The bivariate model, which simultaneously considers

the same trait measured on trees tested on two sites as
different correlated traits, could be extended to a multi-
variate or reduced rank factor analytic model [29,60] if
there was an interest in fine-tuning the regional per-
formance of seed orchards. Of course, this does not pre-
clude combining traits over sites if overall performance
in a large target environment is sought (selection of ge-
neralists instead of specialists). More importantly, it may
be of interest to generate GEI for wood traits with silvi-
cultural treatments [61] if interactions under intensive
vs extensive management are anticipated.

Implementation of genomic selection in spruce breeding
programs
In practice, our results indicate that future prospects for
genomic selection in spruces should take place within
populations of small effective size combining several
breeding groups, and thus implicating individuals of
high relatedness within breeding groups. To recapitulate,
this is first because marker-based model accuracies do
not hold when removing relatedness between CV sets,
indicating that with the current marker densities the
overall short-range LD between markers and causal loci
is either too low to be of practical use or not sufficiently
well captured. With the proposed approach, reduction in
marker coverage as shown in Table 6 would not have a
significant negative impact on prediction accuracies, but
as only long-range LD and relatedness are likely captured,
prediction accuracy may not be persistent over many gen-
erations. Second, as expected, within-population predic-
tion accuracies were high in this study, where effective
population size was considerably constrained, and higher
than those obtained in a much larger and genetically di-
verse spruce population with lower degree of related-
ness [18]. However, it is clear that GS models could be
developed for larger populations, as illustrated in the
tested scenario S1, which combines breeding groups G1
and G2, without significantly affecting prediction accu-
racies (Table 4). Given the number of breeding groups
tested, we could not determine what should be the most
effective population size for a successful operational use
of markers, but it is apparent that it could be at least 50,
and maybe up to 100 [4], without losing too much pre-
diction accuracy.
The obvious caveat for the proposed approach is that it

is not possible to clearly separate the contributions of both
relatedness and long-range LD (co-segregation) from pre-
diction accuracy. Long-range LD may still be important if
its contribution to prediction accuracy does not decay as
fast as that due to relatedness, especially with recurrent se-
lection, i.e. in a population with the same genetic back-
ground. The use of multigenerational data might be one
way to disentangle the two sources of information.
A simple form of GS that does not depend on LD

would consist of replacing the pedigree-based numerator
relationship matrix with the genomic relationship matrix
in the standard individual (animal) BLUP model [19], or
to blend the two sources of information [62,63], which is
functionally equivalent to estimating and summing SNP
effects using ridge regression [12,51,64]. We have shown
that marker-based models could achieve, in most cases,
almost 90% of the accuracy of pedigree-based models,
and that data from breeding groups and sites could be
combined without noticeably affecting the accuracy re-
sults. Based on these findings, we believe that kinship
based on realized genomic relationships would be espe-
cially useful if pedigrees were unknown or incomplete
(e.g. when using open or supplemental mass (pollimix)
pollination in closed breeding orchards) to capture any
cryptic relatedness not accounted for in the “known” pedi-
gree (half-siblings only, for instance), to correct pedigree
errors, and to overcome some of the strong assump-
tions of using the numerator relationship matrix in the
pedigree-based BLUP [22]. This scenario would likely
make it possible to obtain prediction accuracies that
are higher than those obtained with incomplete pedi-
gree information, and at the same time, to reduce
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breeding and testing costs. With the populations used
in the present study, and ignoring knowledge on male
contribution, the relative prediction accuracy of RR
models over pedigree-based models (half-sib models)
would have varied from 115% to 162%.
Another simple GS scenario that does not depend

on our ability to separate the source of prediction ac-
curacy would be to conduct genomic prediction within
full-sib families [14]. In this case, the pedigree pro-
vides no information, LD would be high, and there
would be no risk of linkage phases changing over fa-
milies. The idea would be to generate large full-sib
families (n = 200 and more), phenotype a fraction of
the individuals (e.g. 25%), and select both phenotyped
and unphenotyped individuals [14] for propagation.
Although not tested in this study, the method could
be useful in multiclonal forestry to identify superior
genotyped seedlings derived from somatic embryos.
For embryos originating from previously field-tested
and genotyped members of the same cross, no ad-
ditional field testing would be required. The difference
between this method and genomic selection for recur-
rent selection is that the identified individuals would
be propagated and, thus, marker effects tracing large
linkage blocks would not need to persist in subsequent
generations. Data could be pooled over families (and
groups) as done in this study. With such a scenario
and the strict assumptions under which this genetic
gain potential might be realized, the breeding cycle for
the set of families retained could be significantly re-
duced and gain per time unit more than double, i.e.
the gain per year of breeding activities, which includes
Table 7 Potential genetic gain as estimated empirically from
(based on pedigree information) and GEBV (based on all SNP
assumption that with use of markers and somatic embryogen
10 years by avoiding the 20-year field test and production ph

Subpopulation* Trait† EBVCV1 GEBVCV1 EB

BG1 ADEN 27.79 24.31

AMFA −1.61 −1.31

HT17 44.51 37.26

DBH17 4.15 3.29

S1 ADEN 25.23 21.82

AMFA −1.72 −1.51

HT17 43.43 38.36

DBH17 9.27 8.70

*BG1: both training and testing sets from breeding group 1; S1: both training and t
†ADEN: average wood density; AMFA: average microfibril angle; HT17: 17-year heigh
aEBVCV1/TC, where TC =30, and TC is the number of years to complete a breeding cy
bGEBVCV1/TE, where TE =10, and TE is the number of years to complete a breeding c
superior selected material.
selection, crossing, and propagation phases (Table 7
and [18]).

Conclusion
In the short term, genomic selection would be most
useful to select superior individuals within large full-sib
families. These individuals would be reproduced by
vegetative propagation techniques such as somatic em-
bryogenesis (SE), or a mix of SE and rooted cuttings, in
order to develop a multivarietal forestry program. With
regard to genomic selection for recurrent selection at
current marker densities in spruce populations, its effi-
ciency would depend on the presence of close relatives
in order to exploit the capture of relatedness and sup-
posedly long-range LD. Thus, a simple marker-based
approach that aim to uncover relatedness when pedi-
grees have not been recorded or are only partially
known would seem to be the most cost-effective appli-
cation of this technology. For such a scenario, the total
number of SNPs required would be only a few hun-
dreds to a few thousands. In the longer term, superior
marker-over pedigree-based predictions may be achiev-
able in descendant generations of closed populations as
short-range LD increases and pedigrees provide less
information. However, to achieve this goal, denser
marker arrays, more individuals per family, and more
sophisticated experiment designs and genomic se-
lection models [17] than those used in the current
study will likely need to be considered. A step towards
achieving this goal in forest genetics might also be the
estimation across generations in order to better eva-
luate the persistency of marker effects.
a 5% selection intensity made within families using EBVs
s [m = 6,932]), and expected gain per time unit under the
esis, the breeding cycle could be reduced from 30 to
ases

Empirical genetic gain

VCV1/yr
a GEBVCV1/yr

b Ratio GEBVCV1/yr/EBVCV1/yr (%)

0.93 2.43 262

0.05 0.13 245

1.48 3.73 251

0.14 0.33 237

0.84 2.18 259

0.06 0.15 263

1.45 3.84 265

0.31 0.87 282

esting sets from site 1.
t; DBH17: 17-year diameter at breast height.
cle with conventional breeding methods.
ycle with genomic selection and somatic embryogenesis to propagate the
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