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Genome analysis reveals three genomospecies in
Mycobacterium abscessus
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Abstract

Background: Mycobacterium abscessus complex, the third most frequent mycobacterial complex responsible for
community- and health care-associated infections in developed countries, comprises of M. abscessus subsp. abscessus
and M. abscessus subsp. bolletii reviously referred as Mycobacterium bolletii and Mycobacterium massiliense. The diversity
of this group of opportunistic pathogens is poorly described.

Results: In-depth analysis of 14 published M. abscessus complex genomes found a pan-genome of 6,153 proteins and
core-genome of 3,947 (64.1%) proteins, indicating a non-conservative genome. Analysing the average percentage of
amino-acid sequence identity (from 94.19% to 98.58%) discriminates three main clusters C1, C2 and C3: C1 comprises
strains belonging to M. abscessus, C2 comprises strains belonging to M. massiliense and C3 comprises strains belonging
to M. bolletii; and two sub-clusters in clusters C2 and C3. The phylogenomic network confirms these three clusters. The
genome length (from 4.8 to 5.51-Mb) varies from 5.07-Mb in C1, 4.89-Mb in C2A, 5.01-Mb in C2B and 5.28-Mb in C3.
The mean number of prophage regions (from 0 to 7) is 2 in C1; 1.33 in C2A; 3.5 in C2B and five in C3. A total of 36
genes are uniquely present in C1, 15 in C2 and 15 in C3. These genes could be used for the detection and identification
of organisms in each cluster. Further, the mean number of host-interaction factors (including PE, PPE, LpqH, MCE, Yrbe
and type VII secretion system ESX3 and ESX4) varies from 70 in cluster C1, 80 in cluster C2A, 74 in cluster C2B and 93 in
clusters C3A and C3B. No significant differences in antibiotic resistance genes were observed between clusters, in
contrast to previously reported in-vitro patterns of drug resistance. They encode both penicillin-binding proteins
targeted by β-lactam antibiotics and an Ambler class A β-lactamase for which inhibitors exist.

Conclusions: Our comparative analysis indicates that M. abscessus complex comprises three genomospecies,
corresponding to M. abscessus, M. bolletii, and M. massiliense. The genomics data here reported indicate differences in
virulence of medical interest; and suggest targets for the refined detection and identification of M. abscessus.
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Background
The non-tuberculous mycobacterium Mycobacterium
abscessus was long confused with Mycobacterium chelo-
nae [1]. Other closely related species include Mycobacter-
ium salmoniphilum [2], Mycobacterium immunogenum
[3], Mycobacterium massiliense [4], Mycobacterium bolletii
[5] and Mycobacterium franklinii [6] altogether forming
the Mycobacterium chelonae-abscessus complex. This
complex is the third most frequent mycobacterial complex
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infecting humans in developed countries besides the
Mycobacterium tuberculosis and Mycobacterium avium
complexes [7,8]. Bibliometrics retrieving over 1,700 publi-
cations in the Medline database illustrates the fact that
this complex is emerging, causing both sporadic cases and
outbreaks of community-acquired and health-care associ-
ated infections [9]. Not only humans but also cats [10,11]
and dolphins [12-14] are infected while fishes are uniquely
infected by M. salmoniphilum [2,15].
Current nomenclature is that the species M. abscessus

comprises two subspecies named M. abscessus subsp.
abscessus and M. abscessus subsp. bolletii. Later taxon ac-
commodates isolates previously referred as M. bolletii or
M. massiliense [16]. This nomenclature however may
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obscure the true diversity of mycobacteria in this complex.
While the 16S rRNA gene yields an identical sequence for
M. abscessus and M. bolletii, it shares 99% sequence iden-
tity with M. massiliense. RpoB gene sequencing founded
the description of recent species [17-19] but yielded fur-
ther conflicting results [20-22]. Multilocus sequencing
analysis [23] and multispacer sequence typing [24] differen-
tiated M. massiliense from M. bolletii. In this report, the
previous nomenclature M. abscessus, M. bolletii and M.
massiliense forming the M. abscessus complex, has been
retained for clarity.
The availability of 39M. abscessus, 13 M. massiliense

and two M. bolletii genomes in the National Center for
BioInformatics (NCBI) genome database provides new op-
portunities to assess the diversity of this species. Here, we
review 14 complete published M. abscessus complex ge-
nomes and compare them with the re-annotated M. tuber-
culosis H37Rv genome (Table 1) in order to in-depth
analyse the diversity of M. abscessus.

Results and discussion
M. abscessus complex pan- and core-genome
M. abscessus complex genomes comprise one circular
chromosome. In addition, M. abscessus ATCC 19977 con-
tains one 23-kb plasmid identical to the Mycobacterium
Table 1 List of Mycobacterium abscessus genomes here studie

Clusters Organism Isolated from

C1 M. abscessus Type strain human knee infection

C1 M. abscessus M93 sputum sample from a Malaysi
with a prolonged productive c
a bacterial lower respiratory tra

C1 M. abscessus M94 sputum sample of a Malaysian
a persistent cough and fever an
consolidation in the chest radio

C1 M. abscessus M152 acid-fast bacillus positive sputu

C1 M. massiliense strain GO 06 undergone knee joint surgery

C2A M. massiliense Type strain sputum specimen from hemop

C2A M. massiliense M18 lymph node biopsy specimen f
patient suspected of having tu
cervical lymphadenitis

C2A M. massiliense M154 bronchoalveolar lavage fluid of
patient presenting with lower r
tract infection

C2B M. abscessus 47 J26 sputum sample from a patient

C2B M. abscessus M115 sputum from a Malaysian patie
persistent cough and loss of bo
suggestive of pulmonary tuber

C2B M. abscessus M139 sputum sample of a 26-year-old
male presenting with hemopty

C2B M. abscessus M172 putum isolate from a Malaysian

C3A M. bolletii Type strain respiratory tract specimen colle
in woman with hemoptoic pne

C3B M. abscessus M24 the bronchoalveolar lavage flui
marinum pMM23 plasmid, encoding mer operon and
mercury reductase protein, which may confer resistance to
organo-mercury compounds [25]. In order to normalize
the predicted proteins and to minimize the differences of
presence/absence of genes and length, coding sequences
were predicted using prodigal software [26]. We identified
a total of 70,309 protein-coding sequences which number
varies from 4,651 to 5,079 in each genome (Table 2). The
core-genome contains 57,172 protein sequences account-
ing for 64.15% of the pan-genome. This figure indicates a
non-conservative genome contrary to that of Mycobacter-
ium tuberculosis, a conservative-genome pathogen which
core-genome accounts for 96.1% of the pan-genome [27].
Using orthoMCL [28] with a conservative parameter value
of 50% sequence identity, we categorized these 70,309 pro-
teins into 6,153 orthologous protein groups, including
3,947 core-genome groups and 55 strain-specific groups.

M. abscessus complex diversity
The average percentage of amino-acid sequence identity
(AAI) of core proteins was determined as previously de-
scribed [29]. The AAI values indicate that M. abscessus
complex forms three main clusters: cluster 1 (C1) includes
M. abscessus type strain and strains M93, 94, M152 and
Go06; cluster 2 (C2) contains two subclusters: cluster 2A
d

Geography BioProject

United States PRJNA61613, PRJNA15691

an patient presenting
ough suggestive of
ct infection

Malysia PRJNA180393, PRJNA84203

patient with
d
graph

Malysia PRJNA180394, PRJNA88149

m of a Malaysian man Malysia PRJNA159789

Brazil PRJNA170732, PRJNA168263

toic pneumonia Marseille PRJNA180742, PRJNA65215

rom a Malaysian
berculous

Malysia PRJNA89593

a Malaysian
espiratory

Malysia PRJNA89603

with Cystis fibrosis England PRJNA179981, PRJNA73255

nt presenting with
dy weight
culosis

Malysia PRJNA89601

Nepalese
sis

Nepal PRJNA159701

patient Malysia PRJNA89599

cted
umonia

Marseille PRJNA180015, PRJNA73695

d of a Malaysian patient Malysia PRJNA89595



Table 2 Mycobacterium abscessus core genome and
unique genes

Clusters Organism CDS Unique core
genome

Total
genes

M. abscessus - 36 180

C1 M. abscessus T 4954 - -

strain GO 06 4944 - -

M93 4733 11 11

M94 4841 10 10

M152 4762 - -

M. massiliense - 15 107

C2A M. massiliense T 4962 3 3

M18 4663 8 8

M154 4651 - -

C2B 47 J26 4766 - -

M115 4802 4 4

M139 4754 4 4

M172 5079 20 20

M. bolletii - 15 30

C3A M. bolletii T 4733 9 9

C3B M24 4960 23 23

M. abscessus core genome - 3,947 57,172
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(C2A) includes M. massiliense type strain and strains
M154 and M18; cluster 2B (C2B) includes strains 47 J26,
M115, M172 and M139; cluster 3 (C3) includes two sub-
clusters: cluster 3A (C3A) includes M. bolletii type strain
and cluster 3B (C3B) includes M. bolletii strain M24
(Table 3).
Table 3 Average nucleodite identity and characteristics of My

Clusters Strains Genome
lenght Mb

M. abscessus C1 M. abscessus T 5,09

M93 5,08

M94 5,1

M152 4,91

strain GO 06 5,07

M. massiliense C2A M. massiliense T 5,2

M18 4,89

M154 4,8

C2B M115 4,98

M172 5,2

M47 J26 4,87

M139 5,05

M. bolletii C3A M. bolletii T 5,05

C3B M24 5,51
M. abscessus complex proteomes were further aligned
using Mauve software [30] to infer phylogeny using the
Neighbor-Net algorithm in the package SplitsTree4
[31]. The phylogenomic network confirms the three clus-
ters C1, C2 and C3 (Figure 1A). A phylogenomic tree
based on gene content (i.e., the presence or absence of
orthologs) (Figure 1B) organizes M. abscessus differently
from the whole genome concatenated tree (Figure 1A) or
even the phylogenetic tree based on rpoB gene sequence
(Figure 1C). Phylogenomic analysis indicates that the M.
abscessus gene repertoires have different evolutionary his-
tories and suggests that differential gene loss and lateral
gene acquisition are playing important roles in the evolu-
tion of some M. abscessus strains. Notably, the situation of
strain Go06 is confusing, as it presents 98.4% AAI with M.
abscessus type strain in C1 (Figure 1A) whereas its rpoB
gene sequence and single nucleotide polymorphisms ana-
lysis are indicative of M. massiliense [8,32]. Our analyses
indicate that strain Go06 have an ambiguous classification
as a chimera between M. abscessus and M. massiliense
and is the only example compatible with a lateral transfer
of rpoB gene.
Functional analysis using Clusters of Orthologous Groups

database (COG) [33] and BLASTP indicates unique genes
in C1, encoding hypothetical proteins, proteins implicated
in transcription, energy production and transport, carbohy-
drate metabolism and transport, lipid metabolism, nucleo-
tide metabolism and transport, amino-acid metabolism and
transport, post-translational modification and inorganic ion
transport and metabolism (Table 2, Figure 2). Within C2,
unique genes encode hypothetical proteins, proteins impli-
cated in transcription and lipid metabolism. Within C3,
cobacterium abscessus genomes

Genome
GC%

AAI Vs
M. abscessus T

AAI Vs
M. bolletii T

AAI Vs
massiliense T

62,7 100,00 95,56 94,74

64,2 97,30 95,35 94,76

64,2 97,56 95,67 94,79

64,1 98,59 96,33 95,73

64,2 98,35 95,23 95,64

64,2 95,56 96,13 100,00

64,2 96,66 96,09 97,57

64,1 96,14 95,81 97,26

64,1 96,16 95,36 96,92

64,2 95,30 94,93 96,17

64,1 96,23 95,74 96,93

64,1 95,94 95,64 96,88

64,2 94,51 100,00 95,33

64,2 94,91 96,47 94,20



Figure 1 Phylogenomic analysis of M. abscessus. A. Aligned whole genomes phylogenetic network. B. Gene content phylogeny constructed
from the matrix of discrete characters using the neighbor-joining method. C. RpoB gene based phylogentic tree using neighbor-joining method.
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unique genes encode hypothetical proteins, proteins impli-
cated in amino-acid metabolism and transport and transla-
tion. These unique genes could base a refined identification
of the three genomospecies. However, we could not exclude
that these unique genes could be due to a coding sequence,
which arose de novo, to HGT or gene loss for the other
subspecies. In the case of absence of a gene, this could also
be due to a real loss or to an assembly artefact.
C1 strains have been isolated from American and

Malaysian patients suffering knee infection and lower
Figure 2 Core genomes in M. abscessus clusters.
respiratory infection, respectively (Table 1). C2A strains
were isolated from Malaysian and French patients suffer-
ing severe, respiratory tract infections. C2B strains were
isolated from Nepalese, Malaysian and English patients
suffering respiratory tract infections, including cystis fibro-
sis and pulmonary tuberculosis patients. C3A and C3B
strains were exclusively isolated from patients suffering re-
spiratory tract infections, in France and Malaysia, respect-
ively. Therefore, clusters specify the clinical form and
geographical origin of the infection.
Altogether, genomics analyses revealed a more het-

erogeneous structure of M. abscessus complex than the
one currently suggested by the nomenclature, which
recognizes only two subspecies within M. abscessus
[16]. It has been proposed that two genomes exhibiting
AAI >96% belong to the same species [34,35]. There-
fore, AAI analysis indicates that M. abscessus is in fact
comprising of three genomospecies, corresponding to
previous nomenclature of M. abscessus (C1), M. massi-
liense (C2) and M. bolletii (C3). Using an AAI <97%
threshold would further determine two subspecies in
M. massiliense (C2A and C2B) and in M. bolletii (C3A
and C3B). Recent whole genome sequencing analyses
of clinical isolates in Great Britain also clearly distin-
guished three clusters in agreement with the three here
reported [8]. All these data support revaluating the tax-
onomy of M. abscessus complex, to recognize three
genomospecies M. abscessus (C1), M. bolletii (C2), and
M. massiliense (C3); and four unnamed subspecies
C2A, C2B; C3A, C3B.
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M. abscessus prophagome
M. abscessus median GC% content is 64.2%, ranging
from 62.7% (M. abscessus ATCC 19977) to 64.2% (strain
Go 06). The GC% is not characteristic of the clusters as
the median GC% content of C1, C2A and C3 is 64.2%,
close to the median 64.1% GC% content in C2B.
However, there is a significant 14.7% variation in the gen-

ome length from 4.8-Mb (M. abscessus M154) to 5.51-Mb
(M. abscessusM24) with a median of 5.07-Mb. The median
of genome size is 5.07-Mb in C1, 4.89-Mb in C2A, 5.01-
Mb in C2B and 5.28-Mb in C3. Differences in the genome
size correlate with the number of prophage regions which
are detected in 13/14M. abscessus genomes (Figure 3): M.
abscessusM154 (M. massiliense C2A) has the smallest gen-
ome encoding no prophage whereas M. bolletii M24 (C3)
has the largest genome encoding seven prophage regions
(Figure 3). Prophage regions comprise up to 5% of the gen-
ome lenght in M. abscessus M172. The number of pro-
phage regions in other genomes is diverse, ranging from
one to six regions encoding putative genes in the subsys-
tem of phages, prophages, transposable elements and plas-
mids, which might contribute to species diversity [36]. The
mean number of prophage regions is 2 in C1, 1.33 in C2A,
3.5 in C2B and 5 in C3. This observation confirms the par-
ticularity of C3: M. bolletii CIP108541T contains a 13-kb
and a 63-kb prophage whereas M. bolletii strain M24 con-
tains seven prophage regions including one 17-kb region
homologous to the M. bolletii CIP108541T 13-kb region
and a 27-kb region homologous to the M. massiliense
CCUG 48898 50-kb region [37,38] (Table 4). M. abscessus
genomes encode putative phage-related genes necessary
Figure 3 Correlation between Mycobacterium abscessus genomes size
for phage replication as well as phage-tail protein, phage
endolysin, capsid proteins (major protein and scaffold pro-
teins) and phage tape measure protein. Both ends of this
region encode putative phage integrases. M. abscessus
genomes encode small prophage-like regions. However,
only M. bolletii has been reported to produce a myco-
bacteriophage that we named Araucaria after we recently
resolved its electron microscopy 3D structure [39]. M.
abscessus M94 genome harbours one particular pseudo-
tRNA spanning the region 51,150-57,394 in contig 33,
which is not observed in the other M. abscessus genomes
[40]. Phages have been reported to increase virulence of
their host and encode antimicrobial resistance genes [41].
In M. abscessus however, no such genes were identified
but phages could be targeted for the differentiation be-
tween the three M. abscessus genomospecies.

M. abscessus complex resistome
As all mycobacteria, M. abscessus complex is embedded
into a hydrophobic cell wall barrier to hydrophilic antibi-
otics. Accordingly, M. abscessus is multidrug resistant or-
ganisms exhibiting different drug resistance [42-44]. M.
abscessus genomes encode many proteins potentially in-
volved in drug-efflux systems, including members of the
major facilitator family, ABC transporters and MmpL pro-
teins; Small Multidrug Resistance-family, a family of lipo-
philic drug efflux proteins [45]; and a multidrug resistance
stp protein similar to M. tuberculosis involved in spectino-
mycin and tetracycline resistance [46]. M. abscessus, M.
bolletii and M. massiliense were reported to be in-vitro
susceptible to amikacin; however, comparison with the M.
(y axis) and the number of prophages (x axis).



Table 4 Mycobacterium abscessus prophages

Clusters Strain Region Region_length CDS Region_position

M. abscessus C1 M. abscessus T 1 81 Kb 110 1754551-1835095

M93 1 16.4 Kb 33 197463-213867

2 38 Kb 51 232006-270072

3 53 Kb 70 1762720-1815780

4 20.2 Kb 26 1820768-1841058

M94 1 58.3 Kb 84 1039523-1097850

2 79.4 Kb 99 4959719-5039151

M152 1 48.9 Kb 53 1897722-1946683

2 34.9 Kb 44 4784847-4819818

Go06 1 65 Kb 44 1768158-1833157

M. massiliense C2A M. massiliense T 1 12.5 Kb 21 1600973-1613514

2 31.3 Kb 33 1620002-1651385

3 50.4 Kb 69 3907205-3957680

M18 1 62.8 Kb 67 4702725-4765592

M154 0 0 0 0

C2B M115 1 11.6 Kb 10 1416841-1428481

2 77.1 Kb 102 1624644-1701770

3 55.3 Kb 79 3356346-3411651

M172 1 55.1 Kb 74 502478-557677

2 50.7 Kb 50 546109-596832

3 59 Kb 67 1934186-1993225

4 31.1 Kb 33 2050376-2081567

5 39.4 Kb 45 3711805-3751246

6 19.6 Kb 40 3753466-3773078

M47J26 1 39.9 Kb 48 1066714-1106668

2 12.4 Kb 16 3596408-3608873

3 41.4 Kb 42 3823414-3864899

M139 1 35.9 Kb 43 2906235-2942215

2 12.5 Kb 17 5033731-5046263

M. bolletii C3A M. bolletii T 1 41.6 Kb 47 1684736-1726377

2 20.9 Kb 38 1727918-1748849

3 12.4 Kb 16 3641720-3654182

C3B M24 1 37.1 Kb 51 560940-598047

2 37 Kb 37 1680197-1717263

3 17 Kb 21 3830340-3847343

4 18.1 Kb 34 5051771-5069955

5 26 Kb 35 5155113-5181190

6 19.2 Kb 26 5213195-5232444

7 26.5 Kb 33 5312024-5338593
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tuberculosis H37Rv resistome and the antibiotic resistance
databases indicate that M. abscessus encodes an aminogly-
coside 29-N-acetyltransferase and aminoglycoside phos-
photransferases involved in resistance to aminoglycosides.
Also, genetic analyses disclosed 16S rRNA gene mutations
conferring aminoglycoside resistance [4,5,47]. Indeed,
the presence of a single rRNA operon in all of the M.
abscessus genomes favours the occurrence of dominant
mutations conferring resistance to aminoglycosides and
macrolides. M. abscessus genomes encode a rifampin
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ADP-ribosyl transferase and monooxygenases potentially
involved in resistance to rifampin and tetracyclines. More-
over, M. abscessus genomes encode three tet(M) genes con-
ferring resistance to tetracyclyine and doxycycline; the
number of tet(M) genes was correlated to the resistance to
cyclines in Escherichia coli [48]. However, M. massiliense
was reported to be susceptible and M. abscessus and M.
bolletii to be resistant to doxycycline [49]. M. abscessus ge-
nomes encode resistance to fusidic acid, glycopeptides,
MLS (Macrolide-Lincosamide-StreptograminB), phenicols,
rifampicin, sulphonamide and trimethoprim. Also, M.
abscessus genomes encode FolP homologs conferring resist-
ance to cotrimoxazole, homolog of UDP-N- acetylglucosa-
mine 1-carboxyvinyltransferase, a MurA protein conferring
resistance to fosfomycin and homologs of 23S rRNA meth-
ylases conferring resistance to macrolides. Also, M. absces-
sus genome encodes an erm(41) gene which mutations
were reported to confer clarithromycin resistance [50]. In-
vitro tests showed that M. massiliense clinical isolates could
be distinguished fromM. abscessus isolates for their suscep-
tibility to ciprofloxacin [51] whereas M. bolletii isolates
were reported to be resistant to all quinolones [52]. A mu-
tation at codon 90 in gyrA gene was reported in clinical
isolates of M. abscessus exhibiting high resistance to cipro-
floxacin [51]. This observation contrasts with our genome
analysis, which found no such mutations, suggesting that
other mechanisms of resistance may be involved in high-
level resistance to quinolones [52]. Accordingly, we found
that M. abscessus mycobacteria encode qepA2, a plasmidic
gene conferring quinolone resistance in gram-negative bac-
teria [53]. M. abscessus mycobacteria were reported to be
in-vitro resistant to penicillin, amoxicillin, cefoxitin, ceftri-
axone, cefotaxime and imipenen [4,5]. This contrasts with
the fact that they encode Penicillin-binding proteins (PBPs),
targets for β-lactam antibiotics (except for tabtoxinine-β-
lactam, which inhibits glutamine synthetase), which are es-
sential for peptidoglycan synthesis [54,55]. M. abscessus
genomes encode an Ambler class A β-lactamase homolo-
gous to β-lactamases in gram-negative bacteria and to two
β-lactamases in M. tuberculosis. β-lactamases inhibitors
have not been evaluated against M. abscessus sensu lato
mycobacteria.

Genome-based analysis of host-interactions
M. abscessus are ubiquitous environmental organisms in
soil and water [9] where they may have to cope with
amoeba: M. chelonae, M. abscessus, M. massiliense and
M. immunogenum were reported to survive within
Acanthamoeba polyphaga tropohozoites and cysts [5].
Accordingly, our analyses indicate that M. abscessus ge-
nomes encode factors implicated in host interactions.
The mean number of genes encoding proline-glutamate
(PE), proline-proline glutamate (PPE), 10-kDa lipopro-
tein antigen precursor (LpqH), Mammalian Cell Entry
(MCE), oxidoreductase (Yrbe) and type VII secretion
system is of 70 in C1, 80 in C2A, 74 in C2B and 93 in
C3. In M. abscessus, rough colonies lack mmpL4 (a gene
required for glycopeptidolipid biosynthesis) and lost
surface colonization, replication into human macrophages
and stimulation of innate immune response; these obser-
vations suggested that glycopeptidolipid was a virulence
factor [56-58]. Accordingly, glycopeptidolipids are re-
quired for sliding motility [59] and biofilm formation [60].
Glycopeptidolipids have also been suspected to inhibit
phagocytosis of M. avium subsp. avium [61]. M. abscessus
genomes encode MCE proteins similar to M. tuberculosis
H37Rv. MCE operon promotes internalization of M. tu-
berculosis by mammalian cells [62] and initiates rapid in-
duction of transcription of genes involved in substrate
trafficking [63]. The number of mce operons which corre-
lated with pathogenicity [64], varies from six in C2B to 13
in C3. In parallel, M. abscessus genomes encode 12 (C1)
to 21 (C3A, C3B) copies of Yrbe proteins. As for secretion
systems, recent evidences showed that mycobacteria
evolved specialized type VII secretion systems to transport
extracellular proteins across the cell wall [65]. Type VII se-
cretion systems ESX-1 and ESX-5 are involved in cell-to-
cell migration of M. tuberculosis [65,66]. In M. abscessus,
our analyses indicate that ESX-3 and ESX-4 systems are
conserved (Figure 4). However, M. abscessus M139 (C2B)
lacks two proteins of the ESX-3 system and M. abscessus
M93 (C1) lacks ESAT-6 like and CFP-10-like proteins se-
creted by the ESX-4 system. Interestingly, M. abscessus
M18 (C2A) encodes ESAT-6 and CFP-10 proteins secreted
by ESX-1 system. In addition, there are two or three PE
and six (M. massiliense, M. abscessus M115 or M. absces-
sus 47 J26) to 12 (M. bolletii M24) PPE proteins, which
are reported to be involved in the virulence of M. tubercu-
losis [67]. Our analyses further indicated that proteins re-
lated to phenazine biosynthesis, homogentisate catabolism,
phenylacetic acid degradation and DNA degradation might
have been transferred from Actinobacteria (e.g. Rhodococ-
cus spp., Streptomyces spp.) and pseudomonas (Pseudo-
monas aeruginosa and Burkholderia cepacia). Although
distantly related, these bacteria share the same ecosystem
asM. abscessus within cystic fibrosis microbiota.

Conclusions
Our in-depth genomic analyses indicate that M. absces-
sus has a non-conservative genome, suggesting the possibil-
ity of on-going transfer of additional genetic material.
Unsurprisingly, M. abscessus has already acquired antibiotic
resistance. Also, phages have mediated diversity and hori-
zontal gene transfer which drived the rapid evolution of
this complex. Indeed, gene transfers have driven the evolu-
tion of M. abscessus towards three different genomospe-
cies M. abscessus, M. massiliense and M. bolletii; and the
evolution of four different yet unnamed subspecies. Each



Figure 4 Heatmap clusterisation of Mycobacterium abscessus type VII secretion system compared to Mycobacterium tuberculosis H37Rv.
M. abscessus strains are listed on the left side of the map.
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genomospecies has its own specificities in terms of gen-
ome size, prophagome and genome content. We identi-
fied 66 genes uniquely present in each genomospecies;
these genes could be used in refined detection and iden-
tification of M. abscessus organisms. These genomic dif-
ferences support differences in host interactions and the
clinical presentation of infection with M. massiliense
(C2A and C2B) being more virulent than the two other
genomospecies. Host-interaction factors may contribute
to the ability of M. abscessus to colonize mammalian hosts
where its respiratory tract habitat put it in close proximity
to other serious opportunist pathogens which can act as
donors of additional host-interaction factors.
Here reported informations regarding differences be-

tween M. abscessus genomespecies will help understand-
ing their pathogenesis factors and could reveal new, more
specific targets for drug design and diagnosis tools.

Methods
Genome dataset
The whole genomes of 14M. abscessus strains were down-
loaded from Genbank (Table 1). The genomic sequence,
either contigs or finished genomes were concatenated to
one pseudogenome per genome.

Prophage detection and genome annotation
Protein sequences were predicted using prodigal software
[26] to generate normalized files containing the combined
protein sequences of all 14 genomes. Prophage regions
were detected using PHAST software (Table 4). Predicted
proteins were annotated using BLASTp against the Na-
tional Center for Biotechnology Information (NCBI) non-
redundant (NR) database, UNIPROT (http://www.uniprot.
org/), the Clusters of Orthologous Groups (COG) [33]
and a home-made antibiotic resistance gene database.
Genome clustering and calculation of core genomes
Proteome sequences were compared using by BlastP and
pairwise alignments using ClustalW and the ANI was de-
termined by the mean percentage of nucleotide sequence
identity of core proteins [29]. We clustered the M. absces-
sus homologous genes using orthoMCL [28] on the trans-
lated protein sequences of all predicted genes with a
conservative parameter value of 50% sequence identity.
The determination of the different unique core genomes
was based on the homology clusters found by orthoMCL.
Phylogenetic analysis
M. abscessus proteomes were aligned using Mauve soft-
ware [30] to infer phylogeny using the Neighbor-Net algo-
rithm in the package SplitsTree4 [31]. The orthologous
group data found by orthoMCL were used to construct a
whole-genome phylogenetic tree based on gene content.
We generated a matrix of binary discrete characters (“0”
and “1” for absence and presence, respectively) [68]. Using
this matrix, we constructed a phylogenetic tree imple-
menting the neighbor-joining (NJ) method within Split-
sTree4 [31].

http://www.uniprot.org/
http://www.uniprot.org/
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Availability of supporting data
The data set of Figure 1C supporting the results of this art-
icle is available in the TreeBase (http://treebase.org/tree-
base-web/home.html) repository, under the accession URL
http://purl.org/phylo/treebase/phylows/study/TB2:S15632.
Reviewer access URL: http://purl.org/phylo/treebase/phy-

lows/study/TB2:S15632?x-access-code=6fa2ebc53b96e3ae4
12a8df19187ab41&format=html.
The data sets of Figure 1A and B supporting the results

of this article are included as the Additional file 1.
The data sets of Figure 4 supporting the results of this

article are included as the Additional file 2.
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