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Abstract

were changed in the fungus treated with itraconazole.

Background: Itraconazole is currently used to treat paracoccidioidomycosis. The mechanism of action of azoles has
been elucidated in some fungi, although little is known regarding its mechanism of action in Paracoccidioides spp.
The present work focused on identification of regulated transcripts using representational difference analysis of
Paracoccidioides spp. yeast cells treated with itraconazole for 1 and 2 h.

Results: Paracoccidioides Pb01 genes up-regulated by itraconazole included genes involved in cellular transport,
metabolism/energy, transcription, cell rescue, defense and virulence. ERG11, ERG6, ERG3, ERG5 and ERG25 were
up-regulated at multiple time points. /n vivo infection experiments in mice corroborated the in vitro results. Ergosterol
levels and distribution were evaluated in Paracoccidioides Pb18 yeast cells, and the results demonstrate that both factors

Conclusion: To our knowledge, this is the first transcriptional analysis of Paracoccidioides spp. exposed to a triazole
drug. Here acetyl seems to be intensively produced from different metabolic pathways to produce ergosterol by the
action of ergosterol synthesis related enzymes, which were also affected in other fungi. Among the genes affected, we
identified genes in common with other fungi, as well as genes unique to Paracoccidioides PbO1. Those genes could be
considered target to new drugs. Voltage-gated Ca*" alpha subunit (CAV), Tetracycline resistance protein (TETA) and
Hemolisyn-iii channel protein (HLYiii) were found only here and a probably involvement with resistence to itraconazole
could be investigated in the future. However our findings do not permit inference to current clinical practice.
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Background

Paracoccidioides spp., a complex of several phylogenetic
species, is the agent of paracoccidioidomycosis (PCM).
Paracoccidioides spp. is a thermodimorphic fungus, which
grows in the soil as saprobic mycelium, resulting in the
formation of propagules, which initiate infection in
humans when inhaled into the respiratory tract. Subse-
quently, in the lung, the mycelia propagules develop
into yeast cells [1]. PCM is endemic in Latin America
[2], with 80% of cases reported in Brazil, where it is the
eighth-leading cause of mortality among infectious and
parasitic diseases, establishing it as a serious public
health problem [3,4].
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Itraconazole is suggested to be the best alternative for
first-line therapy of PCM and should be administered
over a long period [5]. Itraconazole is a triazole antifun-
gal drug, which are multi-ringed synthetic compounds
containing three nitrogen atoms in the azole ring. Mech-
anistically, the triazole drugs inhibit the synthesis of ergos-
terol, an essential component of fungal cell membranes,
and cause abnormalities in the membrane permeability
and consequently cell death [6]. Itraconazole and related
azole derivatives act by blocking the ergosterol biosyn-
thesis pathway through the inhibition of the fungal cyto-
chrome P450 enzyme lanosterol demethylase (Ergl1) [7].

The global response to azoles, including itraconazole,
of fungi such as Saccharomyces cerevisiae [8], Trichophy-
ton rubrum (9], Aspergillus fumigatus [10] and Candida
albicans [11,12] has been studied using transcriptional
and proteomic approaches. In general, the findings re-
vealed both specific and nonspecific antifungal-induced
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changes in gene and protein regulation. There was an
increase in expression of the genes involved in lipid,
fatty acid and sterol metabolism, as well as genes in-
volved in drug adaptation, including cell stress response,
drug efflux and small molecule transport.

Despite of the importance of Paracoccidioides spp.,
nothing is known about the mechanism of itraconazole
inhibition in this pathogen. Here, cDNA libraries were
constructed to obtain expressed sequence tags (ESTs) of
Paracoccidioides spp. The representational difference ana-
lysis (RDA) technique was used to identify changes in the
transcriptional profile of Paracoccidioides spp. in response
to itraconazole, with the aim of identifying the adaptative
response of the fungus to the compound. Transcript levels
were also measured during the infection process. In
addition, the transcript levels of ERG genes, ergosterol
levels and ergosterol localization were evaluated.

Results

Libraries characteristics

A total of 861 ESTs were successfully sequenced. From
these, 224 up- and 208 down-regulated ESTs were obtained
from yeast cells after incubation with itraconazole for 1 h,
containing 55 singlets and 26 contigs for up-regulated
transcripts and three singlets and 20 contigs for down-
regulated ones. In addition, 230 up- and 199 down-
regulated ESTs were obtained from yeast cells after
incubation with itraconazole for 2 h, containing three
singlets and 10 contigs for up-regulated and seven singlets
and 12 contigs for down-regulated. The ESTs obtained
were submitted to the National Center for Biotechnology
Information (NCBI) database under accession numbers:
LIBEST_028165 Paracoccidioides Pb01 itraconazole 1 h up
Library, LIBEST_028164 Paracoccidioides PbOl itracona-
zole 1 h down Library, LIBEST_028167 Paracoccidioides
Pb01 itraconazole 2 h up Library and LIBEST_028166
Paracoccidioides Pb01 itraconazole 2 h down Library.

The ESTs were processed using the Blast2GO pro-
gram, which allowed us to annotate and identify the dif-
ferent functional groups. The functional classification
was based on the homology of each EST, considering
e-values <107 significant, using BLASTx against the
GenBank non-redundant database and the MIPS func-
tional annotation scheme (Table 1). The analyses indicated
the presence of transcripts from different functional
categories: metabolism/energy, transcription, cell res-
cue, defense and virulence, protein synthesis and bio-
genesis, protein fate, cellular transport, biogenesis of
cellular components and cellular communication.

Global gene expression monitoring in Paracoccidioides
Pb01 upon itraconazole treatment

A total of 86 genes were differentially expressed upon
exposure to itraconazole, of which 55 were up-regulated
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and 31 were down-regulated. ESTs obtained from 1 h
treatment with itraconazole were clustered into func-
tional classes which were defined as metabolism/energy
(26.12%); transcription (17.09%); cell rescue, defense
and virulence (10.32%); protein synthesis and biogenesis
(2.90%); protein fate (2.90%); cellular transport (23.87%);
biogenesis of cellular components (1.61%); cellular com-
munication (1.29%); and unclassified proteins (13.87%).
ESTs from 2 h samples were clustered into functional
classes which were defined as: metabolism/energy (11.61%);
transcription (19.5%); cell rescue, defense and virulence
(20.74%); protein synthesis and biogenesis (0.82%); protein
fate (0.41%); cellular transport (41.90%); and unclassified
protein (4.97%) (Figure 1).

It were found genes precursors of acety groups, from
different metabolic pathways, such as acyl-CoA dehydro-
genase (ADH), isovaleryl-CoA dehydrogenase (IVD),
pyruvate kinase (PK) and cysteine desulfurase (CYSD).

In addition, genes precursors to the components of mem-
brane and cell walls were found, such as phospholipids and
carbohydrates, as well as genes related to detoxification.
These components are diacylglycerol o-acyltransferase
(DGAT), chitin synthase regulator 2 (CHSr), hemolysin-
iii channel protein (HLYiii), tetracycline resistance pro-
tein (TETA), voltage-gated Ca®>* alpha subunit (CAV)
and the MFS transporter.

Expression profiles of genes in Paracoccidioides Pb01
yeast cells

Confirmation of the expression levels of the ESTs found
in the redundancy analysis was performed by qRT-PCR
analysis, including Paracoccidioides Pb01 glutathione
S-transferase (GST), (CHSr), betaine aldehyde dehydro-
genase (BADH), CYSD, ribulose-phosphate 3-epimerase
(RP3E), carnitine/acyl-carnitine carrier (CAR), C6 transcrip-
tion factor (CTFIB), ADH, heat shock protein (HSP30),
GPRI1/FUN34/YAAH family protein, PK, DGAT, IVD,
ubiquitin-protein ligase (U/BI), family integral membrane
protein (IMP), HSP10, HSP70 and ATP synthase fO subunit
9 (ATPS9). These genes were chosen because of their high
frequency or as representatives of different functional
categories. Differential expression profiles of genes
corroborated RDA data (Figure 2A).

Analysis of ERG transcripts by qRT-PCR

Because ERG transcripts and proteins levels were changed
in the presence of azoles in fungi such as 7. rubrum [9],
S. cerevisiae [8], C. albicans [11,12] and A. fumigatus [13]
we investigated whether ergosterol synthesis-related tran-
scripts such as lanosterol 14 a-demethylase (ERG11), C5,
6-desaturase (ERG3), delta-24-sterol C-methyltransferase
(ERG6), C-22 sterol desaturase (ERGS5) and C-4 methyl
sterol oxidase (ERG25) were changed in Paracoccidioides
PpO1 after 1 h, 2 h and 6 h of exposure to itraconazole



Table 1 Genes differentially expressed in Paracoccidioides in response to treatment with itraconazole

Functional category Gene product Best hit/Paracoccidioides e-value Number of occurrences®
genome locus 1h >h
Metabolism/Energy 3-deoxy-7-phosphoheptulonate synthase (DAHP) PAAG_03237 9.2e-29 +2
Cysteine desulfurase (CYSD) PAAG_05850 2.2e-58 +22
Betaine aldehyde dehydrogenase (BADH) PAAG_05392 2.1e-19 +2
NADP-specific glutamate dehydrogenase (GDH) PAAG_07689 1.6e-26 +1
NAD dependent epimerase dehydratase (EDH) PAAG_05580 1.6e-30 +1
Succinyl 3-ketoacid-coenzime A transferase (SCOT) PAAG_05093 26e-17 +1
Ribulose-phosphate 3-epimerase (RP3E) PAAG_01632 6.5e-42 -17
Aconitase (ACO) PAAG_05328 5.8e-18 -2
D-amino-acid oxidase (DAAO) PAAG_02361 24e-38 -3
Er-associated proteolytic system protein (ERAD) PAAG_04633 8.6e-40 —4
Isovaleryl-CoA dehydrogenase (VD) PAAG_06830 1.0e-23 +4
Acyl-CoA dehydrogenase (ADH) PAAG_05211 1.0e-30 +1
Acyl-CoA dehydrogenase (ADH) PAAG_01222 2.1e-19 -8
Hormone-sensitive lipase (LIPE) PAAG_06218 7.6e-37 +1
Pyruvate kinase (PK) PAAG_06380 3.1e-31 +1
Aldehyde dehydrogenase (ALDH) PAAG_05249 1.0e-44 —4
Glutamine amidotranferase subunit pdxT (GLAT) PAAG_07505 1.3e-23 =5
ATP synthase fO subunit 9 (ATPS9) PAAG_12009 3.0e-17 +22
Short chain dehydrogenase (DHS-14) PAAG_04787 3.2e-48 +1
Transcription Transcription factor (STEA) PAAG_00406 8.4e-50 +3
Isoform cra_b PAAG_05467 32e-15 +1
Fator transcrigao tipo CCCH PAAG_02735 4.2e-27 +1
Pirin (PIR) PAAG_04726 2.5e-52 +7 +47
RING finger protein (RNF) PAAG_06129 15e-18 +2
Apses transcription (APSES) PAAG_02379 1.6e-30 +1
mMRNA-nucleus export ATPase PAAG_04548 40e-45 =27
C6 transcription factor (CTFIB) PAAG_01359 45e-65 —12
Cell rescue, Defense and Virulence
Survival factor1 (SVF1) PAAG_02425 4.7e-36 +1
Gluthatione S-transferase (GST) PAAG_03931 1.0e-33 +1
Vanadate resistence protein PAAG_03940 94e-54 +2
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Table 1 Genes differentially expressed in Paracoccidioides in response to treatment with itraconazole (Continued)

Heat shock protein (STI7)

Heat shock protein (HSP10)

Heat shock protein (HSP30)

Heat shock protein (HSP70)

Heat shock protein (HSP60)
Protein synthesis and biogenesis

ATP-dependent RNA helicase (ELF4A)

Serine threonine-protein kinase (SRKT)

40S ribosomal protein S4 (RPS4)
Protein fate (folding, modification, destination)

Ubiquitin-protein ligase (UBI)

WD repeat containing protein (WDR)

Ubiquitin thioesterase (OTUT)

Ubiquitin fusion degradation protein (UFD)

Proteasome component (PREP6)
Cellular transport, transport facilities and transport routes

Tetracycline resistance protein (TETA)

Mfs transporter (MFS)

Nucleoporin (SONB)

Voltage-gated Ca”* alpha subunit (CAV)

Sodium-dependent phosphate transporter (SPIT)

Zinc finger membrane protein (DHHC)
autophagy regulatory protein
GPR1/FUN34/YAAH family protein
Carnitine/acyl carnitine carrier (CAR)
General secretion pathway protein.
Family integral membrane protein (IMP)
Hemolisyn-iii channel protein (HLYiii)
Integral membrane MPV17/PMP22
Vesicular fusion protein (SECT7)
Biogenesis of Cellular Components (cell wall/membrane)

Chitin synthase regulator 2 (CHSI)

PAAG_06811
PAAG_05142
PAAG_00871
PAAG_08003
PAAG_08059

PAAG_00689
PAAG_06726
PAAG_03816

PAAG_02632
PAAG_00103
PAAG_08841
PAAG_01475
PAAG_07802

PAAG_01353
PAAG_02191
PAAG_02655
PAAG_01353
PAAG_03892
PAAG_06616
PAAG_04970
PAAG_08587
PAAG_03452
PAAG_05009
PAAG_03183
PAAG_01871
PAAG_02868
PAAG_06233

PAAG_04860

2.2e-24
6.5e-32
54e-52
44e-40
4.3e-55

1.3e-24
7.6e-66
7.3e-37

3.7e-11
1.0e-25
1.0e-32
1.0e-62
6.1e-5

1.0e-56
7.3e-56
1.1e-36
9.9e-15
1.5e-11
6.6e-53
26e-33
1.2e-47
1.7e-30
2.7e-60
4.1e-50
6.0e-34
6.6e-37
2.8e-77

20e-17

+2

-26

+7

+3

+2
-33

+3
=12

+2

+1
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Table 1 Genes differentially expressed in Paracoccidioides in response to treatment with itraconazole (Continued)

Oxysterol-binding protein (OSBP)

Diacylglycerol o-acyltransferase (DGAT)

Phosphatidyl synthase (PHS)

Cellular communication/Signal transduction mechanism

Unclassified protein

FluG Domain-containing protein

Leucine —rich repeat Igi member 4 (LG/4)

Conserved Lysine protein (LYS)
Conserved hypothetical protein
Conserved hypothetical protein
Conserved hypothetical protein
Conserved hypothetical protein
Conserved hypothetical protein
Conserved hypothetical protein
Conserved hypothetical protein
Conserved hypothetical protein
Conserved hypothetical protein
Conserved hypothetical protein
Conserved hypothetical protein
Conserved hypothetical protein
Conserved hypothetical protein
Conserved hypothetical protein
Conserved hypothetical protein
Conserved hypothetical protein
Conserved hypothetical protein
Hypothetical protein

Hypothetical protein

Domain-containing protein (DUF1688)

PAAG_06807
PAAG_07527
PAAG_03571

PAAG_05486
PAAG_00833
PAAG_03092
PAAG_02735
PAAG_01353
PAAG_07364
PAAG_00520
PAAG_02379
PAAG_02210
PAAG_02236
PAAG_03559
PAAG_03596
PAAG_08759
PAAG_07907
PAAG_04000
PAAG_06816
PABG_06807
PAAG_01871
PAAG_07034
PADG_04444
PAAG_02259
PAAG_02991
PAAG_04000

3.6e-45
14e-64
6.5e-34

1.0e-53
1.0e-25
6.2e-43
13e-39
1.3e-18
5.8e-30
3.9e-27
1.5e-19
1.8e-37
1.0e-15
4.8e-47
44e-83
1.5e-63
1.0e-42
1.0e-44
1.7e-8
1.0e-51
1.0e-51
34e-33
6.7e-17
1.0e-18
4.9e-37
7.5e-17

+2

-3

+2

+6

+2

“Occurrences are expressed as the fold change relative to the value for the nontreated control; +, induction; —, repression.
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Figure 1 Functional classification of genes responding to itraconazole in Paracoccidioides. cONAs obtained from RNAs from yeast cells
after incubation with itraconazole for 1 h (A) and 2 h (B). The numbers of ESTs are indicated with white bar segments for the up-regulated genes
and black bar segments for the down-regulated genes. The annotation of genes was performed using the Blast2GO program with a cut-off for
significant homology of < 1e™°. Sequences were grouped into functional categories according to their classification in the MIPS functional catalog.
Additionally, sequences were grouped into functional categories using the PEDANT 3 database. Each functional class is represented as a segment
and expressed as a number of ESTs in each library.

using specific oligonucleotides in qRT-PCR. The results
showed that all transcripts were increased at all time points
(Figure 2B).

Paracoccidioides Pb18 transcripts identified in mice
treated with itraconazole

We investigated whether the regulated transcripts identi-
fied by RDA experiments using Pb01 also occurred in
another cryptic species, Pb18, in vivo. Balb/c mice in-
fected with Paracoccidioides Pb18 were treated with itra-
conazole, and spleens were removed. The treatment
with itraconazole reduced the fungal burden 42% in the
spleens. RNAs extracted from recovered fungus were an-
alyzed in qRT-PCR experiments using MFS, GST and
CHSr genes. In agreement with the RDA data, all the
evaluated genes were up-regulated in spleen fungal sam-
ples after treatment with itraconazole (Figure 2C).

GST-specific activity correlates with transcriptional data
Because GST transcripts were up-regulated in our study
and are described in the literature as important for the
detoxification of many different xenobiotics [14], we eval-
uated the GST-specific activity in protein extracts of fun-
gus grown in the presence of itraconazole. GST-specific
activity in the presence of itraconazole (0.26 pmol/mg/
min) was 6.5 times higher than in the absence of itracona-
zole (0.04 pmol/mg/min) (Figure 2D).

Analysis of the ergosterol level
Because transcript levels of ergosterol pathway compo-
nents were changed in the presence of itraconazole, we

evaluated if itraconazole could disturb the total intracellular
level of ergosterol. The method for quantification of ergos-
terol used here takes advantage of the unique four-peak
spectral absorption pattern produced by extracted sterols
between 240 and 300 nm. Comparing the scans obtained
from control (1.0 g of ergosterol/g yeast cells to Ph01; 1.2 g
of ergosterol/g yeast cells to Pb18) and the corresponding
itraconazole-exposed cultures (0.80 g of ergosterol/g yeast
cells to Pb01; 0.62 g of ergosterol/g yeast cells to Pb18), a
decrease of 39% and 48.6% was identified in the ergosterol
content of Paracoccidioides P01 and Pb18 yeast cells, re-
spectively grown in the presence of itraconazole.

Effect of itraconazole on ergosterol localization in
Paracoccidioides Pb01 and Pb18 yeast cells

Because itraconazole induces changes in transcript levels
in the ergosterol pathway and disturbs the total intracel-
lular ergosterol content [15], the localization of ergos-
terol molecules was assessed in Paracoccidioides Pb01
and Pb18 yeast cells. Ergosterol was detected by its abil-
ity to bind to the dye filipin. This characteristic has been
used to detect ergosterol in dimorphic fungi [16], yeasts,
filamentous fungi [17,18] and mammalian cells [19].

The distribution of ergosterol on the surface of
Paracoccidioides Pb01 and Pb18 yeast cells treated with
itraconazole was strikingly different from that observed
in the control untreated cells. Control cells showed
a homogeneous fluorescence distribution (Figure 3A
and C). In contrast, the cells treated with itraconazole
displayed dark regions without filipin fluorescence
(Figure 3B and D).
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Figure 2 Relative fold change for genes determined by qRT-PCR. The gene expression profile for (A) twenty genes listed in Table 2, (B) the
ergosterol pathway genes and (C) in vivo samples of Paracoccidioides recovered directly from systemically infected mouse spleens. Changes in
gene expression levels were calculated by relative standard curve method using the control, untreated samples as the calibrator. (D) GST activity
was measured in protein extract from Paracoccidioides Pb18 yeast cells grown i
standard error of the mean (+SE) from three independent experiments performed in triplicate, and significant fold-changes are denoted by asterisks in
the figure (*p < 0.05). Data were normalized to the transcript encoding the a-tubulin protein. Student's t test was used for statistical comparisons.
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in the presence or absence of itraconazole. Each error bar represents the

A model for the Paracoccidioides spp. adaptation to the
itraconazole

The most prominent adaptations undergone by Paracoc-
cidioides spp. during exposure to itraconazole are sum-
marized in Figure 4. See the Discussion for details.

Discussion

Among the Paracoccidioides Pb0O1 genes regulated by
itraconazole were those involved in cellular transport,
metabolism/energy, transcription, cell rescue, defense
and virulence. Similar and different groups were also
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displayed heterogeneous fluorescence.

Figure 3 Sterol distribution in Paracoccidioides spp.. Yeast cells were fixed, stained with filipin and observed by fluorescence microscopy.
Staining in the control Pb01 (A) and Pb18 (C) cells was diffuse with homogeneous labeling. Pb01 (B) and Pb18 (D) cells treated with itraconazole

observed in other fungi in response to different azoles
[8,9,11,12,15] (Figure 5). Among the genes affected, we
identified genes in common with other fungi, as well as
genes unique to Paracoccidioides. In fact few Paracoc-
cidioides spp. genes were shared with genes from other
fungi. This could be due to different techniques and
classes of azoles used in the works. The comparison
with ither fungi show that cell processes related to
stress response, xenobiotic efflux are trigered upon
itraconazol in different fungi. The genes exclusively
regulated in Paracoccidioides spp. reveal that fungi re-
sponse to drugs can partially involve specific processes
that may be related to different sensibility of differetn
fungi to itraconazol treatment. This could be due to
different techniques and classes of azoles used in the
works.

Although ERG genes were not identified in the RDA
experiments, qRT-PCR results showed that ERGII,
ERG3, ERG6, ERG5 and ERG25 genes were temporally
regulated, particularly after longer contact with the drug
(6 h). Acetyl is a carbon donator in the cell production
of ergosterol [8]. Acetyl CoA seems to be intensively
produced due to up-regulation of transcripts from differ-
ent metabolic pathways, including lipid degradation by
hormone-sensitive lipase (LIPE) and ACAD and amino
acid metabolism by /VD. Acetyl CoA pool increasing in
the cell is optimized with reduction of aconitase trasn-
cripts (ACO), once this enzymes participates of the
acetyl-CoA oxidation in TCA. In addition, the induction

of BADH and CYSD could lead to production of thiamine,
a cofactor to pyruvate dehydrogenase (PDH), which pro-
duces acetyl CoA from pyruvate, whose production is
increased by the action of pyruvate kinase (Figure 4).

Ergosterol is produced by the action of erg enzymes
[20]. Here, the action of itraconazole on ergosterol bio-
synthesis and its distribution on Paracoccidioides Pb01
and Pb18 yeast cells surface was documented. Ergosterol
is an essential component of fungal plasma membranes;
it affects membrane permeability and the activities of
membrane-bound enzymes. This sterol is a major com-
ponent of secretory vesicles and has an important role in
mitochondrial respiration and oxidative phosphorylation
[21,22]. It can thus be expected that changes in ergos-
terol levels and in sterol structure could influence the
activities of several metabolic pathways. The mechanism
responsible for the global up-regulation of ERG genes in
response to azoles remains unclear. One theory postulates
that depletion of ergosterol or another sterol formed late
in the pathway increases global ERG expression; another
argues that accumulation of an early substrate or toxic
sterol by product induces ERG expression [23].

The correlation between cell wall integrity and perturb-
ation of the ergosterol pathway in T. rubrun suggests that
changes in the cell wall may compensate for stress in the
plasma membrane [9]. The phospholipid level in the cell
membrane seems to be affected in Paracoccidioides Pb01,
as indicated by up-regulation of DGAT and phosphatidyl
synthase (PHS), which produce phospholipids. DGAT has
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Figure 4 Hypothetical model for the mode of action of itraconazole against Paracoccidioides. The up-regulation of transcripts such as
hormone-sensitive lipase, ADH, IVD and ACO from different metabolic pathways would produce acetyl CoA that would be used for ergosterol
synthesis by ERG enzymes. Acetyl CoA would produce phospholipids for the membrane by the action of DGAT and PHS. The induction of BADH
and CYSD would lead to production of thiamine, a cofactor of PDH, which would also produce acetyl CoA. GST would conjugate glutathione to
xenobiotics and would remove itraconazole from the cell using transporters, allowing for detoxification.
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been found in several transcriptomes to date, indicating it
may be important for the fungi response to azoles [15,24].

CHS and their regulatory genes are important for the
growth and virulence of human fungal pathogens, includ-
ing C. albicans [25,26]. It has been observed that high
ergosterol levels can inhibit chitin synthases, whereas
C. albicans mutants with low ergosterol content showed
increased levels of chitin synthesis [27]. CHSr was up-
regulated in Paracoccidioides Pb01 in the presence of
itraconazole.

Glutathione S-transferases, which are important for the
detoxification of many xenobiotic compounds, are a family
of multifunctional enzymes that play a role in cellular de-
toxification and excretion of a wide variety of xenobiotic
substances [14]. It has been reported that Glutathione
S-transferases correlate with fungi defense in response to
damage caused by oxidative stress, xenobiotics and anti-
fungal compounds [28]. GST was up-regulated in Paracoc-
cidioides in the presence of itraconazole.

In Paracoccidioides Pb01, genes encoding several clas-
ses of transporters were up-regulated upon exposure to
itraconazole. MFS transporter and TETA, for example,
have been implicated in azole resistance [29]. Drug
resistance is often associated with the overexpression of
genes encoding efflux pumps, which is presumed to
prevent intracellular accumulation of itraconazole in
fungus [9,30]. The up-regulation of Paracoccidioides
Pb01 MFS, GST and CHSr transcripts also occur in vivo,
as demonstrated here by qRT-PCR using RNAs ex-
tracted from spleens of mice.

It should be noted that a number of genes involved in
small molecule transport, especially in ion transport,
were differentially expressed in Paracoccidioides Pb01 in
response to itraconazole. Up-regulated genes included
CAV, IMP and HLYiii. Down-regulated genes included
(CAR) and integral membrane MPV17/PMP22. The in-
hibition of ergosterol, which is an essential component
of fungal biological membranes, including the plasma
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Figure 5 Distribution of genes responding to itraconazole in P. brasiliensis isolate Pb01. Data are shown for a subset of genes that were
significantly up or down regulated (e-values <107'9%). The search for functional categories was performed by using the Blast2GO program that joints in
one application GO annotation based on similarity searches with statistical analysis and highlight visualization on directed acyclic graphs. GO terms
shown are those that were considered significantly over represented by the analysis. Sequences were grouped in functional categories according to
the classification of the MIPS functional catalog (Munich Center for Protein Sequences; http.//mips.gsf.de/). Specific genes for P. brasiliensis isolate Pb01
are underlined, genes found in other fungi when exposed to itraconazole and other azoles are represented with * and represented with 9, respectively.
Numbers in parentheses represent changes in gene expression. Positive signal indicate induction, and negative indicate repression.

membrane, can lead to destabilization of the membrane,
leakage of cellular components and influx of extracellu-
lar ingredients. Therefore, the regulation of transporter
genes is necessary to maintain ionic homeostasis within
the fungal cell when membranes are damaged by itraco-
nazole [9,31].

Conclusion

This is the first study to analyze the changes in the Para-
coccidioides spp. gene expression profile following tri-
azole exposure. Among the genes affected, we identified
genes unique to Paracoccidioides Pb01, as well as genes
in common with other fungi. In vitro results were vali-
dated by in vivo experiments. The results obtained here
should assist in understanding the mode of action of
itraconazole in Paracoccidioides spp.

Methods

Culture and cell viability

Paracoccidioides Pb01 and Pb18 have been studied at
our laboratory previously [32,33]. Ph01 and Pb18 yeast
phase was maintained in vitro by subculturing at 36°C in
Fava Netto’s semisolid medium [34] every seven days.
Fava Netto’s semisolid medium components were as
follows: 1% (w/v) peptone, 0.5% (w/v) yeast extract, 0.3%
(w/v) proteose peptone, 0.5% (w/v) beef extract, 0.5%
(w/v) NaCl, 4% (w/v) glucose and 1.2% (w/v) agar, pH 7.2.
The determination of ICs, was performed according to
Santos et al. [23] and in accordance with the macro dilu-
tion method described in the Clinical and Laboratory
Standards Institute (CLSI) M27-A2(2005), with modifica-
tions. To determine the ICs, yeast cells in the exponential
growth phase were maintained in the chemically defined
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solid medium McVeigh Morton (MMcM) [35], for seven
days at 36°C and inoculated in liquid MMcM. A stock
solution (1 mg/ml) containing sterile itraconazole (Sigma-
Aldrich, St. Louis, MO, USA) was prepared in dimethyl-
sulfoxide (DMSO). The final concentration of the solvent
in the medium never exceeded 2% (v/v) and had no effect
on the cell growth. From this stock solution, the drug was
serially diluted in sterile MMcM (pH 7.0), producing a
final concentration of 1.25-320 ug/ml (5-1260 mM). The
drug concentration range was selected based on previous
studies [36]. The controls without antifungal and DMSO
were included. The concentrations of inoculums were
determined by spectrophotometer using a yeast cell sus-
pension in sterile 0.85% NaCl with 10% transmittance at
520 nm. The mixture was stirred to disperse aggregated
cells. Yeast cells were collected from the liquid MMcM
and counted in a Neubauer chamber. An initial inoculum
containing 5 x 10° cells/ml was collected, and 0.1 ml ali-
quots were added to 2.4 ml of MMcM containing the drug
dilutions. The fungus was grown at 36°C under agitation
at 150 rpm for five days. The ICs, was determined using
measurements of the turbidity of the medium [37]. The
experiments were processed in triplicate.

For viability experiments, yeast cells were grown in
the presence or absence of 4 pg/ml (ICsp) of itraconazole
and were kept in liquid MMcM [35] for 1, 2, 3, 4 and
5 h at 36°C before the viability of the cells was deter-
mined by Trypan Blue method [38]. In brief, cells from
all incubation times were incubated with a dye solution
(0.1% Trypan Blue Stain) for 5 min at room temperature,
and viability was assessed by counting viable and un-
viable cells in a Neubauer chamber.

RDA: RNA extraction and cDNAs synthesis
Paracoccidioides Pb01 yeast cells were cultured in
MMcM broth medium in the presence or absence of
4 pg/ml of itraconazole for 1 h and 2 h, corresponding
to a viability of 95% and 85%, respectively. For RNA iso-
lation, cells were harvested by centrifugation, washed in
cold water and the RNA from driver and tester cultures
were extracted with Trizol (Invitrogen, Carlsbad, CA,
USA) according to the manufacturer’s instructions. RNA
quality was assessed using the Ajgonm/Azgonm ratio. The
RNA was treated with DNAse I RNAse-free (Invitrogen)
to remove chromosomal DNA. The concentration and
purity of RNA were determined by spectrophotometer,
and RNA integrity was visualized after electrophoresis
on 1.2% agarose gel. The RNAs were used to construct
subtracted libraries and qRT-PCR experiments.

The cDNA fragments used for processing the RDA
were generated according to the protocol previously
described by Hubank and Schatz [39] and modified by
Pastorian et al. [40]. Briefly, first-strand cDNA synthesis
was performed with 1 pg total RNA, obtained from
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driver and tester cultures, using SuperScript III reverse
transcriptase (Invitrogen). The first-strand cDNA obtained
(3 pl) was used as template to synthesize the second-strand
of cDNA. The ¢cDNA was prepared using the SMART
PCR ¢DNA synthesis kit (Clonetech Laboratories, Palo
Alto, CA, USA).

RDA: Subtractive hybridization
The cDNAs were digested with the restriction enzyme
Sau3Al. Two successive rounds of subtraction employ-
ing different adapters (J-Bam and N-Bam, Table 2) were
performed to enrich the differentially expressed se-
quences. Four cDNA-subtracted libraries were con-
structed. The c¢cDNA libraries containing up-regulated
genes were constructed from driver cDNA obtained
from Paracoccidioides PbO1 yeast cells grown for 1 h
and 2 h in MMcM medium and from tester cDNA,
which was synthesized from RNA extracted from Para-
coccidioides Pb01 yeast cells grown for 1 h and 2 h in
MMcM medium plus itraconazole. The ¢cDNA libraries
containing down-regulated genes were constructed from
driver cDNA, obtained from Paracoccidioides Pb01 yeast
cells, grown for 1 h and 2 h in MMcM medium plus
itraconazole and tester cDNA, which was synthesized
from RNA extracted from Paracoccidioides Pb01 yeast
cells grown for 1 h and 2 h in MMcM medium. The
resulting products were purified using a GFX kit (GE
Healthcare, Uppsala, Sweden). The tester-digested
¢DNA, from 1 h and 2 h samples, was linked to adapters
(a 24-mer annealed to a 12-mer) and amplified by PCR.
For the generation of the differentially up- and down-
regulated products, the tester and driver cDNAs of both
conditions were mixed separately; the hybridization oc-
curred at 67°C for 18 h and the amplification occurred
by PCR using the oligonucleotide matching the 24-mer
adaptor [41]. The successive rounds of subtraction and
amplification were performed using hybridization tester-
driver ratios of 1:10 and 1:100. Adapters (Table 2) were
changed between cross-hybridization, and the different
products were purified using the GFX kit. After the sec-
ond subtractive reaction, the cDNA was purified and
cloned directly into the pGEM-T Easy vector (Promega,
Madison, WI, USA). Escherichia coli XL1 Blue compe-
tent cells were transformed with the ligation products.
The plasmid DNAs were prepared from selected clones
of subtracted libraries and sequenced with the ET Dye
Terminator kit Dyenamic (GE Healthcare) in a Mega-
BACE 1000 DNA sequencer (GE Healthcare) using
primers corresponding to the pPGEM-T Easy vector.

Processing and annotation of ESTs

The sequences of at least 75 nucleotides, with a PHRED
score > 20 were considered for the assembly and formation
of clusters. The assembly of these ESTs was performed
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Table 2 Oligonucleotide primers used in RDA assays and qRT-PCR
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Sequence name

Forward primer (5-3')

Reverse primer (5'-3')

Amplicon size (bp)

Glutathione S-transferase (GST)

Chitin synthase regulator 2 (CHSr)
Betaine aldehyde dehydrogenase (BADH)
Cysteine desulfurase (CYSD)
Ribulose-phosphate 3-epimerase (RP3E)

Carnitine/acyl-carnitine carrier (CAR)

Glutamine amidotransferase subunit pdxT (GLAT)

Mfs transporter (MFS)

C6 transcription factor (CTF1B)
Acyl-CoA dehydrogenase (ACAD)
GPR1/FUN34/YAAH family protein
Pyruvate kinase (PK)

Diacylglycerol o-acyltransferase (DGAT)
Isovaleryl-CoA dehydrogenase (VD)
Ubiquitin-protein ligase (UBI)

Family integral membrane protein (IMP)
Heat shock protein (HSP10)

Heat shock protein (HSP30)

Heat shock protein (HSP70)

ATP synthase fO subunit 9 (ATPS9)
Lanosterol 14 a-demethylase (ERG11)
C5,6-desaturase (ERG3)

Delta-24-sterol C-methyltransferase (ERG6)
C-22 sterol desaturase (ERG5)

C-4 methyl sterol oxidase (ERG25)
cDNA*

GAACCGCAAACCCTAACCCT ACAGCGGCTGAAAAGTCCCA 157
AGAGCTGCAGAATTAGGCCTT TTTCGCCCGTTCATCTCCGT 140
GTTGAAGAGCCATTTGGTCC CAGATCATTGGACCACACAGA 120
CAACAGAAGAGATGGAGTATGA AGCGAATGACACGTTGACACA 143
CAATGGATCGACCTGATATGG GACCTCCGTCAACTTCGATG 141
GAAGGCATTGCCAGGGGGT CATTATGAACGGGGACGGTG 139
TGAGAGACTTTGTCAAGAACCA TGCGCGGATAAATACACCCAT 143
CTAATTATGTTCTTTTGGGGTAC GCATCGCCTATACCAACAAGA 136
CAAACCACTCGTCAACACAATC GATTGCCTTGAGTCTGATAGAG 138
GAGAACGAGACGCCCGAAG GTTGTAGTAAGGACTCTTGTAG 108
ACTGGCTGGGATGTGGGAG TTCTTCTCCGTCATTTCCTTGA 141
ATGCGATGATAAATATCTCTACG GACACTTGGCGCGGAGAGA 143
TATTAGATATACCAAGTGGCCG TACCCTGGGTTTGTATTCAATG 143
GATGTGGATTACCAACGGGC TCATGCCAAGCTTGTCGAGTT 152
GGAGGCATGCAGATCTTCGT ACGACCGTCCTCAAGCTGC 168
CGCCAGCAATCTGATTATCTC AACCCAGCTGACCTTCATTAC 142
TCTTCCTCCCAGAGAGCGC CAGGGCTGCCTCCATACTG 143
GGCCTTGACAGCATTCTGG CTGGCGATAAAGGGCAGAAG 130
GCAGAAGGAGCTTGAAAGTGT GTCAACCTCCTCGACAGTAG 181
AAGCAGCGAAAATAATGGGATC GCAAATAATCCTGTAGCTTCTG 181
CTGAGCTGTAGGGAAAAGTAC TCCTCAGCGCAAACGTCCTT 131
GGAGAATATGTATACCAGCCC ATCCAAGTGATGAGATACAGAG 128
GCTACTCTTACCCGACATTAC AATGGGCAAGGTAATGTTCATG 142
GGTCCCATGTTCAAAATCCCT AAATTTGTGGAAAACCGAGACG 123
GGACCATGGCCTACCAAATC GCGGAGTATTGGTGGTGGAT 129

AGCAGTGGTATCAACGACAGAGTACGCGGG

CDs* AAGCAGTGGTATCAACGCAGAGTACT(B0)NTN -
PCRII* AAGCAGTGGTATCAACGCAGAGT -
JBam12* GATCCGTTCATG -
JBam24* ACCGACGTCGACTATCCATGAACG -
NBam12* GATCCTCCCTCG -
NBam24* AGGCAACTGTGCTATCCGAGGGAG -
RBam12* GATCCTCGGTGA -
RBam24* AGCACTCTCCAGCCTCTCACCGAG -
7% GTAATACGACTCACTATAGGGC -
Oligo (dT);5* AAGCAGTGGTATCAACGCAGAGTACT(B0)NTN -

*Primers used in RDA experiments.

using CAP3 [42] and clustered to generate contigs and sin-
glets, which were analyzed. All these tools were integrated
in a specific pipeline (http://www.lbm.icb.ufg.br/pipeli-
neUFG/). The annotation of genes was performed using
the program Blast2GO (http://www.blast2go.org/), which
provides a comparison between clusters of sequences ob-
tained from public databases. The BLAST program from
the National Center for Biotechnology Information (NCBI)

(http://www.ncbilm.nih.gov/BLAST), processed with the
non-redundant sequences (nr) GenBank and the nucleotide
database generated from Paracoccidioides spp. structural
genome (http://www.broad.mit.edu/annotation/genome/pa
racoccidioides_ brasiliensis/MultiHome.html), was used for
the annotation. The database sequence matches were con-
sidered significant at e-values <10™°. The program INTER-
PROSCAN (http://www.ebi.ac.uk/interpro/) [43] was used
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to obtain information about the domains present in clus-
ters and the classification of families. The metabolic path-
ways were analyzed using maps obtained from the KEGG
database (Kyoto Encyclopedia of Genes and Genomes)
(http://www.genome.ad.jp/kegg) [44] with annotated EC
numbers, and this information was used to help elucidate
the function of ESTs. The Munich Information Center
for Protein Sequences (MIPS) (http://mips.gsf.de/) was
used to designate the functional categories. Addition-
ally, sequences were grouped into functional categories
using the PEDANT 3 database (http://pedant.helm-
holtz-muenchen.de/index.jsp).

Analysis of RNA transcripts by qRT-PCR

An aliquot of RNA from treated and untreated samples
was used to perform reverse transcription qRT-PCR.
Total RNAs from Paracoccidioides Pb0O1 yeast cells cul-
tured in the presence or absence of itraconazole were
obtained as previously described, in independent experi-
ments from those used in the RDA assays. After treat-
ment with DNAse, cDNAs were synthesized from total
RNA using Superscript III reverse transcriptase (Invitro-
gen) and oligo (dT);5 primer according to the supplier’s
instructions. Gene-specific primers were designed for
the selected genes and for the control gene, a-tubulin,
using Primer Express software (Applied Biosystems, Fos-
ter City, CA, USA) (Table 2). qRT-PCRs were performed
in triplicate in a StepOnePlus™ real time PCR system
(Applied Biosystems). The PCR thermal cycling program
consisted of 40 cycles of 95°C for 15 sec; 60°C for 1 min.
The SYBR green PCR master mix (Applied Biosystems)
was supplemented with 1 pmol of each gene-specific
oligonucleotide and 40 ng of template cDNA in a final
volume of 20 pl. A curve melting analysis was performed
to confirm the amplification of a single PCR product.
The data were normalized to the o-tubulin transcript
amplified in each set of qRT-PCR experiments. A no-
template control was included. Samples of each cDNA
were pooled and serially diluted 1:5 to generate a rela-
tive standard curve. Relative expression levels of genes
were calculated using the standard curve method for
relative quantification [45]. Statistical comparisons
were performed using Student’s ¢-test and samples with
p-values < 0.05 were considered statistically significant.
The specific sense and antisense primers are listed in
Table 2. Itraconazole-regulated transcripts were se-
lected for qRT-PCR validation assays.

Preparation of protein extracts and validation of data
obtained by specific activity of Glutathione S-Transferase
(GST)

GST activity was measured with GST assay kit (Sigma-
Aldrich). Briefly, the GST Assay Kit employs 1-Chloro-2,
4-dinitrobenzene (CDNB) to produce 1-glutathionyl-2,4-
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dinitrobenzene (GS-DNB) by conjugation of the thiol
group of glutathione (GSH). The reaction product
GS-DNB absorbs at 340 nm, and the rate of increase in
the absorption is directly proportional to the GST
activity of the sample.

Protein extracts from Paracoccidioides Pb18 yeast cells
were prepared by inoculating 50 ml of Fava Netto’s liquid
medium with 10° cells/ml. Cultures were incubated
overnight at 36°C with gentle shaking for 16 h. Cells
were centrifuged at 5,000 x g for 5 min and transferred
into MMcM media containing itraconazole for 1 h.
Control cells were incubated in MMcM without drug.
The cells were centrifuged at 10,000 x g for 15 min at
4°C, frozen in liquid nitrogen and disrupted by macer-
ation [46]. Extraction buffer (20 mM Tris—HCI pH 8.8;
2 mM CaCl,) containing a mixture of protease inhibitors
(serine, cysteine and calpain inhibitors) (GE Healthcare)
was added to the yeast cells. After the addition of glass
beads (0.45 mm), the cells were lysed in a bead-beater,
followed by centrifugation at 10,000 x g for 15 min at 4°C.
The supernatant was collected, and the protein concentra-
tions were determined using Bradford reagent (Sigma-Al-
drich). The samples were stored in aliquots at -80°C.

The increase in absorbance is directly proportional to
the GST activity. The GST-specific activity is defined as
mmol of GS-DNB per mg of total protein per min
(mmol/mg/min). The enzymatic activity results repre-
sent the mean of three independent determinations, and
statistical comparisons were performed using Student’s
t test. The samples with p-values <0.05 were considered
statistically significant.

Sterol quantification method

The quantification of total intracellular ergosterol was
performed as previously described [47], with slight mod-
ifications. Cell extracts from Paracoccidioides Pb01 and
Pb18 vyeast cells were prepared as already described
above. Five ml of 25% alcoholic potassium hydroxide so-
lution (25 g KOH and 35 ml sterile distilled water added
to 100 ml 100% ethanol) was added to each tube, and
the samples were mixed on a vortex for 2 min. The cell
suspensions were incubated in an 85°C water bath for
3 h and allowed to cool to room temperature. Sterols
were extracted by addition of 2 ml of sterile distilled
water and 5 ml n-heptane (Sigma-Aldrich), followed by
vigorous mixing in a vortex mixer for 5 min. The sam-
ples were kept at room temperature for 1 to 2 h to allow
the phases to separate or were stored at 4°C overnight.
One ml of the heptane layer (containing ergosterol) was
transferred to a 1.5 ml quartz cuvette and analyzed spec-
trophotometrically by scanning at wavelengths between
200 and 300 nm. If necessary, the samples were diluted
five fold with 100% ethanol and reanalyzed. The ergos-
terol content as a percentage of the wet cell weight was
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calculated by the following equations: value 1 = [(Asg;5/
290) x F]/wet cell weight, value 2 = [(A30/518) x F]/wet
cell weight, and percent ergosterol = value 1 - value 2. F
is the factor for dilution in ethanol, and 290 and 518 are
fixed values determined for crystalline ergosterol and 24
(28) dihydroergosterol, respectively.

Fluorescence microscopy

Filipin stained samples were prepared using a previously
described protocol for fixing and staining filamentous
fungi [48]. Paracoccidioides Pb01 and Pb18 yeast cells
were prepared by inoculating 50 ml of Fava Netto’s li-
quid medium with 10® cells/ml. Cultures were incubated
overnight at 36°C under gentle shaking for 16 h. Cells
were centrifuged at 5,000 x g for 5 min and transferred
in MMcM media containing itraconazole. Control cells
were incubated in MMcM without drug. The fungus was
then removed and fixed for 30 min in 3.7% formalde-
hyde and rinsed with ddH,O. A 5 mg/ml stock solution
of filipin (Sigma-Aldrich) dissolved in DMSO was di-
luted to 25 pg/ml and used to stain the fixed samples for
10 min. Samples were then rinsed with ddH,0O, mounted
on a microscope slide and sealed with nail varnish.

BALB/c mice infection with Paracoccidioides Pb18

The animals were bred at the Universidade Federal de
Goids animal facility under specific-pathogen-free con-
ditions. All animal experiments were performed in
accordance with the international rules for animal ex-
perimentation. The animal protocol was approved by
the Universidade Federal de Goids committee of the eth-
ical treatment of animals (Number: 008/11 CEUA-UFQG).

Female BALB/c mice, 8—12 weeks old, were inoculated
with 1 x 107 of Paracoccidioides Pb18 yeast cells growth
in liquid MMcM. In brief, yeast cell suspension in the
7th day of in vitro growth were washed in PBS 1x and
inoculated intraperitoneally in mice. The mice were di-
vided into three groups of five animals to be sacrificed
21 days post-challenge. Each group was subdivided by
treatment options as follows: five uninfected mice (nega-
tive controls), five yeast cell-infected mice (positive con-
trols) and five yeast cell-infected mice treated with
itraconazole starting at the third week post-infection.
The animals were sacrificed in the sixth week after infec-
tion. The spleens were removed and homogenized in
5 ml of sterile PBS 1X. The homogenized sample was
plated in brain heart infusion agar supplemented with
4% (v/v) fetal calf serum and 2% (w/v) glucose. The
plates were incubated at 36°C and colony-forming units
were determined after 20 days.

Gene expression analyses of Paracoccidioides Pb18
from infected mice were performed by isolating yeast
cells from spleens as previously described with minor
modifications [49]. The spleens of infected mice were
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homogenized in 1x PBS using a tissue grinder. The
homogenate was then filtered using nylon mesh to remove
large pieces of animal tissue. The sample was frozen in li-
quid nitrogen and then centrifuged at 500 x g for 5 min to
remove any remaining animal tissue. Next, the sample was
centrifuged at 7,000 x g for 15 min to isolate fungal cells.
Total RNA was extracted from recovered cells using TRI-
ZOL reagent (Invitrogen), according to the manufacturer’s
instructions. RNA was used to perform qRT-PCR as de-
scribed above.
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