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Abstract

Background: Anopheles sinensis is an important mosquito vector of Plasmodium vivax, which is the most frequent
and widely distributed cause of recurring malaria throughout Asia, and particularly in China, Korea, and Japan.

Results: We performed 454 next-generation sequencing and obtained a draft sequence of A. sinensis assembled
into scaffolds spanning 220.8 million base pairs. Analysis of this genome sequence, we observed expansion and
contraction of several immune-related gene families in anopheline relative to culicine mosquito species. These
differences suggest that species-specific immune responses to Plasmodium invasion underpin the biological differences
in susceptibility to Plasmodium infection that characterize these two mosquito subfamilies.

Conclusions: The A. sinensis genome produced in this study, provides an important resource for analyzing the genetic
basis of susceptibility and resistance of mosquitoes to Plasmodium parasites research which will ultimately facilitate the
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design of urgently needed interventions against this debilitating mosquito-borne disease.

Background

Malaria is caused by infection with Plasmodium para-
sites, which are transmitted via the bites of infected fe-
male Anopheles mosquitoes [1]. Malaria is prevalent and
widely distributed in tropical and subtropical regions, in-
cluding much of sub-Saharan Africa, Asia, and the
Americas [2,3]. Indeed, according to the latest World
Malaria Report, in 2010 malaria caused an estimated 216
million clinical episodes and 655,000 deaths worldwide
[4]. Of the few available management strategies for this
disease, vector control offers an important means of lim-
iting the spread of malaria. The effective control of mos-
quito vectors, however, requires information on their
genetic structure, because the biology and physiology of
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infections, the development of insecticide resistance, and
the epidemiology of malaria in the human host can all
be affected by genetic variation in the mosquito vector
populations. To date, our understanding of the role of
vector genetics in the dynamics of malaria transmission
is poor. In particular, the function and evolutionary as-
pects of important genes, such as those associated with
vector competence, remains unclear. The paucity of gen-
etic information on Plasmodium-susceptible mosquitoes
is a major obstacle to the development of appropriate
diagnostic and therapeutic tools against malaria.

All malaria vectors belong to the subfamily Anophelinae.
Mosquitoes of the subfamily Culicinae are not susceptible
to infection by Plasmodium parasites and thus, do not
transmit Plasmodium. The genomes of A. gambiae, Aedes
aegypti and Culex quinquefasciatus were sequenced in
2002, 2007 and 2010, respectively. Comparative genomic
studies of these three species have provided important
genetic insights into this vector-disease system including
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the identification of conserved gene regions; the identifica-
tion of highly diverged genes; recognition of gene families
that have expanded or contracted; and the evolution of
species-specific physiological or behavioral genetic varia-
tions. Nevertheless, information provided by these gen-
ome sequences has provided only a limited understanding
of the genetic basis of species-specific susceptibility to
Plasmodium.

In this study, we sequenced the genome of A. sinensis,
a malaria vector within the subfamily Anophelinae. A.
sinensis is an Asiatic mosquito species with a wide geo-
graphical distribution in East Asia region, ranging from
the Philippines to Japan [5]. While A. gambiae is consid-
ered to be an efficient vector of P. falciparum [6], A.
sinensis is suspected to be the most dominant and im-
portant vector of P. vivax [7]. In addition, A. sinensis
was found to be solely responsible for the recent out-
breaks of malaria in China [8]. Contrasting the genetic
composition of these two anopheline mosquitos with
that of culicine mosquitos offers a means of investigating
the genetic basis of their phenotypic differences to Plas-
modium susceptibility, which is a critical step in devel-
oping novel ways to reduce human malaria transmission.

Traditional methods of gene detection are costly and
time consuming and typically require prior knowledge of
target gene regions, as they rely on specific primers.
Therefore, these techniques are unsuitable for analyzing
large numbers of unknown sequences. The development
of next-generation sequencing (NGS) technologies pro-
vides an ideal method for rapid and reliable genomic ex-
ploration of mosquitoes.

In this study, we employed Roche/454 GS FLX sequen-
cing technology to produce the first genome sequences of
A. sinensis. A single-end 454 Jr. run combined with a
paired-end 454 Jr. run (3, 8 and 20 Kb libraries) provided
a cost-effective solution that produced high quality draft
assemblies, and allowed us to obtain detailed gene annota-
tions and meaningful results. Our comparative genomic
analyses of the genomes of anopheline and culicine mos-
quitoes revealed key genetic difference that may underlie
important species-specific biological functions in these
two groups. This study provides critical genomic informa-
tion that will pave the way for further in-depth molecular
investigations into the biological and vector competency
of A. sinensis.
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Results and discussion

Sequencing and assembly

We sequenced the whole-genome of A. sinensis using
the Roche/454 GS FLX sequencing approach. A total of
5,171,177 single-end reads, 6,302,769 3 Kb mate-pair
reads, 2,829,232 8 Kb mate-pair reads and 864,365 20 Kb
mate-pair reads were generated (Table 1). After adaptor
trimming and low quality reads filtering, a total of 2.7 G
single-end sequences and 0.6 G mate-pair sequences were
obtained. The genome size of A. sinensis was estimated
267.7 Mb based on K-mer statistics (Table 2), supporting
previous estimates of genome size in this mosquito sub-
family (230-284 M) [9].

The whole-genome assembly initially resulted in 9597
scaffolds. After screening for contamination, three scaf-
folds were identified as putative contaminating sequence
of possible bacterial origin and removed (Additional file 1:
Table S1). The final 9594 scaffolds spanned 220.8 M with
an N50 scaffold size of 814.2 Kb, and contained approxi-
mately 82.5% of the A. sinensis genome, based on a gen-
ome size of 267.7 Mb. Contig sizes ranged from 65 bp to
357,810 bp, while scaffold sizes ranged from 75 bp to
5,918,260 bp (Table 3). Assembly quality was assessed by
aligning the transcripts onto the scaffolds, and 97.5% map-
ping rate was observed (Additional file 1: Table S2). As-
sembly quality was also assessed by aligning 454 single
reads to the scaffolds. Approximately 99.2% of single 454
data with depth over 3X can be mapped. Further analysis
of single nucleotide variants (SN'Vs) and insertion and de-
letion (INDEL) variation revealed base error rate was
0.015% and short indel error rate was 0.011%, which sup-
ported the high quality of genome assembly (Additional
file 1: Table S3). Additionally, analysis of the draft genome
assembly for core eukaryotic genes (CEGs) revealed al-
most all of 458 CEGs (446 out of 458, 97.4%), complete
248 highly conserved CEGs (239 out of 248, 96.4%) and
partial 248 highly conserved CEGs (244 out of 248,
98.4%) were found, again confirming the assembly qual-
ity of A. sinensis. This Whole Genome project has been
deposited at DDBJ/EMBL/GenBank under the accession
ATLV00000000. The version described in this paper is
version ATLV01000000.

This genome had a GC percentage of 42.6%, which
was higher than the mean GC content in the other three
sequenced mosquito species (Table 4). Earlier study

Table 1 Summary of the raw reads of the sequencing analysis of A. sinensis

Library Raw reads Trimmed reads Reads used in assembly Average read length (bp)
Single-end 5171177 153,380 5,017,797 383
3 K paired end 6,302,769 270,609 6,032,160 205
8 K paired end 2,829,232 80,660 2,748,572 207
20 K paired end 864,365 14,201 850,164 347
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Table 2 Estimated genome size of A. Sinensis based on
K-mer analysis

K-mer K-mer Used bases Used reads

value number
13 1874145919 7

Depth Genome
size (bp)

267,735,131

1,934,235439 5,007,460

suggested that the amount of introns may have an asso-
ciation with differential GC content among these three
sequenced mosquito species [10]. Here, we found rela-
tively lower introns in A. sinensis (~32,000 introns) than
other three mosquito species (A. gambiae ~ 38,000 in-
trons, A. aegypti ~ 51,000 introns, and C. quinquefascia-
tus ~ 52,000 introns). This result strongly suggested a
negative correlation between the GC content and intron
numbers. Haddrill et al. [11] found a strongly negative
correlation between intron length and rate of divergence
of the genes. Also, a positive correlation between the re-
combination rate and GC content has been found in
many species, such as yeast [12], birds [13], insect [14],
plants [15] and mammals [16,17]. Recombination ac-
quire a larger amount of genetic diversity [18]. Both
lower intron length (Additional file 1: Table S4) and
higher GC content in An. sinensis and An. gambiae may
indicate high genetic diversity rate than other two sub-
family Culicinae mosquitoes. Interestingly, genetic diver-
sity in the susceptibility to malaria parasites in mosquitoes
has been already amply confirmed [19,20]. However, we
also recognized this estimate of GC content was suscep-
tible of a non trivial error bar, because nearly 20% of the
genome was missing from the draft assembly.

Repetitive elements analysis

We estimated 15,200,821 nt repetitive elements, which
accounted for approximately 6% of the A. sinensis gen-
ome. The most abundant of repetitive elements were
transposable elements (TEs) or potential TEs (Figure 1).
These constituted about 97.9% of the repetitive elements
(70.4% potential TEs and 27.5% TE) and 6% of the

Table 3 Statistics for the assembly of the A. sinensis
genome

Contig Scaffold

Size (bp)  Number Size (bp)  Number
N90 2,384 10,962 30,600 582
N80 7384 6,003 149,975 249
N70 13,407 3,858 338,010 149
NeO 20,357 2,558 537,812 98
N50 30,137 1,685 814,231 66
Longest 357,810 5,918,260
Total Size 214,524,114 220,784,734
Total Number (>100 bp) 27488 9,596
Total Number (>2 Kb) 12,156 2,038
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genome (Figure 1). Of the remaining repetitive elements,
0.5% were unclassified repeats, 0.3% were satellites, 1.2%
were simple repeats and 0.1% were low complexity. In
all TEs classification, 19% were retroelements (Class I el-
ements), 9% were DNA transposon elements (Class II el-
ements) and 72% were potential TEs. Class 1 elements
consisted of five clades (L2/L3/CRI1/Rex, R1/LOA/Jockey,
R2/R4/NeSL, RTE/Bov-B and L1/CIN4), while Class II
elements also consisted of five clades (hobo-Activator,
Tc1-1S630-Pogo, PiggyBac, Tourist/Harbinger and Mir-
age/P-element/Transib). Three further clades (BEL/Pao,
Tyl/Copia and Gypsy/DIRSI) were identified from long
interspersed elements (LINEs) and long terminal repeat
(LTR) retrotransposon elements.

Compared with published mosquito genome se-
quences, the TEs content of Anophelinae (A. gambiae,
11% to 16%) were far less than Culicinae (Ae. aegypti,
42% to 47%; C. quinquefasciatus, 29%) [21-23]. TEs con-
tent could be a leading factor influencing genome size in
many species [24,25]. For example, studies have shown
that the genome of Ae. aegypti has doubled its size as a
result of TEs [22]. Thus, the differences in the genome
size of A. sinensis and other mosquito species could in
part be due to the accumulation or loss of TEs in the
different species.

Gene prediction

Based on homology and de novo predictions, we identi-
fied 16,766 protein-coding genes with an average tran-
script length of 2608 bp, a coding sequence size of
1083 bp and 2.9 exons per gene (Additional file 1: Table
S4). Given the high conservation of single-copy ortho-
logs, protein lengths should have a high coherence be-
tween A. sinensis and D. melanogaster. We found that
A. sinensis proteins exhibited slightly lower than ex-
pected concordance values with D. melanogaster (0.92,
see Figure 2), but that this concordance value was similar
to that reported for the three other sequenced mosquitoes
(A. gambiae, 0.92; Ae. Aegypti, 0.93; C. quinquefasciatus,
0.90) [21-23]. This finding indicates that the gene predic-
tion analysis for A. sinensis was robust.

Although the predicted genome size of A. sinensis was
smaller than that of A. gambiae, we found a greater
number of predicted genes in the genome of A. sinensis
(Table 4). This discrepancy was consistent with the re-
sults of the genome-wide analysis that revealed a higher
percentage of exon region length and less TEs content
in the genome of A. sinensis. Differences in the numbers
of predicted genes in these two species may be conse-
quence of species-specific genetic differences that have
arisen from biological adaptations to the different envir-
onmental challenges faced by these two mosquitoes.
However, it is also possible that gene numbers were
overestimated in the genome of A. sinensis because of
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Table 4 Characteristics of the genomes of A.sinensis, A.gambiae, Ae.aegypti, and C.quinquefasciatus

A. sinensis A. gambiae Ae. aegypti C. quinquefasciatus
Genome size (Mbps) 2208 278 1376 540
Genome coverage (X) 18.8 10.2 76 6.1
Number of contig 27,497 18,962 36,206 48,671
Number of scaffold 9,594 8,987 4758 3,171
Contig N50 (Kbps) 30.1 — 826 286
Scaffold N50 (Kbps) 814.2 — 15 486.8
Average contig size (bps) 7800 13878 36184 —
Average scaffold size (bps) 23012 30930 290873 —
GC (%) 426 409 382 374
Number of gene (protein-coding) 16766 12457 15419 18883
Percentage of gene Length (%) 264 23.1 174 185
Percentage of exon region length (%) 1.0 72 1.9 44

false-positive gene predictions. These can arise because
of inaccurate annotation of the automated consensus
gene set or because of putative TEs and bacterial con-
taminates which escaped earlier detection. Overesti-
mation of the number of predicted genes has been
reported for other mosquito species [23]. The third pos-
sibility is genes were under-prediction in A. gambiae. It
was the second insect genome to be sequenced, and like
the initial D. melanogaster, the used consortia eliminated
most ab initio gene models without comparative or experi-
mental support, which may cause under-prediction. For

example, a recent genomic comparative paper on orphan
genes in insects does not even include the A. mellifera
gene set, and notes that the A. gambiae gene count is ab-
normally low for orphan genes [26]. Manual examination
of the output will be required to assure the accuracy of the
predicted genes of A. sinensis found in this study.

In addition to protein-coding genes, we also identified
41 microRNA (miRNA), 348 tRNA and 2017 rRNA genes
in the A. sinensis genome (Additional file 1: Table S5; see
the Additional file 2: “MiRNA list” for a list of all predicted
A. sinensis miRNA target genes and their annotations). At

LINEs
9.62%

m L2/L3/CR1/Rex m R1/LOA/Jockey

m L1/CING m Other UNEs

m Gypsy/DIRS1 m Other LTR elements
m PigeyBac m Tourist/Harbinger

Figure 1 Repetitive elements in A. sinensis.
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present, 67 miRNAs have been described for A. gambiae,
which is almost 1.5 times that found for A. sinensis. Our
finding of just 41 miRNA for A. sinensis might be an
underestimation as the target prediction was based on an
imperfect match between known miRNA and our gen-
omic sequence. It is also possible that some target genes
were missed during the alignment due to the differences
between the two genomes of these two anopheline species.
Another possible factor that may contribute to lower
miRNA genes in A. sinensis is that A. sinensis may have
unidentified miRNAs.

Functional annotation and gene family analysis

For all predicted protein-coding genes, 93.8% had
matches in the non-redundant (NR) databases, 64.6%
were similar to entries in the InterPro database, 67.7%
were assigned GO terms, 14.2% were mapped to known
pathways, 14.0% had signal peptides and 21.4% had
transmembrane regions (Additional file 1: Table S6).
There were several domains (fibrinogen, protein kinase
and six-bladed beta-propeller) and repeats (LDLR class
B repeat and Leucine-rich repeat) overrepresented in A.
sinensis compared to A. gambiae (Additional file 1:
Table S7). However, no significant differences of PTMs
were observed between A. sinensis and A. gambiae. Sev-
eral domains (histone, F-box and Zinc finger) were

down-represented in anopheline species compared with
the culicine species, though no significant differences of
translational modification (PTM) and repeat were ob-
served between these two subfamilies (Additional file 1:
Table S8).

We assessed the functional predictions of proteins ac-
cording to broad GO categories standardized to level 2
terms (Figure 3). Additional GO analysis of the pro-
teomes revealed differences between A. sinensis and A.
gambiae (Additional file 1: Table S9), and between the
anopheline and the culicine species (Additional file 1:
Table S10). In the biological process category, proteins
involved with signaling processes (GO:0023052) in were
expanded in anopheline species compared with the culi-
cine species (Additional file 1: Table S10). While, in the
molecular function category, proteins involved in mo-
lecular transducer activity (GO:0060089) was expanded
in anopheline species compared with culicine species
(Additional file 1: Table S10).

Of the entire A. sinensis gene set, 2377 genes had an
ortholog belonging to one of the 235 known biological
pathways. There were no significant differences in the map-
ping of genes to pathways between A. sinensis and A. gam-
biae or between the anopheline and culicine subfamilies.

The frequencies of transmembrane regions in A. sinen-
sis were relative lower than other three mosquito species
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(Additional file 1: Table S11). With just three exceptions
(6, 7 and 10), protein numbers tended to decrease with
the increasing transmembrane helices (Additional file 1:
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containing 14,827 genes in C. quinquefasciatus. 109
clusters found only in the four mosquito genomes, 34
clusters found specific to the Anophelinae, and 29 clus-
ters containing 30 genes found specific to A. sinensis.

Gene orthology prediction
Consistent with evolutionary distance estimates, we ob-
served a higher degree of genetic similarity between A.

Table S12). InterPro analysis revealed that olfactory re-
ceptors (14.29%), G-protein coupled receptors (GPCRs,

34.91%) and major facilitator superfamily domain (16.25%)

accounted for the largest proportion of the predicted
proteins of the 6, 7 and 10 transmembrane helices,

respectively.
containing 11,300 genes that were common to the ge-

nomes of the three previously sequenced mosquito spe-
cies. There were 4,065 gene clusters containing 10,465
genes in A. gambiae, 4,064 gene clusters containing
12,608 genes in Ae. aegypti, and 4,073 gene clusters

The A. sinensis genome revealed 3,972 gene clusters

sinensis and other mosquito species proteomes than be-
tween A. sinensis and D. melanogaster proteomes (Figure 4).
A. sinensis and A. gambiae shared the highest number of
orthologous genes (48.3%) while A. sinensis and D. melano-
gaster shared the lowest number of orthologous genes
(36.8%, Figure 4). A total of 4727 orthologous genes were

shared only among the mosquitoes.
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Analysis of InterPro in these 4727 orthologous genes
revealed the most gene-enriched domain and family
were peptidase (Additional file 1: Table S13), while ana-
lysis of Kyoto Encyclopedia of Genes and Genomes
(KEGG) pathway revealed that genes were most
enriched in metabolic pathways (Additional file 1: Table
S14), both indicating functions central to mosquito biol-
ogy, such as feeding behavior. Feeding releases peptidase
in the midgut and assists in the degradation of blood
meal proteins into peptides and amino acids [27].

Microsynteny with sequenced mosquito genomes

A genome-wide analysis revealed a significantly higher
microsynteny between A. sinensis and A. gambiae
(59.8%) than between A. sinensis and Ae. aegypti (42.1%)
or between A.sinensis and C. quinquefasciatus (39.9%),
or A. sinensis and D. melanogaster (20.4%, Table 5). The
largest microsynteny, between A. sinensis and A. gam-
biae, also included the most shared gene families (8,457)
and the largest coverage of the A. sinemsis genome
(132 M, Table 5). These findings are consistent with our
present knowledge of the evolutionary relationship
among these species. Given the close relationship be-
tween A. sinensis and A. gambiae, we took the chromo-
somes of A. gambiae as a reference for alignment, and
aligned A. sinensis to the 2™, 3" and X chromosomes of
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A. gambiae. Coloring inside the schematic chromosome
arms indicated microsynteny matches to a microsynteny
block of A. sinensis (Figure 5). Chromosomal rearrange-
ments in A. sinensis were observed, most obviously
with respect to the 2 L chromosome arm of A. gambiae.
In contrast, chromosomal rearrangements were rela-
tively rare in other chromosomes arms of A. gambiae
(Additional file 3: Figure. S1). In the genus Drosophila,
the interspecies chromosomal rearrangements can be
caused by the occurrence of paracentric inversions,
Robertsonian translocations or transposon [28]. Such
genetic changes may also have contributed to the
chromosomal rearrangements observed in A. sinensis.

Divergence time

We calibrated the remaining 2,348 linear trees assuming
a divergence time of ~260 million years ago (Mya) be-
tween Drosophila and Anopheles. This is the most rigor-
ously calculated date available for the most recent split
involving a mosquito lineage and its sister taxon [29,30].
Based on this basal divergence time, we obtained an esti-
mate of the split between the Anophelinae and the Culi-
cinae of approximatelyl22 Mya (Figure 6). This is
slightly later than a previous estimate of 145-200 Mya,
which was inferred from mitochondrial sequences [8]. We
estimated the split between A. sinensis and A. gambiae

0 5000 10000 15000 20000
| |
A. sinensis
A. gambiae
C. quinquefasciatus
Ae. aegypti I
D. melanogaster
| |
B1:1:1:101 BON:N:NENCGN ENin1 ENin2
ENin3 ENin4 B XXXX:0 W XCXX0:X
WOCX0:XX X0 XX W O2CXXX mXCXX:0:0
mX:X:0:X:0 uX:X:0:0:X mX:0:X:X:0 B X:0:X:0:X
W X:0:0:X:X W 0:X:X:X:0 W 0:X:X:0:X W 0:X:0:X:X
0:0:X:X:X W X:X:0:0:0 0 X:0:X:0:0 X:0:0:X:0
X:0:0:0:X 0:X:X:0:0 0:X:0:X:0 0:X:0:0:X
0:0:X:X:0 0:0:X:0:X 0:0:0:X:X species—specific
Figure 4 Ortholog delineation among the protein-coding gene repertoires of the four mosquito species and D. melanogaster.
Membership of the categories of orthologous groups are depicted as follows: (i) 1:1:1:1:1 indicates single-copy orthologs in all species; (i) N:-N:N:N:
N indicates multi-copy orthologs in all species; (iii) N in 1, N in 2, etc. indicates multi-copy orthologs in one or two species, etc; (iv) x:xxx:0, x:0:x:x:
x, xx:0xx:0 etc. indicates (by a 0) which of the five species, in the order listed above, did not contain single-copy or multi-copy orthologs. The
remaining proportion of the sequence for each species exhibited no orthologs with genes in the other species (depicted as specific-specific in
the figure).
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Table 5 Characteristics of microsynteny blocks between
A. sinensis, A. gambiae, Ae. aegypti, C. quinquefasciatus,
and D. melanogaster

Microsynteny blocks  Numbers of  Total length Shared
microsynteny of microsynteny  gene
blocks (Mbps) families

A. sinensis/A. gambiae 927 A. sinensis:132 8,457

A. gambiae:157
A. sinensis/Ae. aegypti 1,668 A. sinensis:93 6,792
Ae. aegypti:398
A. sinensis/C. 1,690 A. sinensis:88 7,087
quinquefasciatus c
quinquefasciatus:185

A. sinensis/D. 1,031 A. sinensis:45 2,658

melanogaster

D. melanogaster.38

to have occurred ~52 Mya. This date of divergence was
earlier than the split between A. fumestus, another
member in anopheline group, and A. gambiae (15-25
Mya) [31].

Few immune-related gene sets may be associated with
malaria vectorial capacity

Anophelinae are recognized as major vectors of human
malaria, while culicine species are the principal etio-
logical agents of mosquito-borne viruses. It is not sur-
prising that genetic factors play decisive roles in
determining vectorial capacity [32]. Previous studies re-
garding the immune system of Anophelinae have shown
that changes in certain aspects can affect the develop-
ment of Plasmodium either positively or negatively [33].
As shown in Additional file 1: Table S15, relative to
Culicinae, C-type lectins (CTLs), serine protease inhibi-
tors (serpins, SRPNs) and MD2-like gene (ML) families
have contracted in the Anophelinae, whereas the
thioester-containing protein (TEP) and peroxidase gene
families have expanded, which may result from the dif-
ferential duplication and/or loss of genes among these
evolutionary lineages. Although comparative immune-
related gene families in C. quinquefasciatus, Ae. aegypti,
and A. gambiae have been studied, limited information is
available due to limited numbers of anopheline species.
With the discovery of the second anopheline mosquito,
A. sinensis, we may reveal the Plasmodium-susceptible
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genotype, which will help to understand the details of the
relationships between anopheline mosquito vectors and
malarial pathogens.

Both the ML and serpin gene families have been
shown obviously interfere with malarial infection.
AgMDLI1, an MD2-like receptor, showed specificity in
regulating resistance to P. falciparum and O’nyong-
nyong virus [34,35]. These overlaps between the effects
of MLs on Plasmodium spp. and other viruses suggest
that MLs are a universal defense mechanism for mosqui-
toes against invading pathogens. Expression of the
SRPNG6 gene can limit the number of rodent malarial oo-
cysts in A. stephensi [36]. Thus, the significant contrac-
tion of MLs and Serpins can help the malarial parasite
to survive in Anophelinae.

The TEP [37] and C-type lectins (CTLs) [38] gene
families are both involved in pathogen recognition
(PRRs) and immune response activation. One TEP fam-
ily gene in particular (TEPI), can be upregulated after
malarial infection and strongly inhibit the development
of infection in both rodents and humans by binding to
Plasmodium parasite surfaces [33]. In contrast, two cir-
culating CTLs from A. gambiae (C-type lectin 4 [CTL4]
and CTL mannose binding 2 [CTLMA2]) have been
identified as agonists of the rodent malaria species, P.
berghei, which can induce massive ookinete melanization
when silenced [39]. Consequently, the downregulation of
CTL members and the upregulation of TEP members in
Anophelinae are likely to depend on their relative roles
in promoting or inhibiting the development of malarial
parasites. Putative HPX (HPX2, HPX7 and HPX8) can
be induced in the mosquitoes midgut in response to
Plasmodium infection, in order to potentiate nitric oxide
toxicity and improve antiplasmodial effects [40,41].
Thus, HPX enzymes have been considered as key en-
zymes induced in the midgut cells of A. gambiae invaded
by Plasmodium ookinetes.

The observed contraction of these two immune gene
families (MLs and serpins) could be explained as import-
ant genetic components in the Plasmodium-susceptible
phenotype. Such gene expression changes occur earlier
than the invasion of Plasmodium, whereby Anophelinae
are able to transmit Plasmodium. However, Plasmodium
infection may induce the activation (and subsequent ex-
pansion or contraction) of immune-related genes involved

X |

Figure 5 The coverage of the microsynteny block of A. sinensis on the chromosome of A. gambiae.
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Figure 6 The inferred supertree for four mosquito species and D. melanogaster. The topology of the supertree was evaluated by bootstrap

T 1
50 0 mya

in pathogen defense in mosquitoes. The two expanded
gene families (TEP and peroxidases) and one contracted
gene family (CTLs) observed in this study could have
formed gradually as a long-term adaptive immune re-
sponse against Plasmodium infection, and been expanded
or contracted under positive selection in Anophelinae.
Consequently, this immune-related gene set analysis at
the theoretical level can provide clues for understanding
the genetic basis of a Plasmodium-susceptible phenotype.
These selective genes may serve as valuable potential tar-
gets for future malarial control strategies.

Methods

Strain selection and DNA extraction

The laboratory strain of A. sinensis used in this study
has been inbred within the lab since 1984 and, never
been exposed to pesticides. These mosquitoes were
reared at 26 +1°C and 75 to 85% humidity, under a
10:14 h light:dark cycle. Genomic DNA was extracted
from 300 adult females and 300 males (2 to 3 days post
adult emergence) according to methods described in
[42]. To prevent RNA and protein contamination, ex-
tracted DNA was treated with RNase A and proteinase
K and, subsequently, precipitated with ethanol.

Whole-genome sequencing and assembly
We employed a whole-genome sequencing strategy with
Roche/454 GS FLX. We constructed a total of five
single-end and seven mate-pair sequencing libraries with
insert sizes of about 3 Kb, 8 Kb and 20 Kb from 1 pg,
5 pg, 30 pug and 60 pg of starting DNA. In total, we gen-
erated 4.16 Gb of data of sequencing reads ranging from
40 to 1196 bp. To reduce the effect of sequencing error
during assembly, we undertook a series of checking and
filtering steps in assembling the reads generated. By
using stringent criteria, 3.34 G of high quality data were
incorporated into the final de novo genome assembly.
The Lander-Waterman algorithm [43] were used to es-
timate the genome size of A. sinensis. K-mer analysis for
single-end reads [44] revealed a frequency distribution
that conformed to the Poisson expectation when K-mer
was equal to 13. The value of expected depth was calcu-
lated based on the lambda, a parameter of possion

distribution. The genome size of A. sinensis was then
calculated using the total K-mer number divided by the
expected depth value.

Whole-genome assembly was carried out with a Celera
Assembler V6.1 for the remaining 454 reads [45]. The
revised pipeline (called Celera Assembler with the Best
Overlap Graph, CABOG) was robust to uncertainty in
homopolymer run length, high read coverage and het-
erogeneous read lengths. We utilized the following mod-
ules of the Celera Assembler software for successive
phases of the assembly: pairwise overlap detection; initial
ungapped multiple sequence alignments, called unitigs;
unitig consensus calculation; combining unitigs with
mate constraints to form contigs and scaffolds that were
ungapped and gapped multiple sequence alignments;
and, finally, scaffold consensus determination. Because
the genome used for sequencing were constructed from
whole adult mosquitoes, contamination from bacteria in
gut or adhering on the surface were inevitable. To check
for possible microbial contamination of the assembly, we
screened scaffolds against the NCBI NT database using
query alignment and identity cut-off of 90% and e-value
cut-off of le-6. When the top hit was bacterial species,
this scaffold was removed.

In order to assess the assembly quality, the transcrip-
tome was sequenced and aligned to the scaffold
sequences using Blat with default parameters [46]. As-
sembly quality was also assessed by mapping the 454
Single reads to the scaffolds using BWA. The mapped
regions (consensus sequences) with depth over 3X were ex-
tracted for SNVs and INDEL variation analysis, which rep-
resent potential base error and short indel error rate in the
genome, respectively [46]. Additionally, presence of CEGs
was evaluated for the genome assembly (http://korflab.
ucdavis.edu/Datasets/cegma/submit.html) [47,48].

Identification of repetitive elements

The identification of repetitive elements is essential for
genome sequencing, as unidentified repetitive elements
can affect the quality of gene predictions, annotation and
annotation-dependent analyses [49]. Two methods were
adopted for masking repeat regions in A. sinensis. First,
RepeatMasker V3.3.0 (http://www.repeatmasker.org/) was
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applied against the Repbase library (species Anopheles)
based on the scaffolds. Then, RepeatScout V1.0.5 [50]
software was used (with frequency set to >50) to build a
repeat regions database by providing scaffolds and poten-
tially repeat sequences. These results were merged with
the results of the transposable elements for mosquitoes,
which were downloaded from TEfam database (http://
tefam.biochem.vt.edu/tefam/). Finally, these merged re-
sults were reprocessed with RepeatMasker.

Gene prediction

To predict genes, we used two independent approaches:
a homology-based method and a de novo method. The
results of these two methods were integrated by the EVi-
denceModeler utility and then filtered multiple times
and also checked manually. The reference protein se-
quences for protein alignment were obtained from
VectorBase (for the aforementioned three sequenced
mosquito species) and the NCBI database (for Culicidae
species). CD-HIT software was used to cluster these
protein sequences with 100% global similarity [51].
AAT [52] and Genewise [53] software were used to
align the protein data to the masked scaffolds. By com-
paring the databases, we obtained the number of pro-
tein distributions.

Four ab initio gene prediction programs were run on
the genome: SNAP [54], Augustus [55], GlimmerHMM
[56], and Genezilla [57] with the model trained using the
published mosquito gene information (A. gambiae, Ae.
aegypti and C. quinquefasciatus).

Quality of protein-coding gene predictions

To estimate the accuracy of gene prediction, we under-
took a consistency check for the protein length of single-
copy orthologs between A. sinensis and D. melanogaster.
Considering the high conservation of single-copy ortho-
logs, the protein length should have a high coherence be-
tween two species [23]. The protein lengths of the two
species were plotted as a scatter diagram and analyzed
with a regression analysis. We compared the results of
this regression analysis with results from the published
literature.

Identification of noncoding RNA genes

tRNA genes were predicted by tRNAscan-SE-1.23 with
eukaryote parameters [58]. The rRNA fragments were
identified by aligning the rRNA template sequences from
the SILVA database [59] and RNAmmer database, by
using BlastN at E-value le-5 with cutoff of identity 295%
and match length >50 bp. It is important to note that
rRNA genes in the A. sinensis genome were combined
by aligning the 5.8S, 18S, 25S and 28S regions of data-
bases using BlastN. miRNA was predicted by BlastN
against the hairpin sequences from miRBase database
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(RELEASE 17) with E-value 1le-3, allowing no less than
70 bp alignment length, and requiring no less than 85%
overall identity and 80% coverage.

Functional annotation

Gene functions were assigned according to the best
match of the alignments using Blast and BlastP (query
coverage >50%; E-value: 1le-10) against the NCBI NR
protein database. All predicted protein-coding genes
were obtained with the InterProScan analysis tool [60].
According to features of the predicted protein se-
quences, the InterProScan analysis was based on the ac-
tive site, the binding site, the conserved site, the domain,
the family, the PTM, and the repeat. Gene Ontology
(GO) IDs for each gene were obtained from the corre-
sponding InterProScan entry. All genes were aligned
against the KEGG proteins, and the pathway in which
the gene might be involved was derived from the
matching genes in the KEGG. SignalP 4.0 server was
used to predict the presence and location of signal pep-
tide cleavage sites in the amino acid sequences [61].
This method incorporates a prediction of cleavage sites
and a signal peptide/non-signal peptide prediction
based on a combination of several artificial neural net-
works. TMHMM software [62] was used with default
values to predict the transmembane region based on a
hidden Markov model.

Gene orthology prediction

The gene orthology predictions were generated by the
Ensemble Gene Tree method [63], which is based on the
PHYML algorithm for multiple protein sequence align-
ments, and uses MUSCLE for each gene family that con-
tains sequences from all five species (A. sinensis, A.
gambiae, Ae. aegypti, C. quinquefasciatus and D. mela-
nogaster). Gene trees were reconciled with the species
trees using the RAL algorithm to call duplication events
on internal nodes and to root the trees. The relations of
orthology were inferred from the results of each gene
tree.

Defining gene families

The PANTHER hidden Markov models V7.2, annotated
to different functional gene families, were used with de-
fault parameters (i.e. E-value: le-3) to classify all gene
models of A. sinensis. Immune-related gene sets were
downloaded from ImmunoDB resource (http://cegg.
unige.ch/Insecta/immunodb) and subjected to inspec-
tion, curation, and phylogenetic analysis. Based on these
gene sets, we re-annotated the proteins in the A. sinensis
genome by Blast search, and counted the number of A.
sinensis genes in each functional gene set. The threshold
E-value in the Blast search was set to le-3, while the
similarity was set to 0.35.
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Construction of microsyntenic blocks

CHSMiner V1.1 [64] was used to construct the micro-
synteny map for A. sinensis and the other three previ-
ously sequenced mosquito species. Briefly, the program
used the orthologs between two genomes as anchors,
and merged two anchors into a block if they were lo-
cated less than a specified gap size apart. We used de-
fault values for parameters and set the minimum length
to 100 Kb. Each microsynteny detected was evaluated by
corrected P-values; only those results with the P-values
less than 1e-5 were preserved.

Phylogeny construction

M-Coffee V9.0 program [65] was used to perform the
multiple alignment of proteins in each family. A phyl-
ogeny tree was constructed based on the 3,470 single-
copy families in the five species (A. sinensis, A. gambiae,
Ae. aegypti, C. quinquefasciatus and D. melanogaster).
We used the Phylip package V3.69 [66] to build the
maximum likelihood (ML) tree for each protein family
under the JTT substitution model. Then the SuperTree
software was used to get an integrated supertree. To
evaluate the topology of the supertree, we performed a
bootstrap resample analysis using 100 resamples from
the original tree.

Conclusions

Malaria is caused by infection with Plasmodium para-
sites that are transmitted via the bites of infected female
Anopheles mosquitoes. Vector control offers an import-
ant means of limiting the spread of malaria; however, the
lack of genetic information on Plasmodium-susceptible
anopheline mosquitoes is a major obstacle to the devel-
opment of effective vector management. We generated
the first draft genome sequence of Anopheles sinensis, an
Asiatic mosquito species suspected to be the most im-
portant vector of P. vivax. We compared the genetic
composition of this species to that of other sequenced
mosquito species in the subfamily Anophelinae and the
subfamily Culicinae (the latter are not susceptible to
Plasmodium infection). The results of these comparisons
provide important genetic insights into this vector-
disease system. In particular,we observed the expansion
and contraction of several important immune-related
gene families known to influence aspects of Plasmodium
development, in the anopheline species relative to the
culicine species. These differences suggest that species-
specific immune responses to Plasmodium infection
underpin the biological differences in Plasmodium sus-
ceptibility that characterize these two mosquito subfam-
ilies. This study provides critical genomic information
that will pave the way for analyses investigating the gen-
etic basis of mosquito susceptibility and resistance to
Plasmodium parasites.
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Additional file 1: Table S1. Putative contaminating scaffold sequence
of possible bacterial origin. Table S2: Assessment of gene coverage by
assembled transcripts of A. sinensis. Table S3: Variation statistics regarding
mapping of raw reads to the scaffolds. Table S4: Results of gene prediction
and predicted protein-coding genes for A. sinensis. Table S5: Identification
of non-coding RNA genes in the A. sinensis genome. Table S6: Functional
annotation of predicted genes for A. sinensis. Table S7: Occurrence of the
over-represented InterPro domains and repeats in the genome of A. sinensis
compared with the genome of Agambiae. Table S$8: Occurrence of the
down-represented InterPro domains in the genomes of the Anopheline
species compared with the Culicine species. Table S9: Occurrence of the
over-represented level 2 GO terms in the genome of A. sinensis compared
with the genome of A.gambiae. Table S10: Occurrence of the over-
represented level 2 GO terms in the genomes of the Anopheline species
compared with the Culicine species. Table S11: Number of transmembrane
regions in the four mosquito species. Table S12: Distribution results of
the transmembrane regions in the four mosquito species. Table S13:
Occurrence of the top 10 domains and families enriched in orthologous
genes that were shared only among the four mosquito species. Table
S14: Occurrence of the top 12 pathways enriched in orthologous genes
that were shared only among the four mosquito species. Table S15:
Number of selected immune-related gene sets in the four mosquito
species.

Additional file 2: MiRNA list of all predicted A. sinensis miRNA
target genes and their annotations.

Additional file 3: Figure S1. Microsynteny between the genomes of A.

sinensis and A. gambiae. Genomic scaffolds of A. sinensis inferred to be
syntenic were linked (blue lines) to A. gambiage chromosomes.
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