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Abstract

Background: A previous study reported a comprehensive quantitative trait locus (QTL) and genome wide association
study (GWAS) of southern leaf blight (SLB) resistance in the maize Nested Association Mapping (NAM) panel. Since that
time, the genomic resources available for such analyses have improved substantially. An updated NAM genetic linkage
map has a nearly six-fold greater marker density than the previous map and the combined SNPs and read-depth
variants (RDVs) from maize HapMaps 1 and 2 provided 28.5 M genomic variants for association analysis, 17 fold more
than HapMap 1. In addition, phenotypic values of the NAM RILs were re-estimated to account for environment-specific
flowering time covariates and a small proportion of lines were dropped due to genotypic data quality problems.
Comparisons of original and updated QTL and GWAS results confound the effects of linkage map density, GWAS marker
density, population sample size, and phenotype estimates. Therefore, we evaluated the effects of changing each of
these parameters individually and in combination to determine their relative impact on marker-trait associations in
original and updated analyses.

Results: Of the four parameters varied, map density caused the largest changes in QTL and GWAS results. The updated
QTL model had better cross-validation prediction accuracy than the previous model. Whereas joint linkage QTL positions
were relatively stable to input changes, the residual values derived from those QTL models (used as inputs to GWAS)
were more sensitive, resulting in substantial differences between GWAS results. The updated NAM GWAS identified
several candidate genes consistent with previous QTL fine-mapping results.

Conclusions: The highly polygenic nature of resistance to SLB complicates the identification of causal genes. Joint
linkage QTL are relatively stable to perturbations of data inputs, but their resolution is generally on the order of tens or
more Mbp. GWAS associations have higher resolution, but lower power due to stringent thresholds designed to
minimize false positive associations, resulting in variability of detection across studies. The updated higher density
linkage map improves QTL estimation and, along with a much denser SNP HapMap, greatly increases the likelihood of
detecting SNPs in linkage with causal variants. We recommend use of the updated genetic resources and results but
emphasize the limited repeatability of small-effect associations.
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Background
Methods for elucidating the genetic architecture under-
lying quantitative variation in plants have evolved sub-
stantially over the last 25 years, following the first report
of genome-wide quantitative trait locus (QTL) mapping
[1]. The maize nested association mapping (NAM) popu-
lation is composed of 5,000 recombinant inbred lines
(RILs) derived from crosses between inbred line B73 and
25 other inbred lines of maize [2]. These parents were
selected to capture a maximum amount of molecular
genetic diversity present across the major subpopulations
of public maize breeding germplasm [3,4]. The maize
NAM population has been used to study genetic architec-
tures for a number of quantitative traits of maize [5-11],
including Southern leaf blight (SLB) resistance [8].
Southern leaf blight is a foliar disease of maize caused

by the fungus Cochliobolus heterostrophus. The disease was
responsible for a major epidemic in the U.S. in the 1970’s
[12] and continues to limit or threaten maize production
worldwide. Natural variation in resistance to SLB is
polygenic and may involve a diverse array of functional
genes and pathways [8,13]. Using joint linkage mapping
(JLM) and genome-wide association study (GWAS) the
genetic architecture of resistance to SLB in the NAM popu-
lation was associated with more than 30 loci with small
additive effects [8]. With the recent release of maize
HapMap2 [14] and a denser linkage map based on
genotyping-by-sequencing (GBS [15,16]) with markers
positioned every 0.2 cM, QTL identified by JLM can
be more precisely localized on the genetic and physical
sequence maps. The denser linkage map is also expected
to permit more accurate projection of the more than 28
M SNPs among parental lines in maize HapMaps 1 and 2
onto NAM RILs, which should provide mapping precision
to the limits dictated by linkage and disequilibrium in this
population.
Two-stage regression analysis has been widely used to

test SNPs for associations with quantitative diseases in
human [17-19], and this approach has been adopted for
GWAS in plants. In the first stage, observed phenotypes
are regressed on covariates such as demographic, clin-
ical, and/or environmental factors. In the second stage,
the residual values from the first stage model (‘residual
outcomes’ or adjusted phenotypic values) are regressed on
genetic markers with simple- or multiple-linear regression.
Despite its convenience in computation, the two-stage
method can result in a downwardly biased estimate of
genotypic effects and loss of power in detection as a result
of dependency between covariates and the tested SNP
genotypes [20,21]. Two-stage approaches are also used
to combine the complementary advantages of JLM and
GWAS in NAM [7,8,10]. In the first stage, JLM is per-
formed using a consensus linkage map to identify QTL
across the genome. In the second stage, GWAS is
performed chromosome-by-chromosome, using separate
input values for each chromosome that are obtained as re-
siduals from the first stage QTL model, built by excluding
QTL on the chromosome to be tested for GWAS. The
purpose of this is to adjust phenotype values used for asso-
ciation analysis for the effects of QTL on other chromo-
somes. This approach is expected to be largely free of the
problem of dependency between covariates (QTL) fit in
the first stage and SNPs tested in the second stage, since
only QTL on different chromosomes than the test SNPs
are fit as covariates.
We are working toward identifying the causal variants

underlying quantitative resistance to SLB, relying, in
part, on the information provided by NAM. The object-
ive of this study was to re-analyze resistance to SLB in
the maize NAM panel using the updated genetic and
haplotype maps, to compare the results with those of
the previous analysis, and to determine which results are
more reliable. The previous JLM analysis was based on
SLB phenotypes measured on 4694 RILs and a linkage
map of 1106 SNPs [2], and the previous GWAS analysis
was based on 1.6 M SNPs of HapMap 1 [22]. Since that
analysis, the mixed model used to produce the pheno-
typic inputs to the analysis was updated to better adjust
for the effect of flowering time on SLB resistance pheno-
types. The updated 7386-marker map has a uniform
density of one marker every 0.2 cM, but the number
(4413) of RILs phenotyped and genotyped with this map
is smaller than previously (4694 RILs). Therefore, a sec-
ond objective of this study was to measure the influence
of each of the changes in the data used for analysis (gen-
etic maps, RIL sample sizes, and phenotype values) on
the current two-stage JLM-association analysis in the
NAM panel, using SLB as an example. Finally, cross-
validation was used to compare the prediction power of
the original JLM model of Kump et al. [8] and the up-
dated JLM model in the NAM panel.

Results
Modeling the effect of flowering time on SLB resistance
The statistical association between flowering time and
disease resistance was complex. Among the 135 of 156 pos-
sible combinations of rating × environment ×NAM popula-
tions for which there were sufficient data for analysis, there
was no significant relationship between flowering time
and SLB resistance for 56 combinations, linear relation-
ships for 75 combinations, and quadratic relationships
for 4 combinations (Additional file 1: Table S1). Only
four populations exhibited a consistent relationship across
ratings and environments (no effects for populations 11
and 22; linear effects for populations 8 and 26). Thus,
the majority of disease ratings in every population
exhibited significant but variable relationships with
flowering time. The flowering time covariate effects
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were generally small (r2 ranged from 1% to 22%), how-
ever, and the updated combined mixed model incorpor-
ating variation in the flowering time covariate effect
only slightly altered the BLUPs: the original and up-
dated BLUPs were highly correlated between entries in
each population (rmin =0.980; rmax =0.997), and there
were only subtle differences in the rankings of popula-
tion mean effects (rs =0.983).

Precision of QTL localization and improved QTL
prediction power
JLM analysis with the 7386-marker map, updated
BLUPs of 4413 RILs, and iterative optimization (model
7 in Table 1), identified 33 QTL (referred to as ‘model
7 QTL’) associated with variation in resistance to SLB
in the NAM panel, with support intervals averaging 4.6
cM and ranging from 1.8 cM to 14.0 cM (Table 2).
Combined, the 33 QTL from model 7 were associated
with 84% of the phenotypic and 98% of the genotypic
variation for resistance to SLB. All model 7 QTL had
small effects; absolute values of significant (p <0.05)
allele effects averaged 0.14 (range: 0.07 to 0.35) on the
1–9 scale used for quantifying resistance [8] (Figure 1;
Additional file 1: Tables S2 and S3). The two model 7
QTL with the largest resistance effects across RIL families
mapped to 43.4 cM and 54.4 cM on chromosome 3.
Table 1 Inputs for joint linkage mapping QTL analysis
and GWAS models

Joint linkage mapping QTL models

QTL Model Phenotype No. markers in
linkage map

No. NAM
RILs

1a originalb 1106 4694

2 original 1106 4354

3 updated 1106 4694

4 updated 1106 4354

5 original 7386 4354

6 updated 7386 4354

7 updated 7386 4413

GWAS models

GWAS
Model

QTL model used to
adjust phenotypes

Variants tested
for association

p value
threshold

Aa 1 1.6 M HM1 SNPs 1E-4

B 1 1.6 M HM1 SNPs 1E-7

C 1 28.2 M HM1/2
SNPs + 0.2 M RDVs

1E-7

D 7 1.6 M HM1 SNPs 1E-7

E 7 28.2 M HM1/2
SNPs + 0.2 M RDVs

1E-7

aQTL model 1 and GWAS model A results were previously published [8].
bOriginal phenotype inputs were RIL BLUPs across 3 environments, based
on a model with a common flowering time covariate; updated phenotype
inputs were RIL BLUPs across 3 environments based on a model with
environment-specific flowering time covariates.
The JLM results are generally similar to those reported
by Kump et al. [8], who identified 32 QTL (here, model 1),
each of which had relatively small allelic effects of similar
magnitude to model 7 QTL. To directly compare the
positions of QTL from models 1 and 7, we interpolated
model 1 QTL peak positions onto the 7386-marker map
according to the AGP v2 physical positions of the SNPs
identified as model 1 QTL peaks (Table 2). The median
distance between the closest matching QTL peaks of
model 1 and 7 was 5.6 cM (Table 2). Smaller-effect QTL
tended to have larger discrepancies in position between
the models.
Prediction accuracy of JLM QTL models developed

from original and updated inputs were compared by
cross-validation. A small number of RILs used in model
7 were not used in model 1 because of missing data in
the original linkage map, so we identified the set of
4354 RILs in common between the original and up-
dated data sets. QTL positions from models 1 and 7
were fit to random subsets of these RILs to re-estimate
the allele effects and predict phenotypes in the valid-
ation sets. On average, across 100 randomly sampled
training and validation sets, model 7 had a significantly
(p <0.0001) greater prediction correlation coefficient
(r =0.86 ± 0.01) than model 1 (r =0.83 ± 0.01; Additional
file 2: Figure S1).

Sensitivity analysis
Seven different QTL models (including models 1 and 7
previously described) were generated using different
combinations of model inputs. The inputs that varied
included the genetic map (1106-marker map vs. 7386-
marker map), phenotypes (“original BLUPs” vs. “up-
dated BLUPs”), and RIL sample sizes (4354 vs. 4431 vs.
4694 RILs; Table 1). QTL peak locations were generally
concordant among the seven models tested (Figure 2).
Predicted phenotypic values of RILs based on JLM QTL
models were also similar among the models, with all
correlation coefficients between model predictions greater
than 0.94.
In contrast to the general stability of QTL localization

and predicted phenotypic values observed among models
varying for different inputs, we observed substantially
lower correlations between chromosome-specific residual
outcomes from these JLM QTL models (Table 3). Genetic
map density (1106-marker map vs. 7386-marker map) had
the greatest impact on the correlation between residual
outcomes, followed by sample size (4694 vs. 4354 RILs),
and then the different methods for handling the flowering
time covariate in generating the RIL phenotypes (original
vs. updated BLUPs). Using identical algorithms and
phenotype inputs but different marker densities (1106
vs. 7386) produced a correlation of 0.79 (models 2 and 5,
models 4 and 6; Table 3). Dropping 340 RILs (4694 vs.



Table 2 Physical and genetic positions for QTL peaks and support intervals (SI) mapped using updated phenotypes
and linkage map (model 7) and comparison to QTL previously reported by Kump et al. [8] (model 1)

Chr Peak position
(AGP v2 bp)

Peak
position (cM)

SI Map
Position (cM) Step included SI overlapped Distance between

QTL peaks (cM)

1 90,443,174 85.2 84.2 - 86.2 3 y 0.8

1 218,082,692 127.6 125.6 - 129.6 8 y 1.9

1 251,723,948 146.8 144.8 - 147.8 18 y 1.0

1 283,549,061 177 175 - 179 22 n 29.2

2 7,180,393 21.4 19.4 - 23.4 21 n 20.2

2 36,838,070 65.4 64.4 - 66.4 5 y 2.3

2 206,275,294 111.2 110.2 - 113.2 23 n 30.8

3 5,348,237 19.6 18.6 - 22.6 13 y 5.9

3 16,246,035 43.4 41.4 - 44.4 1 n 6.6

3 31,533,927 54.4 53.4 - 55.4 10 c 4.4

3 170,374,260 79.4 78.4 - 84.4 14 n 12.9

3 214,568,867 124.4 123.4 - 126.4 26 c 6.8

3 219,498,075 134 132 - 137 6 y 2.8

4 1,892,489 2.4 -3.6 - 7.4 29 y 4.6

4 141,422,921 59.8 54.8 - 60.8 20 c 7.9

4 181,935,681 94 91 - 102 17 n 24.2

5 15,138,119 45.2 44.2 - 49.2 33 y 8.2

5 36,905,989 58 55 - 59 11 y 4.6

5 158,046,075 74.2 72.2 - 77.2 19 y 3.0

5 200,161,433 106.6 104.6 - 109.6 27 n 18.1

5 214,137,041 144.4 140.4 - 154.4 31 n 19.7

6 6,929,855 -0.6 -1.4 - 0.4 9 y 0.4

6 144,806,691 56.6 53.6 - 58.6 28 n 56.8

7 8,270,900 31.2 28.2 - 34.2 30 y 3.0

7 142,429,440 74.8 73.8 - 76.8 25 c 5.2

8 36,978,572 51.2 50.2 - 53.2 4 y 1.4

8 118,435,453 63.2 61.2 - 67.2 24 n 10.6

8 166,705,312 102.2 101.2 - 104.2 15 y 1.3

9 16,361,287 28.4 27.4 - 29.4 7 y 0.1

9 109,899,486 52.6 51.6 - 54.6 2 n 5.6

10 2,040,278 -1.6 -2.6 - 3.4 32 n 38.3

10 75,958,884 37.8 34.8 - 38.8 12 y 1.1

10 135,354,773 59.8 58.8 - 60.8 16 n 23.1

‘Step included’ denotes the regression model building step in which each QTL was selected for inclusion in model 7. ‘SI overlapped’ indicates if models 1 and 7
QTL SI overlapped: y for overlapped, n for not overlapped and c for very close (within 1.5 cM) but not overlapped. ‘Distance between QTL’ indicates the cM distance
between the peaks of nearest QTL from models 1 and 7.
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4354 RILs) produced a correlation of 0.85 (models 1
and 2, models 3 and 4; Table 3). The decrease in correl-
ation due to sample size was attributed to total sample
size per se and not likely to representation of particular
families, since the proportional representation of each
family in the total NAM family did not change due to
dropping lines (Additional file 1: Table S4). Although
original and updated BLUPs were highly correlated as
input values (r =0.99), their small differences resulted
in QTL model residuals with much greater differences,
reflected in correlations of 0.80 to 0.91 between residual
outcomes differing only for original vs. updated BLUPs
(Model comparisons 1 vs 3, 2 vs. 4, and 5 vs. 6; Table 3).
When multiple inputs were changed simultaneously, the
correlation between residuals diminished more (r ranging
from 0.77 to 0.85, Table 3).



Figure 1 Heat map of additive effect estimates of 25 founder parent alleles for QTLs of SLB resistance relative to B73. QTL are identified
by their genetic locations in the consensus genetic map (7386-marker map); effect estimates for each parental allele are indicated by color blocks.
Negative cM values for markers indicate that they are distal to the first marker from the original NAM linkage map on that chromosome.
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GWAS for SLB resistance in the NAM panel
The updated GWAS (model E, Table 1) was performed
using the 28.5 M combined HapMap 1 and 2 SNPs and
RDVs with phenotype values adjusted for unlinked QTL
from model 7. A total of 192 variants were significantly
associated with SLB resistance at RMIP ≥0.05. (Figure 3
and Additional file 1: Table S5). Model 7 QTL support
intervals were highly enriched for significant associa-
tions: whereas only 17% of all variants tested localized
within the QTL support intervals, 98 of 192 (51%) sig-
nificantly associated variants were in QTL intervals, and
32 out of 33 model 7 QTL support intervals contained
one or more of the significant associations. Genes
containing or adjacent to the 26 most significantly asso-
ciated variants (RMIP ≥0.25) were identified (Table 4).
Twenty-four candidate genes underlying 25 variants
were identified from the B73 reference genome, but no
gene was found within 100 kb of SNP S10_64647379
(Table 4). Eighteen of 24 candidate genes were located in
model 7 QTL support intervals (Figure 3).

Comparison of multiple NAM GWAS results for SLB
resistance
The original NAM GWAS for SLB resistance used a 1106-
marker map, model 1 QTL residuals, and 1.6 M HapMap 1
SNPs (GWAS model A, Table 1), and identified 245 sig-
nificant SNP loci at p <1e-04 with RMIP ≥0.05 [8].
Comparing the positions of the 245 SNP associations
identified with RMIP ≥0.05 in model A to the 192 vari-
ant associations identified in updated model E, only 6%
of the total set colocalized within 10-kb windows
between the two analyses. The three-fold enrichment of
associations within QTL intervals compared to all
tested variants observed in the updated GWAS model E
(51% of associations vs 17% of all tested) was greater
than the two-fold enrichment observed in the original
GWAS model A (31% of associations vs 15% of all tested).
To evaluate NAM GWAS sensitivity to different GWAS

inputs i.e. genetic map, residual inputs, and GWAS
marker density, four separate GWAS models were com-
pared (Table 1). The comparisons of GWAS analyses
based on different input data sets indicated that both link-
age map density (1106- vs. 7386-marker map) and GWAS
marker density (1.6 M SNPs vs. 28.5 M SNPs and RDVs)
influenced the GWAS results dramatically (Table 5;
Additional file 1: Table S6). When both linkage map and
HapMap marker densities were changed simultaneously,
less than 25% of associations at RMIP ≥0.05 and 10% of
associations at RIMP ≥0.25 localized within 200 kb of each
other across analyses (Table 5).



Table 3 Input changes in joint linkage mapping QTL modeling affect the values of the chromosome-specific residuals
more profoundly than the corresponding predicted phenotypic values

Model 1 2 3 4 5 6

1
4694 RILs, original
BLUPs, 1106 map

0.88 0.91 0.81 0.81 0.77

2 SZ
4354 RILs, original
BLUPs, 1106 map

0.85 0.87 0.82 0.79

3 PH PH, SZ
4694 RILs, updated
BLUPs, 1106 map

0.82 0.79 0.79

4 PH, SZ PH SZ
4354 RILs, updated
BLUPs, 1106 map

0.80 0.77

5 GN, SZ GN GN, PH, SZ GN, PH
4354 RILs, original
BLUPs, 7386 map

0.80

6 GN, PH, SZ GN, PH GN, SZ GN PH
4354 RILs, original
BLUPs, 7386 map

Upper diagonal shows average correlation of residual outcome for each chromosome for 15 pairwise model comparisons. Lower diagonal shows the input(s) that
differed in each pair of model comparison. “GN”, “PH”, and “SZ” denote the different genotype inputs: GN, linkage map (1106- vs. 7386-marker map); PH,
phenotype inputs (original vs. updated BLUPs); and SZ, sample size (4354 vs. 4694 RILs), respectively. Diagonal shows the three inputs for each model.

Figure 2 QTL positions on the ten maize chromosomes from seven joint linkage mapping models. Positions in cM are based on 7386-marker
map. QTL bar heights are proportional to their partial R2, blue-colored margins denote the QTL support intervals, and black spikes denote the QTL peak
positions. For the definitions of model inputs, see Table 1.
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Figure 3 Manhattan plots from genome-wide association analysis for SLB across the ten chromosome pairs of maize. The dashed
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the most robust GWAS hits (RMIP ≥0.25) located in QTL support intervals are indicated (Table 4).
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RMIP values for each variant are determined based on
the proportion of data subsamples in which the variant
was selected in a multiple regression model at a given
p-value, so RMIP values are subject to stochastic vari-
ation in the random sampling of data sets. Therefore,
some of the inconsistency among analyses may be
due simply to the process of randomly sampling the
complete data set 100 times for each analysis. We
estimated the consistency of RMIP values from NAM
GWAS (based on re-sampling 80% of RILs) by conduct-
ing five separate model E GWAS analyses for all vari-
ants on chromosomes 3 and 10, chosen to represent
chromosomes with different numbers of QTL. Each of
the five analyses included a unique set of 100 random
data samples of 80% of RILs to calculate RMIP values
from independent runs. Pairwise comparisons of associ-
ation analyses indicate that 72% - 81% of variants with
RMIP ≥0.05, and 88% - 100% of SNPs with RMIP ≥0.25
overlapped within 10-kb windows matched between
each sampling procedure (Additional file 1: Table S7).
To estimate the consistency of RMIP values with more
subsamples, five separate model E GWAS analyses
were conducted by analyzing sets of 200 samples and
500 samples on chromosomes 3 and 10. Pairwise com-
parisons showed that 81% - 89% of associations with
RMIP ≥0.05, and 89% - 100% of SNPs with RMIP ≥0.25
overlapped within 10-kb windows when 200 subsamples
were used to compute RMIP (Additional file 1: Table S7).
About 93% - 96% of variants with RMIP ≥0.05, and
100% of SNPs with RMIP ≥0.25 overlapped within 10-kb
windows when 500 subsamples were used (Additional
file 1: Table S7).
Discussion
The maize NAM panel is a community genetic resource
for dissecting the genetic architecture of quantitative
traits. It allows for the combination of high power in
conventional QTL linkage mapping and high resolution
in genome-wide association mapping [23,24]. We identi-
fied 33 QTL with small additive effects across 25 NAM
families. The 7386-marker map has 6.7 times the marker
density of the original 1106-marker map, and, import-
antly, it has uniform marker spacing at 0.2 cM without
gaps. The uniform spacing and denser map improved
the power and precision of QTL mapping in our ana-
lysis. One of the strongest effect QTL had a discrep-
ancy in position between QTL models 1 and 7 because
it localized to a >10 cM gap in the 1106-marker map.
The current study resolved what was previously mapped
as a single QTL detected at 50.0 cM of chromosome 3
(at the edge of the map gap) into two separate QTL at
43.4 and 54.4 cM. Evidence from fine mapping and
high-resolution bi-parental QTL studies [25-27] sup-
ports the existence of the two rather than the one QTL.
Thus, it appears that the increased map density im-
proved precision of QTL position estimates despite the
loss of sample size that occurred by dropping 281 RILs
in model 7. This study only evaluated relatively small
changes in sample size, we expect much larger effects
on results for more substantial sample size changes, as
shown by simulation [28].
The high and uniform density of the 7386-marker map

eliminates the need for interval mapping, but increases
the risk of selecting collinear markers and overfitting the
QTL models. In this study, we recognized and corrected



Table 4 Highly significant GWAS variants (RMIP ≥ 0.25) and their adjacent candidate genes
Chromosome Physical position

(AGPv2)
Allelea Effectb P-value RMIP Genic position Inside QTLc Nearest gene ID Position of nearest

gene (AGPv2)
Annotation

Start End

1 59772038 T/C 0.09 9.4E-10 0.35 Intergenicd N GRMZM2G134671 59764838 59769739 CCT/B-box zinc finger protein

1 90059294 C/T 0.08 8.5E-14 0.35 Intergenic Y GRMZM5G806839 90108398 90107598 AP2 domain containing protein

2 34246559 A/C 0.11 1.8E-16 0.39 Intergenic N GRMZM5G876621 34361966 34343251 IBR domain-containing protein

2 36938074 G/A 0.10 1.4E-22 0.53 3’UTR Y GRMZM2G022627 36936010 36938218 Transducin/WD40 repeat-like superfamily protein

2 204757213 G/A 0.11 4.5E-09 0.41 Intergenic N GRMZM2G142932 204771189 204767728 Basic helix-loop-helix (bHLH) DNA-binding
protein

2 207520001 CNV- 0.11 4.4E-09 0.28 Intergenic Y GRMZM2G062156 207635000 207637178 Transporter family protein

3 16574125 T/C 0.12 1.8E-26 0.43 Non-synonymous_codinge Y GRMZM2G463580 16575869 16572429 Leucine-rich repeat transmembrane protein
kinase

3 16575842 C/G 0.15 9.7E-14 0.46 5’UTR Y

3 32885733 C/T 0.19 9.1E-16 0.9 Intergenic Y GRMZM2G132936 32957454 32949608 RNA recognition motif (RRM)-containing protein

3 219885527 T/C −0.11 3.1E-12 0.28 Intronic Y GRMZM2G074572 219900229 219884844 Stomatal cytokinesis defective/SCD1 protein

3 220658469 A/C −0.08 6.0E-12 0.25 Intronic Y GRMZM2G130375 220651805 220659525 Beta galactosidase 1

4 2046350 CGG/— −0.08 3.8E-09 0.26 Non-synonymous_coding Y GRMZM2G131442 2044016 2047386 MYB domain protein 112

5 164110001 CNV- 0.10 1.5E-11 0.42 Intergenic Y GRMZM2G111872 164120892 164124546 Heavy metal-associated domain containing
protein

6 7001531 A/C −0.08 1.1E-15 0.4 Intergenic Y GRMZM2G127342 7036171 7039824 Lysine histidine transporter 1 (LHT1)

7 7958250 +/− −0.08 1.9E-08 0.3 Intergenic Y GRMZM2G021149 7954180 7955128 LSM domain containing protein

7 142997161 G/A 0.09 7.3E-09 0.28 Intergenic Y GRMZM2G091919 143003673 143001781 protein kinase superfamily protein

8 22229116 G/A 0.13 1.3E-08 0.35 Intergenic N GRMZM2G325612 22249167 22245141 Cytokinin oxidase 5

8 62217745 T/A 0.10 6.3E-14 0.34 Intergenic Y GRMZM2G130101 62267220 62273955 Unknown

8 171334544 A/G −0.06 1.2E-09 0.26 Intronic N GRMZM2G476009 171332654 171335508 DNA-directed RNA polymerases subunit RPABC1

9 16263773 A/G 0.17 9.9E-09 0.33 Intergenic Y GRMZM2G301860 16253405 16252231 AP2 domain containing protein

9 16317865 G/A 0.10 1.4E-15 0.59 Down_stream Y GRMZM2G099363 16320573 16318197 Caffeoyl-CoA O-methyltransferase

9 106051436 G/A 0.08 1.7E-05 0.45 Intergenic Y GRMZM2G107886 106201175 106203143 CCT/B-box zinc finger protein

9 139547728 C/G −0.11 3.4E-08 0.32 Intergenic N GRMZM2G402015 139591514 139589475 Plant U-box 13, spotted leaf 11

10 3090835 G/A −0.13 6.2E-10 0.47 Intergenic Y GRMZM2G068465 3066458 3062645 Cytochrome P450

10 64647379 G/A 0.06 5.7E-09 0.53 Intergenic Y NA

10 134501142 C/T 0.06 4.4E-08 0.77 Intronic Y GRMZM2G063972 134495450 134504022 Heat shock protein DnaJ
aAlleles reported as: “B73 allele/alternate allele”. “CNV-” represents the read depth of a line is significantly lower than B73.
bThe mean effect of each significant SNP across data subsamples.
cSNPs located within model 7 QTL SI are indicated as “Y” and “N” otherwise.
dVariants more than 500 bp away from an annotated gene.
eVariation lies in the coding region and results in an amino acid change.

Bian
et

al.BM
C
G
enom

ics
2014,15:1068

Page
8
of

15
http://w

w
w
.biom

edcentral.com
/1471-2164/15/1068



Table 5 Concordance of variants associated with SLB resistance at resample model inclusion probabilities (RMIPs) of 0.05 and 0.25 from five GWAS analyses

Comparisons GWAS
modelsa

RMIP ≥ 0.05 RMIP ≥ 0.25

No. of all
significant SNPsb

Proportion of overlapped
SNPs (%)c

No. of all
significant SNPs

Proportion of overlapped
SNPs (%)c

10-kb window 100-kb window 200-kb window 10-kb window 100-kb window 200-kb window

GWAS marker density B vs. C 326 (151,175) 26 36 38 45 (25,20) 13 13 13

D vs. E 393 (201,192) 22 34 39 54 (28,26) 11 11 15

Genetic map density C vs. E 367 (175,192) 14 21 23 46 (20,26) 9 9 9

B vs. D 352 (151,201) 25 29 35 53 (25,28) 26 28 28

GWAS and genetic
marker density

C vs. D 376 (175,201) 13 21 22 48 (20,28) 4 8 8

B vs. E 343 (151,192) 7 13 15 51 (25,26) 4 4 4

GWAS and genetic marker
density and P-value

A vs. E 437 (245,192) 6 12 15 52 (26,26) 4 4 4

aSee Table 1 for details of each GWAS model.
bTotal number of all the significant SNPs from a pair of analyses is shown outside of parentheses and numbers of significant SNPs from each analysis considered separately are inside the parenthesis.
cProportion of overlapped SNPs was estimated as the total number of overlapped SNPs from a pair of analyses/total number of all the significant SNPs from the two analyses.
Comparisons show the input(s) that differed in each pair of GWAS comparisons.
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collinearity problems that occurred during automated
stepwise selection by inspecting results for some diag-
nostic signatures of collinearity: inflated allele effect esti-
mates at marker pairs within 10 cM of each other, and
inflated standard errors of the allele effects. Linkage
disequilibrium is extensive within mapping families, such
that the increasing power and resolution of QTL mapping
plateaus at some point with increasing numbers of
markers [29]. We believe that there would be diminish-
ing returns from a more dense linkage map than the
current, 0.2 cM dense linkage map (7386-marker map),
since we would not expect further QTL resolution
and predictive accuracy from more markers, while the
collinearity issues and computational burden would con-
tinue to increase [30].
Joint linkage–association mapping has been applied

in a two-stage process. In the first stage, the phenotype
is regressed on genetic markers to identify QTL and
estimate their effects. In the second stage, the residual
values adjusted by unlinked QTL are then regressed
on dense HapMap SNP genotypes, one chromosome at
a time. The two-stage approach has several practical
advantages in that it is convenient to implement as well
as computationally efficient. However, the sensitivity of
JLM residual outcomes to first-stage inputs contributes
to variation in second-stage GWAS outputs. In this study,
changes in inputs (genotypes, phenotypes, sample size,
or combinations of them) to the JLM QTL modeling
had relatively minor effects on the QTL position esti-
mates (Figure 3). The resulting predicted phenotypic
values from the different models had average correla-
tions of r =0.95, but the average correlations between
corresponding residual values were somewhat lower:
r =0.82. After removing QTL effects from 9 out of 10
chromosomes, the chromosome-specific residuals are com-
posed of genetic effects (‘signal’) from just one chromosome
plus error effects (‘noise’). The chromosome-specific
residual values are convenient for SNP testing, because
they remove the effects of QTL on other chromosomes,
but as a consequence, the residuals represent a lower
signal to noise ratio compared to the original pheno-
typic values. This is unavoidable because each chromo-
some contributes only a fraction of the total genetic
effects to a complex trait. The sensitivity of the residual
outcome values to first-stage inputs highlights the diffi-
culty of identifying individual variant effects that account
for only a small proportion of the total heritability.
GWAS results were unstable due to changes in the

initial inputs to the QTL analysis as well as to the
marker set used for association testing. Only about 35%
of the associated variants with RMIP ≥0.05 localized to
common 100-kb windows between analyses when the
HapMap marker set was changed (from 1.6 M SNPs to
28.5 M variants). The proportion of overlapping significant
variants in 100-kb windows was even lower (20-30%) when
using different genetic maps but the same GWAS markers.
Changing both genetic map and GWAS marker inputs
reduced the proportion of overlapping significant SNPs to
between 13 and 21% (Table 5). Only four candidate genes
contained variants that were significant (RMIP ≥0.05)
across all four GWAS analyses in a 10-kb window
(Additional file 1: Table S5). The generally poor corres-
pondence between GWAS results of the four analyses
may be due in part to the highly polygenic nature of the
trait. If many sequence variants with small effects control
the trait, but only a small proportion of the SNP associ-
ations pass stringent thresholds, then relatively small
perturbations in analysis inputs could cause substantial
differences in the particular SNPs declared as significant.
Eighteen of the 24 candidate genes identified with

GWAS model E were in QTL intervals (Table 4). Most of
the candidate gene homologs have been reported to be
involved in disease resistance (Additional file 1: Table S8).
Leucine-rich repeat transmembrane protein kinases
(LRR-PK) regulate a wide range of developmental and
defense related processes, such as hormone perception,
host specific and non-host specific defense response,
and wounding response [31]. The well-studied LRR-PK
genes include rice Xa21 (Xanthomonas resistance 21)
[32,33], Arabidopsis FLS2 (flagellin sensitive 2) [34], and
the Arabidopsis elongation factor Tu receptor (EFR)
[35]. The Arabidopsis Cytochrome P450 gene was previ-
ously identified as associated with resistance to necro-
trophic fungi and aphids [36-38]. The plant U-box 13
(spotted leaf11) mutant confers enhanced non race-
specific resistance to fungal and bacterial pathogens in rice
[39,40]. The lysine histidine transporter 1 (LHT1) mutant
of Arabidopsis affects resistance to a broad spectrum of
pathogens [41].
The SLB-associated variants identified here by JLM-

GWAS were found residing within some QTLs reported
in previous studies. Maize genome bins 3.04, 6.01, and
9.02/03 had been identified from different studies con-
tributing to major effects on SLB resistance [25,42-47].
The association with the highest RMIP (0.9) was local-
ized to 32,885,733 bp of chromosome 3, within a QTL
region identified in other populations [42,47]. The nearest
annotated gene to the associated SNP is ~60 kb down-
stream and encodes an RNA recognition motif (RRM)-
containing protein (GRMZM2G132936). Another strong
variant association (RMIP = 0.40) was in the LHT1 gene
(GRMZM2G127342) on chromosome 6; this gene was
previously suggested to be the causal factor for the classic-
ally defined rhm1 locus based on QTL fine-mapping [46].
One of the most significant SNPs (RMIP = 0.8) is 332 bp
downstream of GRMZM2G099363 encoding a caffeoyl-
CoA O-methytransferase (CCoAOMT), within a QTL
region on chromosome 9 identified in other populations
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[27,42]. CCoAOMT has been reported to participate in
lignin biosynthesis in plants [48-50]. Lignin has a particu-
lar role as a physical barrier against external pathogens,
limiting the penetration of pathogens into host cells.
Conclusion
In conclusion, we recommend use of the updated JLM
QTL (model 7) and GWAS (model E) results in the
search for candidate genes controlling resistance to
Southern leaf blight. The updated QTL model had bet-
ter prediction accuracy than the original model, and the
updated GWAS provided substantially higher marker
density, which is expected to provide a better chance
of identifying variants in linkage disequilibrium with
causal variants. Further work will attempt to validate
biologically the effects of candidate genes with the
strongest statistical evidence to provide more detailed
insight into the genetic basis of SLB resistance. Finally,
our results highlight the difficulties and contingencies
of reliably identifying genomic variants with small ef-
fects on quantitative traits.
Methods
Analysis of phenotype data
Kump et al. [8] fit a multivariate (repeated measurements)
mixed model to phenotype data collected on resistance of
NAM RILs to SLB in three environments. The data and
model described by Kump et al. (S1 supplement in [8])
were updated for this study, correcting errors identified in
the data file and applying a different approach to modeling
the flowering time covariate.
An error was found in the coding levels or dummy

values for incomplete blocks nested in population blocks
to which entries had been assigned in the 07NC trial.
Correcting this led to a significant effect of incomplete
blocks in 07NC, which was therefore included in the
updated model (BLUPs from the previous analysis are
expected to be less precise, because the random effects
of incomplete blocks were confounded with the random
effect of RILs). There were two additional minor errors
that were corrected: i) one plot in 06NC was associated
with an incorrect incomplete block; ii) two plots with
SLB data from 07NC had their entry information swapped.
Instead of fitting the effect of flowering time on disease
resistance as a quadratic function for the entire dataset
[8], the new model considered the relationship in a
more specific manner. In a pre-analysis step of the data
for each environment, ANOVA was used to compare
the fit of linear, quadratic and cubic functions relating
flowering time (measured as days to anthesis) to disease
resistance for each rating × environment × population-
specific combination. The final multivariate mixed model
was as follows:
y ¼ ΧMβþ XSςþ XS�F�Pϕþ ΖB R�Sð Þbþ ΖI B�R�Sð Þi
þ ΖC Sð Þcþ ΖR Sð Þrþ ΖPpþ ΖS�Pς � pþ ΖE Pð Þe
þ ΖS�E Pð Þς � eþ ε;

where y = [y1', y2']
' corresponding to the SLB disease rat-

ings 1 and 2, β ¼ βy1
0
; βy2

0
h i0

corresponding to the over-

all mean fixed effects for ratings 1 and 2, and so on for the
rest of the terms in the model where ς = environment
fixed effects; ϕ = rating x environment x population level
flowering time fixed effects (linear or linear + quadratic
effects [cubic was never significant in the pre-analysis]);
b = population block nested in replication × environment
random effects; i = incomplete block nested in population
block × replication × environment random effects; c =
columns nested in environment random effects; r = rows
nested in environment random effects; p = population
random effects; ς * p = environment × population ran-
dom effects; e = entry (RIL) nested in population ran-
dom effects; ς * e = environment × entry (RIL) nested in
population random effects; and ε = residual random
effects. As in [8], only those random factors significant
(LRT, p <0.10) in single environment analyses were
retained in the multi-environment model. Modeling of
variance-covariance structures was also the same as [8],
whereby a bivariate/unstructured covariance was mod-
eled on all random terms in an environment-specific
manner for nested design factors (blocking effects, row
and column effects, and residual effects) and across all
environments for the cross-classified factors (popula-
tion, population × environment, and entries nested in
populations [fitted per population]). For example, the
covariance assumed for entries nested in population 1
is as follows, where i indicates the specific cohort (i = 1
to 28; 1–26 corresponds to the biparental subpopula-
tions of NAM):

Σei¼1 ¼
σ2
ei;y1

σei;y12

σei;y21 σ2ei;y2

" #

The multivariate mixed model was used to estimate
BLUPs or phenotypic values as an equally weighted
index of the two scores for the first stage analysis of the
JLM-GWA procedure. We refer to the BLUPs used in
[8] as “original BLUPs” and those calculated for this study
as “updated BLUPs.”

Genotyping and genetic linkage map
NAM RILs were genotyped with the GBS approach by
the Institute of Genomic Diversity and the Buckler Lab at
Cornell University [15,16,51]. A consensus genetic map
was constructed based on 7386 SNPs segregating in the
NAM RILs. RILs with high levels of homozygosity and
reliable genotype scores were used in the construction of
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the updated genetic map and further genetic analysis.
A small proportion of RILs included in the previous
analysis [8] were excluded from the current analysis
because their GBS data were of insufficient quality
to permit reliable genotype calling. A set of markers
representing the linkage map at a uniform distance of
0.2 cM was retained from the larger set of GBS SNPs
scored, with missing marker data imputed based on
linkage intensities and flanking non-missing markers
using the Full Sib Family Haplotype Imputation algo-
rithm [52].

QTL detection and mapping
Joint linkage mapping was performed using stepwise se-
lection implemented in Proc GLMSelect in SAS v9.3.
Thresholds for markers to enter and stay in the model at
each step were set at α = 0.0001, as used previously [5,8].
Family main effects were always included and marker
effects were nested in families. Kump et al. [8] reported no
significant epistatic interactions after accounting for addi-
tive effects. We thus modelled the genetic architecture
with a pure additive model:

Y ¼ Aμþ
Xk

i¼1
Xiβi þ ε;

where Y is an N × 1 column vector of the updated
SLB resistance best linear unbiased prediction (BLUP)
values; A is an N × P incidence matrix relating each
individual RIL to its corresponding family, μ is a P × 1
column vector of family main effects; Xi is a N × P
matrix relating each RIL’s genotype score at locus i to
its corresponding family-specific allele effect, the ele-
ments of Xi are coded 0 for lines homozygous for the
B73 reference allele, and 2 for homozygotes with the
alternate parental allele, 1 for heterozygotes, and a non-
integer between 0 and 2 for the imputed recombinants
as described above; βi is a P × 1 column vector of the
family-specific additive effects associated with locus i
relative to B73, k is the number of significant loci
retained in the final model; and ε is a N × 1 column
vector of errors.
High collinearity hinders the selection of markers clos-

est to true QTL positions in linear regression and may
result in the selection of pairs of tightly linked loci, with
biased effect estimates. Collinearity between tightly
linked markers selected in the model was diagnosed
based on inflation of standard errors associated with
QTL effects and suspiciously large magnitudes of QTL
effects of opposite signs for markers located within 10
cM of each other [53]. When obvious collinearity be-
tween a pair of markers was detected, one of the prob-
lematic predictors was removed from the model, and
further selection was implemented with the remaining
predictors retained in model. The diagnostic process was
repeated until all predictors were free of collinearity.
After initial model selection, the model was further

optimized through an iterative process in which one
candidate marker was dropped from the full model and
replaced with an adjacent marker, and the process was
repeated sequentially, fitting each marker within 10 cM
of the original peak QTL position one at a time in place
of the original marker. The position that resulted in the
maximal R2 was recorded. This process was then re-
peated for each QTL, and then the entire process was
iterated until the model stabilized (no marker positions
changed). Allele (nested) effects for each QTL within
family were estimated in the final optimized QTL model.
To construct support intervals associated with each

QTL, a marker immediately adjacent to the QTL on the
left side was added to the full model, and the p-value for
the QTL peak itself was noted. Typically, addition of an
adjacent collinear marker reduced the Type III sum of
squares for the tested peak QTL marker, resulting in a
p >0.05 for the peak marker. An iterative process was
followed by moving the position of the added marker
sequentially along the linkage map to the left side of the
QTL peak marker until the tested QTL peak marker
became significant at the p <0.05. The point at which
the QTL peak regained significance signifies the limit of
that QTL effect, so the position of the added marker
was considered the left boundary of the QTL support
interval. The right support interval boundary was iden-
tified the same way.

Internal cross-validation of QTL model prediction
accuracy
To compare the prediction accuracies of the models
1and 7 QTL in the NAM panel, we estimated prediction
accuracies by a cross validation scheme of random sub-
sampling. The QTL were fixed at the positions selected
in the two final models, but we re-estimated the allele
effects for the two models in each subsample. Models
were compared using a subset of 4354 RILs common
between the 4694 RILs used by Kump et al. [8] and the
4413 RILs used in this analysis. Within each replication
of the cross-validation, 80% of RILs (3484) of each fam-
ily were randomly sampled without replacement from
the 4354 common RILs to use as a training set. The
QTL positions from models 1 or 7 were fit to the data
and the QTL allele effects were estimated for each of
the two models using their own linkage maps. The
remaining 20% of the RILs (870) were held out as a
validation set, and the prediction accuracies were
estimated as the within-family Pearson’s correlation
between predicted values and actual SLB resistance
BLUP values. Prediction accuracies were then averaged
over 100 random validation sets.
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Correlation analysis of JLM residual outcomes and
predicted phenotypic values
GWAS is conducted in the NAM panel on a chromosome-
by-chromosome basis; tests for association of SNPs on a
particular chromosome are conducted using residuals
values from the regression of the SLB phenotypes on the
final JLM QTL model after dropping any QTL markers on
the chromosome in question (a reduced JLM QTL model).
To evaluate the sensitivity of JLM residual outcomes to
changes in three JLM inputs, we designed a series of
computational experiments controlling for differences
in genetic maps, RIL sample sizes and phenotypic data,
and combinations of them. A series of six QTL models
were constructed with those different inputs. Correla-
tions between the chromosome-specific residual sets
were computed for all 15 pairs of model comparisons, as
well as for the corresponding predicted phenotypic value
sets. Average correlations over 10 chromosomes were
computed and compared between residual sets and pre-
dicted BLUP values. The QTL peaks and support intervals
for those six models involving the sensitivity analysis and
model 7 were positioned on the 7386-marker map to
examine concordance of the QTL mapping.

GWAS and identification of candidate genes
The maize HapMap 1 data set includes 1.6 M SNPs poly-
morphic between B73 and at least one other founder line.
We also used an updated version of the maize HapMap 2
data set (dated March 28, 2012), which includes 27.3 M
SNPs. About 60% of HapMap 1 SNPs are not included in
HapMap2. Therefore, we combined the two SNP data sets
and retained 28.2 M unique SNPs. In a few cases, the
founder allele calls for the same SNP in the two data sets
differed; we retained the HapMap 1 allele calls in such
cases, to permit direct comparison to HapMap 1 results.
We also included 228,212 read-depth variant (RDV) calls
reported by Chia et al. [14], resulting in a total of 28.5 M
variants tested for association with SLB resistance. Each
read-depth variant represents either an increase or de-
crease of log2 or more in read depth along a 10 kb win-
dow with respect to the reference B73 genome.
The RIL residuals from reduced JLM models (drop-

ping QTL from one particular chromosome) represent
the phenotype values for which most of the genetic
effects are due to sequence variation on the chromo-
some considered. GWAS was performed by randomly
sampling 80% of the RILs from each family and analyz-
ing chromosome by chromosome with forward step-
wise selection of the combined HapMap 1, 2 SNPs and
RDVs at p <1 × 10−7. An exception to this was the
original GWAS model A, which used a threshold of
p <1 × 10−4 for inclusion in the chromosome-specific
model [8]. The much higher number of variants avail-
able for testing in the HapMap 2 data set requires a
more stringent threshold to prevent overfitting of
GWAS models. This subsampling and analysis proced-
ure was repeated 100 times. The resample model inclu-
sion probability (RMIP) was calculated for each variant
as the proportion of 100 data samples in which the
variant was selected in the regression model. Candidate
genes encompassing or near (within ~100 kb) the vari-
ants with strong association signals (RMIP ≥0.25) were
identified in the maize B73 genome using the genome
browser at http://www.maizegdb.org [54].

GWAS result comparison
SNPs associated with variation in SLB resistance at two
RMIP thresholds (RMIP ≥ 0.05 or RMIP ≥ 0.25) using
GWAS model A were compared to those identified with
model E. Significant variants from the two GWAS were
compared on the basis of their positions on AGP version
2 maize B73 reference genome. Positions of variants
identified in different analyses were compared using
each of 10-kb, 100-kb and 200-kb windows. The variant
match rate was calculated as the ratio of variants from
different analyses found within common windows to all
significant variants for a pair of analyses. To determine
the relative importance of changes in different inputs
to GWAS, each combination of genetic map, GWAS
marker density, and residual inputs were used to per-
form separate GWAS analyses, and results were com-
pared on the basis of position matches in windows.
To determine the effect of the number of data resamples

on the stability of RMIP estimates, we analyzed 1000 ran-
dom samples of 80% of all NAM families and performed
model E GWAS analyses on chromosomes 3 and 10. We
chose chromosomes 3 and 10, as they represent the
range of numbers of QTL mapped on each chromosome
while greatly reducing the computational burden com-
pared to whole genome analyses. We then compared the
consistency of RMIP values from five disjoint samples of
100 resamples each, five disjoint samples of 200 each, and
five random partitionings of the 1000 analyses into pairs of
500 resamples. The rate of matching associations at each of
10-kb, 100-kb, and 200-kb windows with RMIP ≥0.05 and
RMIP ≥0.25 was computed for all pairwise comparisons
of the five association analyses at each sample size.

Availability of supporting data
The data sets supporting the results of this article are
available at the Panzea.org repository, http://panzea.
org/db/gateway?file_id=Kump_etal_2011_Nat_Genet_
SLB_pheno_data (for raw data) and at the LabArchives.
com repository, https://mynotebook.labarchives.com/share/
SLB%2520GWAS%2520reanalysis/MjIuMXw0MDg2OC
8xNy0yL1RyZWVOb2RlLzc0NDQwODg5fDU2LjE==
(for updated BLUPs and SAS codes to perform NAM joint
linkage analysis).
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