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Abstract

Background: Mechanical stimulation is necessary for regulating correct formation of the skeleton. Here we test the
hypothesis that mechanical stimulation of the embryonic skeletal system impacts expression levels of genes
implicated in developmentally important signalling pathways in a genome wide approach. We use a mutant mouse
model with altered mechanical stimulation due to the absence of limb skeletal muscle (Splotch-delayed) where
muscle-less embryos show specific defects in skeletal elements including delayed ossification, changes in the size
and shape of cartilage rudiments and joint fusion. We used Microarray and RNA sequencing analysis tools to
identify differentially expressed genes between muscle-less and control embryonic (TS23) humerus tissue.

Results: We found that 680 independent genes were down-regulated and 452 genes up-regulated in humeri from
muscle-less Spd embryos compared to littermate controls (at least 2-fold; corrected p-value ≤0.05). We analysed the
resulting differentially expressed gene sets using Gene Ontology annotations to identify significant enrichment of
genes associated with particular biological processes, showing that removal of mechanical stimuli from muscle
contractions affected genes associated with development and differentiation, cytoskeletal architecture and cell
signalling. Among cell signalling pathways, the most strongly disturbed was Wnt signalling, with 34 genes including
19 pathway target genes affected. Spatial gene expression analysis showed that both a Wnt ligand encoding gene
(Wnt4) and a pathway antagonist (Sfrp2) are up-regulated specifically in the developing joint line, while the
expression of a Wnt target gene, Cd44, is no longer detectable in muscle-less embryos. The identification of 84
genes associated with the cytoskeleton that are down-regulated in the absence of muscle indicates a number of
candidate genes that are both mechanoresponsive and potentially involved in mechanotransduction, converting a
mechanical stimulus into a transcriptional response.

Conclusions: This work identifies key developmental regulatory genes impacted by altered mechanical stimulation,
sheds light on the molecular mechanisms that interpret mechanical stimulation during skeletal development and
provides valuable resources for further investigation of the mechanistic basis of mechanoregulation. In particular it
highlights the Wnt signalling pathway as a potential point of integration of mechanical and molecular signalling
and cytoskeletal components as mediators of the response.
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Background
Mechanical stimulation plays an important role in skeletal
growth and repair reviewed in [1] and, although much less
well studied, it is also required for normal skeletal develop-
ment. This was initially indicated by observations that in-
fants who experience decreased foetal movement in utero
due to neuromuscular disorders present a range of skeletal
anomalies including multiple joint fusions, craniofacial ab-
normalities and thin hypo-mineralised bones [2,3]. Direct
evidence that mechanical stimuli generated by embryonic
muscle contractions impacts skeletal development comes
from a variety of experimental animal models that show
similar abnormalities in ossification and joint formation, for
example following muscle immobilisation in chick embryos,
and in mouse embryos lacking muscle or with reduced or
immobile muscle reviewed in [4,5]. However little is known
about the molecular mechanisms through which mechan-
ical stimuli influence cellular events during skeletal devel-
opment. The interplay between biophysical stimuli and
gene regulation in differentiating cells is emerging as an im-
portant phenomenon in multiple developmental systems
[6,7].
A number of different strains of mutant mice have

been studied that phenotypically lack limb muscle or
show reduced stimuli from muscle contraction during
development [8-10], including Splotch (Pax3Sp) and
Splotch-delayed (Pax3Spd), where muscle precursor cells
fail to migrate to the developing limbs and no limb
muscle forms [11,12]. Common defects in muscle-less
and immobilised embryos include abnormal initiation
and/or progression of ossification [9,13], loss of defin-
ition of tissue territories in the joint region [8] and al-
tered rudiment morphology [9], associated with reduced
local cell proliferation [14]. Therefore, mechanical stim-
uli impact a variety of developmental processes and pre-
sumably must influence or integrate with signalling
pathways and molecular changes known to guide these
events. One clue to a signalling pathway impacted by
mechanical stimulation comes from the work of Kahn
et al. [8] who showed that canonical Wnt signalling is
altered in the elbow joint of Splotch-delayed embryos.
Several regulatory genes have been shown to have dra-
matically altered expression patterns in reduced mech-
anical stimuli including, Ihh and ColX at the site of
ossification [10,15] and Bmp2, Fgf2, and Pthlp at the
joint line [16,17]. Whether expression of these genes is
directly affected by the mechanical environment or as a
more indirect consequence of altered cell behaviour is
not known; a genome-wide, open ended screen is re-
quired to know more about the spectrum of molecular
changes that occur when mechanical stimuli are altered.
Gene expression profiling to identify genome-wide

changes under altered mechanical environments has been
carried out on cells in culture using microarray technology,
including osteoblast cell-lines subjected to weightlessness
or microgravity conditions [18], chondrocyte-laden con-
structs and murine cartilage explants to which dynamic
compression was applied [19] and chondrocyte cell lines
exposed to hydrostatic pressure [20]. Gene expression pro-
filing has the potential to uncover hundreds of genes that
respond to mechanical stimuli simultaneously (mechano-
sensitive genes); however no direct analyses of in vivo
changes in gene expression during skeletal development
following alteration of the mechanical environment have
been performed. This is required to begin to assemble a
picture of the molecular landscape impacted by mechanical
stimuli in a developmental context.
In this study we analysed the transcriptional changes

in the developing humerus and associated joints at Thei-
ler stage (TS) 23 [21] (typically embryonic day (E) 14.5)
in muscle-less (Splotch-delayed) compared to phenotyp-
ically normal littermate controls. We previously estab-
lished that the humerus is the most strongly affected
rudiment and TS23 the earliest time point at which the
specific effects on ossification and joint line reduction in
the elbow and shoulder regions are detected [9,10]. We
hypothesise that mechanical stimulation of the embry-
onic skeletal system impacts expression levels of genes
implicated in a variety of regulatory pathways and bio-
logical processes, as would be expected when an inte-
grated regulatory system is disturbed. The genes that
show altered expression would include direct and indir-
ect targets of mechanical stimulation. Therefore, a gen-
ome wide analysis of altered transcript levels is required
to indicate the principal molecular mechanisms dis-
turbed and the most likely candidates for direct regula-
tion. We have used both RNA whole transcriptome
sequencing analysis (RNA-seq) and Microarray technol-
ogy to allow a comprehensive investigation of the altered
transcriptome. Microarray analysis is a more established
technique [22], but RNA-seq offers the potential of
greater sensitivity [23] and analysing the same tissues in
parallel allows direct comparison of the two assays and
integration of the data sets. We also used RNA-seq ana-
lysis of the normal developing humerus to explore the
transcriptome at this specific stage of development. The
humerus developing in the absence of muscle generated
stimulation showed both up and down-regulation of
gene expression. We reveal alteration of genes encoding
components and targets of specific signalling pathways,
in particular the Wnt signalling pathway. Genes associ-
ated with cytoskeletal rearrangement and extracellular
matrix components are also affected. This analysis has
allowed us to profile genome wide transcriptional
changes giving an overview of the molecular processes
and pathways most affected and identifying a set of pu-
tative direct target genes responding to mechanical
stimulation during ossification and joint formation.
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Results
Transcription profiling of the developing humerus during
early ossification and joint formation (TS23)
RNA sequencing of control humeri at TS23 gives an
insight into the transcriptome at this key stage of devel-
opment when the rudiment is undergoing early stages of
ossification and tissue zones in the joint are being de-
fined (Figure 1). Transcripts from 15,214 individual
genes (n = 3 biological replicates, Figure 2; data submit-
ted to EMBL-EBI ArrayExpress repository: [E-MTAB-
1745]) were detected in this tissue at this stage. A mini-
mum of 5 transcript reads (on average), with at least one
read from each replicate sample, was chosen as the cut
off point to reliably indicate reproducible expression
across biological replicates [24]. Expressed genes were
divided into groups according to their relative expression
level (Figure 2A). 787 genes showed the lowest level of
expression represented by between 5 and 10 read
counts, while the majority of genes (71%; 10,789/15,214)
showed between 100 and 5000 read counts. Only 732
Figure 1 Overview of gene expression profiling approach used. A) Im
dissected prior to RNA extraction (right hand image); the images on the le
specimens stained to reveal the morphology and ossification more clearly.
and red arrow heads the ossification site, a visible reduction is apparent in
Microarray and RNA-sequencing data analysis.
genes are in the most highly expressed categories
(≥5,000 read counts) (Figure 2A), representing 4.8% of
expressed genes. Expression levels of selected individual
genes are represented in Figure 2B. The most abun-
dantly transcribed gene is Col2a1 (collagen 2, alpha 1)
with a read count of 452,576, and among the 8 genes
with read counts of more than 100,000, there are 4 other
collagen encoding genes (Figure 2A and B). In total 41
collagen subtype genes are expressed (Figure 2B).
The relative levels of expression of genes associated

with signalling pathways involved in regulating skeletal
development reviewed in [25,26] are highlighted in
Figure 2B. This shows the potential components that
can contribute to these signalling pathways at this stage
of skeletal development. For example the hedgehog
(HH) pathway is known to play an important role in os-
sification through the action of Ihh (640 reads), binding
to its receptor Ptch1 (1,342 reads) activating Smo (5,154
reads). Similarly, 14 FGF ligand encoding genes and 5
FGF receptor encoding genes were detected, highlighting
ages of control and Pax3Spd/Spd mutant humeri at Theiler stage 23
ft are external views of stage and genotype matched 3D scanned
White arrow heads indicate the elbow joint and shoulder joint line
the mutant compared to the control in each case. B) Work-flow of



Figure 2 (See legend on next page.)
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(See figure on previous page.)
Figure 2 Transcriptome Profiling of the developing humerus at TS23 by RNA-seq, (A) The number of genes (y-axis) with increasing
relative expression levels represented by transcript read counts as indicated. (B) The relative expression of selected genes represented by
read counts (Log10) (y-axis). Collagen genes and signalling pathways genes are grouped: TGFβ (including TGFβ, BMP and GDF ligands, receptors
and agonists), FGF (ligands and receptors), HH (ligands, receptors and intracellular modulators), Wnt (Wnt ligands and agonists (Wnt, Rspo),
receptors (Fzd) and co-receptors (Kremen, Lrp), antagonists (Sfrp, Dkk) Intracellular components (Sost, Dvl, Ctnnb) and nuclear components (Tcf,
Lef)) and a selection of ‘other’ genes associated with skeletal development. Squares indicate ligands and modulators, triangles indicate receptors.
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the potential for multiple FGF signalling interactions.
The BMP signalling pathway genes also reveal potential
for multiple signalling interactions with 9 BMP encoding
genes expressed. Bmp1 is by far the most highly
expressed (5719 reads); although it is not previously re-
ported in this tissue at this stage in gene expression da-
tabases (http://www.informatics.jax.org/). The relative
expression levels of Wnt ligand (Wnt), Wnt receptor
(Fzd, Lrp, Kremen), extracellular Wnt interactor (Sfrp,
Dkk, Rspo, Sost), intracellular Wnt pathway component
(Dvl, Axin, Ctnnb) and Wnt pathway transcription factor
(Tcf, Lef ) encoding genes are represented. The detection
of previously unreported Wnt gene expression in the hu-
merus (e.g. Wnt2 and Wnt2b) opens up new consider-
ations for functional roles, especially as both genes are
up-regulated in muscle-less rudiments (described
below). The low density lipoprotein receptor-related
genes Lrp5 and Lrp6, which are Wnt co-receptors, are
most highly expressed among the Lrp gene family (4,727
and 3,310 reads respectively). Interestingly eight Fzd re-
ceptor encoding genes are detected. Other genes known
to be involved in skeletal development are highly
expressed; Sox9 (4,550 reads), Runx2 (1,285reads), Spp1
(8,155 reads) and Mmp13 (1,103 reads).

Identification of differentially expressed genes in
muscle-less versus control developing humeri and
associated joints
Microarray analysis of RNA extracted from control and
Pax3Spd/Spd muscle-less humeri (n = 4 biological repli-
cates) detected expression of a similar proportion of in-
dividual genes on the array; 20,697 independent genes
from the control and 20,949 from the muscle-less hu-
meri (data submitted to EMBL-EBI ArrayExpress reposi-
tory: E-MTAB-1744). Comparing hybridisation intensity
Table 1 Differentially expressed genes (p ≤0.05) with fold cha
analysis and Combined

Microarray

Total number of differentially expressed transcripts 374

Down-
regulated

Up
reg

Independent named genes 282 87

Putative uncharacterized proteins/unknown genes 2 3

284 90
between control and mutant derived cDNAs, using cut
off points of at least a 2-fold change and corrected
p-value ≤0.05 [27] for significance across replicates,
identified 374 independent genes as differentially
expressed (DE). Of these, 284 genes (75.9%) were down-
regulated and 90 genes (24.1%) were up-regulated
(Table 1). RNA-seq analysis (n = 3 biological replicates)
detected 15,031 independent genes (with ≥5 read counts
across replicates, as described above) in muscle-less hu-
meri, compared to 15,214 in control tissue (data submit-
ted to EMBL-EBI ArrayExpress repository: E-MTAB-
1746). To determine differential expression, the same
cut off points of a corrected p-value ≤0.05 and at least a
2-fold change were applied to the RNA-seq data-set,
identifying 1,037 genes as DE across replicates. Of these,
618 genes (59.6%) were down-regulated and 419 genes
(40.4%) were up-regulated in the muscle-less humeri
and associated joints compared to that of phenotypically
normal littermate control humeri (Table 1).
The Venn diagrams in Figure 3 represent overlap of

DE genes identified by the two platforms. In total 1,132
independent genes were identified as DE in the muscle-
less mutant compared to its phenotypic control (Figure 3,
Table 1). Of the 374 genes identified by microarray
(Table 1), 73.2% of these genes were also represented in
the RNA-seq data. RNA-seq detected a greater total
number of DE genes than the microarray (1,037 versus
374, respectively, using the standard cut off criteria). In
addition if the stringency for DE gene selection is weak-
ened for the microarray data by moving the cut off point
to corrected p-value of ≤0.08, the number of genes de-
tected as DE in common by the two platforms increases
to 426 from 274 (not shown). This suggests that the
RNA-seq approach was more sensitive in detecting dif-
ferential expression. Grouping genes based on the degree
nge values ≥ 2 revealed by Microarray and RNA-Seq

RNA-Seq Combined

1,037 1,132

-
ulated

Down-
regulated

Up-
regulated

Down-
regulated

Up-
regulated

419 618 680 452

- - - -

419 618

http://www.informatics.jax.org/


Figure 3 Venn diagrams representing the overlap of
independent genes detected as differentially expressed
(up-regulated and down-regulated; cut off criteria p ≤ 0.05, and
fold change ≥2) from the microarray and RNA seq analysis,
as indicated.
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of change showed that the spread of fold change values
was similar across platforms although there were differ-
ences in the number of genes in different categories
(Additional file 1: Table S1). Additional file 1: Table S2
and S3 list all DE genes and fold change values esti-
mated by Microarray and RNA-seq.
Verification of fold change values for DE genes was

performed using qRT-PCR (Table 2). The DE genes
Table 2 Fold change in expression level of selected genes in
revealed by Microarray, RNA seq and qRT-PCR

Gene
symbol

Gene name

Fgf4 Fibroblast growth factor 4

Cilp Cartilage intermediate layer protein, nucleotide
pyrophosphohydrolase

Rxrg Retinoid X receptor gamma

Dll1 Delta-like 1

Spp1 Secreted phospoprotein 1

Vstm2a V-set and transmembrane domain containing 2A

Figf c-fos induced growth factor

Fgf10 Fibroblast growth factor 10

Sfrp2 Secreted frizzled-related protein 2

#No numerical value for fold change as no transcripts detected in the mutant.
***p ≤ 0.001, **p ≤ 0.01, *p ≤ 0.05 indicates significance of differential expression fro
p ≤ 0.05 for all microarray and RNA-seq differences except Spp1 in the Microarray (n
chosen (Fgf4, Cilp, Rxrg, Dll1, Spp1, Vstm2a, Figf, Fgf10
and Sfrp2) include both down-regulated and up-
regulated genes. The direction and degree of fold
changes were similar in all cases for the microarray and
the RNA-seq. For all genes analysed there was a good
correspondence across all platforms (Microarray, RNA-
seq and RT-PCR), although greater fold change differ-
ences were detected for the down-regulated gene Rxrg
and the up-regulated gene Vstm2a by qRT-PCR.

Biological Interpretation of differentially expressed genes:
Down-regulated genes are associated with development
and differentiation, cytoskeletal architecture and cell
signalling
To reveal any enrichment of functionally related genes
among the DE data sets, two web based tools, DAVID
and GOstat, were used to analyse Gene Ontology (GO)
term associations [28,29] (Tables 3 and 4). A significant
enrichment (normalised by the number of genes in the
genome with that associated GO term) indicates specific
biological processes that are affected when mechanical
stimuli are reduced. The strength of the enrichment is
indicated by the calculated p-value. Independent analysis
of data sets from microarray and RNA-seq showed the
same enriched groups so analysis of the combined DE
gene sets is presented (Table 1). The individual GO
terms found to be enriched have been grouped for the
purpose of interpretation as indicated in Tables 3 and 4.
Analysis of the down-regulated gene set (Table 3) indi-
cated that genes associated with Development and Dif-
ferentiation are most highly enriched (total of 155/680
with p-values down to 2.73 × 10-15). Categories within
this group are involved in signal transduction, including
genes that encode signalling molecules, receptors, and
transcription factors (TFs), for example signalling ligands
Pax3Spd/Spd mutant humeri compared to control humeri

Regulation
status

Microarray
(Fold change)

RNA-seq
(Fold change)

qRT-PCR
(Fold change)

Down-regulated 41.05 #No numerical
value

35.24***

Down-regulated 9.73 9.76 11.3***

Down-regulated 7.05 12.29 5.25**

Down-regulated 2.21 3.16 1.78*

Down-regulated 5.23(ns) 2.9 2.59*

Up-regulated 8.56 3.09 14.17**

Up-regulated 3.52 3.17 4.06**

Up-regulated 2.48 2.14 3.28

Up-regulated 2.62 2.09 3.38*

m qRT-PCR.
s).



Table 3 Enrichment of gene groups down-regulated in muscle-less humeri based on GO terms under subontologies
biological process and cellular component

Gene ontology term Gene count in study Enrichment1

Development/Differentiation 155 2.73 × 10-15 to 0.0084

GO:0048856: Anatomical structure development 134 2.73 × 10-15

GO:0032502: Developmental process 155 1.52 × 10-14

GO:0048513: Organ development 107 4.23 × 10-13

GO:0007275: Multicellular organismal development 142 4.92 × 10-13

GO:0048731: System development 122 5.57 × 10-13

GO:0009888: Tissue development 58 8.37 × 10-13

GO:0030154: Cell differentiation 94 8.86 × 10-10

GO:0048869: Cellular developmental process 96 1.67 × 10-9

GO:0048468: Cell development 45 2.66 × 10-7

GO:0009887: Organ morphogenesis 38 6.12 × 10-5

GO:0001756: Somitogenesis 8 2.61 × 10-4

GO:0035282: Segmentation 9 2.66 × 10-4

GO:0009952: Anterior/posterior pattern formation 13 0.0033

GO:0009790: Embryonic development 34 0.0074

GO:0043009: Chordate embryonic development 24 0.0075

GO:0009792: Embryonic development ending in birth 24 0.0084

Cytoskeleton 30 5.30 × 10-19 to 0.0995

Biological process GO:0030029: Actin filament-based process 25 1.45 × 10-9

GO:0030036: Actin cytoskeleton organization 23 1.08 × 10-8

GO:0007010: Cytoskeleton organization 31 1.50 × 10-7

GO:0007015: Actin filament organization 5 0.0995

GO:0015629: Actin cytoskeleton 39 5.30 × 10-19

Cellular component

GO:0005856: Cytoskeleton 86 2.20 × 10-14

GO:0016459: Myosin complex 21 1.26 × 10-15

GO:0032982: Myosin filament 11 2.32 × 10-12

GO:0044430: Cytoskeletal part 51 1.16 × 10-6

GO:0005884: Actin filament 5 0.0134

Cell signalling 31 4.78 × 10-5 to 0.0899

GO:0007154: Cell communication 32 4.78 × 10-5

GO:0007267: Cell-cell signalling 23 1.33 × 10-4

GO:0007169: Transmembrane protein tyrosine kinase signalling 17 3.85 × 10-4

GO:0007167: Enzyme linked receptor protein signalling pathway 20 0.0011

GO:0008543: Fibroblast growth factor receptor signalling pathway 5 0.0139

GO:0045168: Cell-cell signalling involved in cell fate specification 4 0.0271

GO:0040036: Regulation of fibroblast growth factor signalling 3 0.0451

GO:0043409: Negative regulation of MAPKKK cascade 3 0.0614

GO:0007219: Notch signalling pathway 5 0.0899

All GO terms are associated with the subontology “Biological Process” except where indicated under Cytoskeleton, where Cellular Component was also used.
1P-value of enrichment of GO terms using DAVID analysis software; similar results were found with GOstat.
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Fgf4,Fgf5, Fgf6, Fgf8 from the fibroblast growth factor
signalling pathway; receptors Fzd10 and Rxrg from the
Wnt and Retinoic acid pathways respectively. 26 of these
genes encode TFs including; Barx2, Scx, Hes6, Pitx2,
Pitx3 and Tead4. The down-regulation of such signal-
ling pathway component genes also underlies the enrich-
ment of ontology groups related to Cell Signalling
(Table 3: p-value down to 4.78 × 10-5).



Table 4 Enrichment of gene groups up-regulated in muscle-less humeri based on GO terms under subontologies
biological process and cellular component

Gene ontology: biological process Gene count in study Enrichment1

Adhesion/Extracellular matrix 32 1.99 × 10-10 to 0.0842

GO:0007155: Cell adhesion 41 1.99E-10

GO:0022610: Biological adhesion 41 2.12E-10

GO:0007156: Homophilic cell adhesion 15 4.95 × 10-7

GO:0016337: Cell-cell adhesion 19 9.38 × 10-6

GO:0043062: Extracellular structure organization 9 0.0223

GO:0030198: Extracellular matrix organisation 6 0.0842

Cell signalling 33 3.45 × 10-9 to 0.0148

GO:0007267: Cell-cell signalling 27 3.45 × 10-9

GO:0007154: Cell communication 33 2.05 × 10-9

GO:0007223: Wnt receptor signalling pathway, calcium modulating pathway 7 0.0092

GO:0016055: Wnt receptor signalling pathway 4 0.0104

GO:0008589: Regulation of smoothened signalling pathway 9 0.0105

GO:0010648: Negative regulation of smoothened signalling pathway 4 0.0135

GO:0048010: Vascular endothelial growth factor receptor signalling pathway 10 0.0288

GO:0007169: Transmembrane receptor protein tyrosine kinase signalling pathway 3 0.0402

GO:0007167: Enzyme linked receptor protein signalling pathway 12 0.0051

GO:0007165: Signal transduction 80 0.0148

Development/Differentiation 34 4.38 × 10-6 to 0.0083

GO:0048731: System development 78 4.38 × 10-6

GO:0048856: Anatomical structure development 81 8.42 × 10-6

GO:0007275: Multicellular organismal development 87 6.80 × 10-5

GO:0048468: Cell development 31 8.17 × 10-5

GO:0032502: Developmental process 91 1.82 × 10-4

GO:0048869: Cellular developmental process 59 5.41 × 10-4

GO:0030154: Cell differentiation 57 5.74 × 10-4

GO:0048513: Organ development 56 0.0036

GO:0045595: Regulation of cell differentiation 18 0.0083

Gene ontology: cellular component Gene count in study Enrichment1

Extracellular region 35 2.34 × 10-10 to 0.022

GO:0005576: Extracellular region 81 2.34 × 10-10

GO:0044421: Extracellular region part 43 2.70 × 10-7

GO:0031012: Extracellular matrix 22 1.16 × 10-5

GO:0005578: Proteinaceous extracellular matrix 21 2.14 × 10-5

GO:0005615: Extracellular space 24 0.0020

GO:0044420: Extracellular matrix part 7 0.0202

Membrane association 227 2.46 × 10-16 to 1.01 × 10-6

GO:0005886: Plasma membrane 134 2.46 × 10-16

GO:0031224: Intrinsic to membrane 191 1.07 × 10-8

GO:0044425: Membrane part 215 2.08 × 10-8

GO:0016020: Membrane 226 7.80 × 10-8

GO:0031224: Intrinsic to membrane 178 1.01 × 10-6

1P-value of enrichment of GO terms using DAVID analysis software; similar results were found with GOstat.
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110 genes associated with the Cytoskeleton were
down-regulated in Pax3Spd/Spd humeri, including those
encoding microfilament, microtubule and intermediate
filament components (Figure 4); 33 are directly associ-
ated with microfilaments (e.g. Acta1, Ablim2, Pdlim3),
13 with microtubules (e.g. Rassf5, Tubb2b, Tppp) and 4
with intermediate filaments (Des, Krt33b, Sync, Tchh);
other DE genes associated with the cytoskeleton encode
proteins that interact with myosin, or the extracellular
matrix (ECM), including integrin and cadherin encoding
genes (e.g. Lamb3, Cdh4, Itga4 and Pdgfa (not shown)).

Up-regulated genes are associated with cell adhesion, cell
signalling and development and differentiation
Genes up-regulated in muscle-less humeri revealed by
microarray and RNA-seq were similarly analysed for en-
richment of genes associated with particular biological pro-
cesses or cellular components, using associated GO terms
(Table 4). For terms within the subontology biological
process, the strongest enrichment was for cell adhesion and
ECM associated genes (total of 50/447 genes, with p-values
down to 1.99 × 10-10). The genes identified in this category
include ECM glycoproteins (Lsamp, Svep1), ECM structural
constituents (Col8a1, Col8a2, Frem3), cell-adhesion mole-
cules (Cntn1, Cntn4, Cntn5) and calcium-dependent cell
adhesion proteins (Pcdh8, Pcdhb2, Pcdhga1). This grouping
in addition included genes involved in signalling pathways
which overlap with the next most enriched terms; cell
signalling (GO:0007154) and cell-cell communication
(GO:0007267). The signalling pathway components identi-
fied in this category include: Hedgehog (Hhip, Ptch1), fibro-
blast growth factor (Fgf10, Fgf2), transforming growth
factor (Frem2, Bmp3), Notch (Ctn1, Nrg1) and Wnt
Figure 4 Visual representation of DE genes associated with cytoskele
signalling (Dkk2, Cpz Rspo2, Rspo3, Sfrp2, Wnt2, Wnt2b,
Wnt4 and Wnt16) and others, including receptors (Epha3,
Epha4, Epha5, Grin2a, Grm4, Grm7, Grm8, Gfra2, and
Pdgfra). Other signals identified as up-regulated included c-
fos induced gowth factor (Figf), hepatocyte growth factor
(Hgf) and Insulin-like growth factor (Igf1). The gene lists in
the next most enriched set, Development and Differenti-
ation, similarly show large overlap due again to the pres-
ence of the signalling pathway genes mentioned above, and
also transcription factors Foxc2, Foxo3, Lmx1a, Lmx1b. z.
Under the subontology Cellular Component there was

also striking enrichment of extracellular (total 81/447;
with p-values down to 2.34 x10-10) and membrane asso-
ciated gene products (total 227/447 p-values down to
2.46 × 10-16), including cell adhesion molecules (Cadm2,
Cntn1), receptors (Fat2, Fat4, Grin2a, Grm4, Gfra2,
Pdgfra, Robo2, Sorcs1, Sstr4), cell surface mol-
ecules (Cd83, Cd96), cadherins (Cdh20, Cdh8), trans-
membrane proteins (Tmem26, Tmem28), voltage gated
channels (Kcna1, Kcna2, Kcnc2) and cell adhesion and
extracellular components: Alcam, Cntn4, Epha4, Col8a1,
Col8a2, Pappa, Pcdh8.

Signalling pathway analysis of differentially expressed
genes
Given the strong enrichment of genes associated with Sig-
nalling Pathways and Development and Differentiation
functions (Tables 3 and 4), we sorted DE genes according
to participation in major developmental regulatory path-
ways (Figure 5 and Tables 5 and 6). By far the most strongly
impacted cell communication pathway is Wnt signalling
with 34 DE genes encoding signalling molecules, receptors,
pathway antagonists, known targets or potential targets of
tal components.



Figure 5 Visual representation of Wnt signalling pathway components, showing altered expression in developing muscle-less humeri.
Blue circles indicate down-regulated genes red are up-regulated genes (Fold change ≥2, p ≤ 0.05, genes and details listed in Table 7).
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the pathway (Figure 5, Table 5). From the diagrammatic
representation of pathway components shown in Figure 5, it
is apparent that the encoded products of DE genes act either
at the cell surface in Wnt signal generation/modulation/
interpretation or are targets of the pathway. The genes
listed include known targets of the pathway and seven po-
tential target genes (not verified), included here due to their
similarity to known targets; for example Sall1is included
because the orthologous gene Sall4 is a known direct target
of the pathway [36]. In general, genes encoding cell surface
components of the pathway are up-regulated, including sig-
nalling ligands and agonists (Wnt2, Wnt2b, Wnt4, Wnt16,
Rspo2 and Rspo3), and extracellular antagonists (Dkk2,
Sfrp2), while down-regulated genes identified are more
commonly targets of the pathway (e.g. Fgf4, Cacng1, Pitx2,
Dll1, Prg4, Lrrn1, Met, and Cd44). Interestingly nine known
Wnt target genes are up-regulated, including Dkk2, Rspo2,
Rspo3, Cldn1, Grem2, Kcnd1, Epha4 and Sfrp2, which en-
code membrane associated proteins, some of which regu-
late the Wnt pathway (Dkk2, Sfrp2, Rspo2, Rspo3).
Table 6 lists DE genes associated with other develop-

mentally relevant signalling pathways, including the
BMP, Hedgehog, Fibroblast growth factor, Hippo and
Notch signalling pathways.

Spatial alteration of gene expression patterns
While Microarray and RNA-seq analysis provides data
on quantitative changes in gene expression levels across
the whole developing rudiment, it does not reveal alter-
ations in the spatial distribution of transcripts or give
clues to the specific developmental events affected. We
therefore performed in situ hybridisation on control and



Table 5 Differentially expressed Wnt signalling pathway genes

Down-regulated Wnt Pathway genes

Fold change Gene symbol Gene title Role in pathway Reference for
role in pathwayRNA-seq Microarray Ligand Receptor Intra-

cellular
Target

# 41.05 Fgf4 Fibroblast growth factor 4 T [37]

# Snai3 Snail homolog 3 PT Snai1 [38]

90.87 32.06 Cacng1 Calcium channel, voltage-dependent,
gamma subunit 1

T [39]

42.86 18.77 Pitx3 Paired-like homeodomain transcription
factor 3

PT Pitx2 [40]

37.43 17.22 Kremen2 Kringle containing transmembrane
protein 2

Co-Rec [41]

29.52 Ccnb3 Cyclin B3 PT CyclinD1 [42]

12.29 7.05 Rxrg Retinoid X receptor gamma PT Rarg [43]

5.95 5.20 Islr2 Immunoglobulin superfamily containing
leucine-rich repeat 2

PT Islr [44]

4.87 Pitx2 Paired-like homeodomain transcription
factor 2

T [40]

3.58 Fzd10 Frizzled homolog 10 R [45]

3.16 2.21 Dll1 Delta-like 1 T [46]

3.05 Prg4 Lubricin T [30]

2.81 2.57 Lrrn1 Leucine rich repeat protein 1, neuronal T [47]

2.52 Sall1 Sal-like 1 PT Sall4: [36]

2.47 Tnik TRAF2 and NCK interacting kinase TF-act [48]

2.32 Tcf15 Transcription factor 15 T

2.32 Met Met proto-oncogene T [49]

2.18 2.28 Cd44 CD44 antigen T [50]

2.09 Jag2 Jagged2 PT Jag1 [51]

Up-regulated Wnt pathway genes

4.36 4.91 Grem2 Gremlin T [52]

3.96 Wnt2 Wingless-related MMTV integration site
2

L

3.50 Wnt2b Wingless-related MMTV integration site
2b

L

3.07 Wnt16 Wingless-related MMTV integration site
16

L

2.85 2.90 Kcnd2 Potassium voltage-gated channel,
shal-related family, member 2

T [47]

2.73 Cldn1 Claudin-1 T [53]

2.44 Dkk2 Dickkopf Ant T [47,54]

2.43 3.08 Rspo2 R-spondin 2 L T [47,55,56]

2.37 Epha4 Eph receptor A4 T [47]

2.11 Elavl2 ELAV (embryonic lethal, abnormal vision,
Drosophila)-like 2

T [47]

2.10 Cpz Carboxypeptidase Z Co-act [33]

2.09 2.62 Sfrp2 Secreted frizzled related protein 2 Ant T [57]
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Table 5 Differentially expressed Wnt signalling pathway genes (Continued)

2.03 Wnt4 Wingless-related MMTV integration site
4

L

2.02 Rspo3 R-spondin 3 L T [47,58]

2.41 E330013P04Rik RIKEN cDNA E330013P04 gene T [47]

#No numerical value for fold change as no transcripts detected in the Mutant.
T -Target, PT -Potential Target, R -Receptor, Co-Rec -Co-Receptor, TF-act -Transcription Factor activator, L -Ligand, Ant -Antagonist, Co-act -Co-activator.

Rolfe et al. BMC Genomics 2014, 15:48 Page 12 of 23
http://www.biomedcentral.com/1471-2164/15/48
muscle-less mutant (Pax3Spd/Spd) limb sections at TS23
for a selected subset of genes. Three of the genes se-
lected encode components of Wnt signalling pathways
known to be important in skeletal development: Cd44,
Sfrp2 and Wnt4. Spp1 encodes an ECM protein Osteo-
pontin which is a prominent component of mineralised
matrices of bone and teeth [76]. Cd44 is a cell-surface
glycoprotein involved in cell-cell interactions, cell adhe-
sion and migration. It is a receptor for hyaluronic acid
and can interact with other extracellular proteins, such
as osteopontin, collagens and matrix metalloprteinases
(MMPs) reviewed in [77]. It is a target gene of the Wnt
signalling pathway [50]. Cd44 gene expression is down-
regulated 2.28 fold in muscle-less humeri RNA (Table 5).
The in situ hybridisation analysis reflects this down
regulation dramatically with Cd44 transcripts hardly de-
tectable in either shoulder or elbow joints of muscle-less
mutant embryos, compared to the clear joint line re-
stricted expression seen in controls (Figure 6A-D). Sfrp2
encodes a secreted protein that acts as a modulator of
the Wnt signalling pathway, in particular during normal
skeletal patterning in developing limbs [78]. Normal ex-
pression at TS23 (Figure 6E, G) can be detected in the
elbow and shoulder joints. The level of up-regulation
from microarray and RNA-seq analysis is 2.62 (p-value
0.01) and 2.09 (p-value 1.13E-06) fold respectively
(Table 5). This up-regulation was reflected in the inten-
sity of expression seen in mutant sections following in
situ hybridisation (Figure 6F, H). In addition to the in-
creased level of expression a change in the spatial pat-
tern is also evident. In both the elbow and the shoulder
joints expression is expanded, particularly on the ventral
aspect of the joint and the staining is unevenly distrib-
uted (Figure 6F, H). A similar expression increase was
seen in the phalangeal and carpal joints of the handplate,
compared to control (not shown). Wnt4 is a signalling
ligand of the Wnt signalling pathway. Expression of this
gene has previously indicated its role in joint formation
during limb development [79-81]. Control Wnt4 expres-
sion is seen at a low level in the ventral portion of the
elbow joint (Figure 6I) at TS23; there is also distinct ex-
pression in the epidermis, as previously detected [82]. In
the mutant there is a high level of expression in the
elbow joint region; expression is spread across the whole
joint line from ventral to dorsal, more extensive on the
dorsal side (Figure 6J).
The Spp1 gene is normally expressed in the hyper-
trophic zone and adjacent perichondrium [83]. Despite
the appearance of hypertrophic chondrocytes at the
mid-diaphysis of immobile Spd embryos (Figure 6N
arrowhead), no Spp1 gene expression is detected in these
cells. There is weak but detectable staining in the
perichondrium at the site of the hypertrophic region,
but again apparently lower than in control tissue
(Figure 6M, N). Expression is also detected in the hyper-
trophic zone of the ulna (Figure 6O) and this is reduced
but not absent in the muscle-less mutant ulna
(Figure 6P), reflecting the reduced phenotypic effect seen
in this rudiment [9]. Expression is seen only in the peri-
chondrium of the radius in both the control and mutant
(Figure 6O, P).
Discussion
Here we describe the spectrum of genes expressed in the
developing humerus at TS23, early in the process of os-
sification and when territories of differentiating cells are
being defined in the developing joint region. We also
use microarray and RNA-sequencing to identify genes
that are differentially regulated when mechanical stimu-
lation of the developing skeletal rudiment is altered, giv-
ing an insight into the genes that respond to mechanical
stimuli generated by muscle contractions. We reveal that
the genes altered are highly enriched for genes that regu-
late development and differentiation, are involved in
cytoskeletal rearrangement and components of extracel-
lular matrix including cell adhesion and signalling mole-
cules. Components of multiple signalling pathways
important during development are affected, in particular
34 components of the Wnt signalling pathway. Although
it is clear that appropriate mechanical stimulation from
in utero muscle contractions is required for normal de-
velopment of bone and cartilage, we know very little
about the molecular mechanisms that incorporate mech-
anical cues with classical biochemical signalling path-
ways. The differentially regulated genes identified here,
particularly those associated with signalling pathways
and cytoskeletal changes represent a valuable focus for
dissecting integrated regulation by biochemical and
mechanical signals. These data represent an important
resource that can be utilised to understand the molecu-
lar basis of mechanoregulation.



Table 6 Differentially expressed genes associated with other signalling pathways

Down-regulated Up-regulated

Bone morphogenetic protein signalling pathway

Fold change Gene symbol Gene title Role in pathway

RNA-seq Microarray Reference

87.94 50.88 Hfe2 Hemochromatosis type 2 Co-Rec [59]

5.25 Fgf8 Fibroblast growth factor 8 T [60]

2.44 Scx Scleraxis T [61]

2.17 Egr2 Early growth response 2 T [62]

2.03 Bmp3 Bone morphogenetic protein 3 L

Hedgehog signalling pathway

14.55 4.59 Hhatl Hedgehog acyltransferase-like L-act [63]

2.70 Ptchd1 Patched domain containing 1 R

2.27 Hhip Hedgehog interacting protein Ant, T [64]

2.14 Ptch1 Patched 1 T [65]

Fibroblast growth factor signalling pathway

# Fgf4 Fibroblast growth factor 4 L

# Fgf6 Fibroblast growth factor 5 L

5.25 Fgf8 Fibroblast growth factor 8 L

5.10 Fgf5 Fibroblast growth factor 5 L

4.54 3.23 Fgfr4 Fibroblast growth factor receptor 4 R

3.24 Spry1 Sprouty homolog 1 Ant [66]

3.22 Spry4 Sprouty homolog 4 Ant

2.75 Spry2 Sprouty homolog 2 Ant [66]

2.39 Fgf2 Fibroblast growth factor 2 L

2.134 2.48 Fgf10 Fibroblast growth factor 10 L

Hippo signalling pathway

98.29 49.05 Vgll2 Vestigial like 2 homolog (Drosophila) Co-TF [67]

3.86 4.38 Tead4 TEA domain family member 4 Co-TF [68]

2.96 Fat4 Fat tumor suppressor homolog 4 R [69]

2.43 Fat2 Fat tumor suppressor homolog 2 R [69]

Notch signalling pathway

5.64 Dner Delta/notch-like EGF-related receptor R [70]

3.16 2.21 Dll1 Delta-like 1 (Drosophila) L [71]

2.69 Hes6 Hairy and enhancer of split 6 T [72]

2.54 Dtx4 Deltex homolog 4 T [72]

2.09 Jag2 Jagged 2 R [71]

3.25 2.87 Nrg1 Neuregulin 1 T [73]

2.36 2.09 Foxc2 Forkhead box C2 Upstream-activator [74]

2.27 2.29 Cntn1 Contactin 1 PL [75]

#No numerical value for fold change as no transcripts detected in the Mutant.
Co-Rec -Co-Receptor, T -Target, L -Ligand, L-act- Ligand activator, R -Receptor, Ant -Antagonist, Co-TF- -Co-Transcription Factor, PL –Potential Ligand.
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The transcriptome of a developing skeletal rudiment
Utilising RNA-sequencing technology to reveal the tran-
scriptome in the normal developing humerus and associ-
ated joints at TS23 provides an insight to the processes
that are occurring during this stage of skeletal
development when chondrocytes are undergoing hyper-
trophy, the cartilaginous rudiment is beginning to ossify
at the mid diaphysis reviewed in [84] and specific zones
within the joint are differentiating reviewed in [85]. This
adds a valuable resource to a growing set of data that



Figure 6 Comparison of spatial distribution of differentially expressed genes in TS23 control (A,C,E,G,I,K,M) and TS23 mutant (B,D,F,H,J,
L,N,P) elbow joint, shoulder joint, humerus, radius and ulna. Cd44 (A-D) expression in the elbow joint (A-B), and the shoulder joint (C-D)
(arrows in B and D indicate the position of joint-line cells based on cell morphology), Sfrp2 (E-H) expression in the elbow joint (E-F) (arrow
indicates abnormal expression on the ventral side of the joint), and the shoulder joint (G-H), Wnt4 expression in the elbow joint (I-J), and the
shoulder joint (K-L), Spp1 (K-N) expression in the humerus hypertrophic zone (hz) and perichondrium (p) (M-N) (the arrowhead in L indicates
enlarged hypertropic chondrocytes), and in the ulna (u) and radius (r) (O-P). e epidermis. All scale bars are 100 μm.

Rolfe et al. BMC Genomics 2014, 15:48 Page 14 of 23
http://www.biomedcentral.com/1471-2164/15/48
can be combined to explore skeletal development.
Previous transcriptome profiling studies have examined
cartilage condensation in the tibia-fibula from E11.5 to
E13.5 [86], ossification of metatarsals [87], in different
zones of the growth plate in 2 week old mice [88] and in
Runx2−/− mutant mice [89]. Earlier stages of limb devel-
opment, although not specific to skeletal development,
are informed by whole limb bud profiles between E9.5
and E11.5 [32]. Another important resource that has re-
cently become available examines the spatial expression
patterns of 18,000 coding genes and over 400 micro-
RNAs within the whole mouse embryo at the same de-
velopmental stage examined here [90]. This digital
transcriptome atlas is a powerful tool (Eurexpress;
http://www.eurexpress.org/ee/intro.html) that can be
used to examine spatial analysis of specific genes, explor-
ing possible functional associations. Combining these re-
sources gives information on quantitative and spatial
expression of individual genes providing the basis to ex-
plore regulatory networks active during the development
of skeletal rudiments.
Several of the findings of the transcriptome analysis

are as expected; the most highly expressed genes
(8 with ≥100,000 read counts) include 5 collagen encoding
genes (Figure 2B); collagens have been shown to be the
most abundant structural proteins in cartilage and show
characteristic distribution patterns as skeletal rudiments de-
velop [31,91]. The Insulin-like growth factor genes Igf2 and
Igf1 and their associated receptors Ifg2r and Igf1r are also
highly expressed (4,194 to 221,194 read counts); these are
reported to play a prominent regulatory role in skeletal de-
velopment (reviewed in [92]). Similarly, aggrecan (Acan)
and osteopontin (Spp1), both involved in skeletal develop-
ment, are highly expressed (Figure 2B). Although much is
known about the regulatory network that controls early
chondrogenesis and joint formation (Kronenberg [25];

http://www.eurexpress.org/ee/intro.html
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Provot and Schipani [26]), open-ended whole transcrip-
tome studies are required to add new information. Centred
on regulatory signalling pathways known to be involved in
skeletal development; HH, FGF, TGFβ (including BMP)
and Wnt; a complete list of components of these pathways
expressed in the humerus as TS23 was extracted (Figure 2B)
indicating the potential role players in each of these path-
ways at this specific stage. The importance of Indian hedge-
hog (Ihh) expression in the early prehypertrophic and
hypertrophic chondrocytes of cartilage condensations is
well established [89,93,94]. The full spectrum of possible
interacting molecules in HH signalling (Figure 2B) include
the receptors Ptch1, Ptch2, Smo and transcription factors
Gli1, Gli2, and Gli3. In addition to Ihh, Desert hedgehog
(Dhh) expression was also detected (read count 70) and,
examining the data presented by Cameron et al. confirms
that Dhh is up-regulated (≥3 fold) in E13.5 fibual and tibual
cartilage [86]. Dhh has not previously been functionally
linked to skeletogenesis but this opens the possibility of
regulatory contribution, perhaps co-operating with Ihh. No
expression of Shh was detected. Similarly, novel compo-
nents of the FGF, TGBβ and Wnt pathways were identified
(Figure 2B).
The Wnt signalling pathway plays a central role during

embryonic development and is known to be an important
regulator of bone formation and bone remodelling
reviewed in [95]. It also plays a pivotal role in joint forma-
tion and maintenance, shown through gain and loss of
function experiments [80,96]. The key intracellular medi-
ator of canonical Wnt signalling, β-catenin (Ctnnb1; 28,608
read counts) is the most highly expressed Wnt signalling
component in the TS23 humerus and associated joints. The
most highly expressed Wnt ligand is Wnt5a, previously as-
sociated with expression in joints and perichondrium [79]
and proliferating chondrocytes [97]. Other highly expressed
ligands include Wnt9a, Wnt5b, Wnt11, and Wnt4. Wnt5b
and Wnt11 expression has been shown in the pre-
hypertrophic chondrocytes and Wnt4, Wnt9 and Wnt16 in
the developing joints [79-81,98]. High expression of Wnt9a
could be due to its role in the temporal and spatial regula-
tion of Ihh [96].
Numerous extracellular modulators of the pathway were

detected; all five secreted frizzled related protein (Sfrp)
genes, Dickoff (Dkk) 1, 2 and 3 genes and four R-spondins
(Rspos), indicating a huge potential for pathway modulation.
The most highly expressed antagonist modulators of the
pathway were Dkk3 and Sfrp2 both of with are detected in
joint cells at E13.5 and E15.5 [82]. The most highly
expressed R-spondin agonist of the pathway was Rspo3,
previously detected in phalanges [55].

Identification of Mechanoresponsive genes
The identification of differentially expressed genes be-
tween humeri from control and muscle-less embryonic
limbs allows an investigation of the biological processes
and the developmental regulatory signalling pathways
that are affected by the removal of mechanical stimula-
tion on skeletogenesis in vivo. We previously reported
that muscleless (Splotch) mutants display abnormal ossi-
fication in the humerus, altered humeral morphogenesis
and altered elbow and shoulder joint formation and
these effects were first observed at TS23 [9]. This was
chosen as the point of analysis for differential gene ex-
pression because, although limb muscles begin to con-
tract from approximately E12.5 [99] it is uncertain how
much stimulation is transmitted to the skeletal rudi-
ments when the developing tendons are at early stages
of morphogenesis [100]; the sole indication that the
force is functionally transmitted is the mutant phenotype
seen at TS23. Although analysis at TS23 may miss some
of the earliest effects, it is relatively early in the response
and the earliest time at which it is certain that the sys-
tem is disturbed. Alteration in expression pattern of
some selected candidate genes and pathways was previ-
ously revealed [8,10], but here we carry out the first gen-
ome wide study identifying a total of 1,132 independent
genes as differentially expressed: with approximately
60% down-regulated and 40% up-regulated. The finding
of more genes being down-regulated than up-regulated
and to a greater extent is consistent with the proposal
that mechanical stimuli support the correct differenti-
ation of cells, as observed in the ossification phenotype
[9], and for the maintenance of tissue patterning, as seen
in the developing joint [16]. GO annotation analysis
identified specific biological processes that are affected
when mechanical stimuli are removed. This type of ana-
lysis has been used previously to interpret biological pro-
cesses associated with developing skeletal tissue
[87,89,101]. Analysis of the down-regulated DE gene set
identified genes associated with development and differ-
entiation as the most highly enriched categories,
including developmental regulatory signalling pathway
molecules and transcription factors. Similarly, analysis of
up-regulated DE gene sets indicated genes associated
with cell signalling and development and differentiation.
DE genes were also highly enriched for genes associ-

ated with the cytoskeleton. The cytoskeleton controls
cell shape, organelle transport, cell motility and division,
and connects the extracellular matrix to internal cell
processes reviewed in [102]. It maintains the mechanical
integrity of cells and has been implicated in relaying
mechanical signals to downstream biochemical re-
sponses [7,103]. This was seen in the embryonic lung
where cytoskeletal network inhibitors resulted in altered
tissue morphogenesis and conversely when cytoskeletal
tension was activated lung development was accelerated
reviewed in [104], indicating the dynamic role the cyto-
skeleton has in morphogenesis.
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In chondrocytes the actin microfilaments are predom-
inantly located at the periphery of the cytoplasm [105],
tubulin microtubules are uniformly distributed through-
out the cytoplasm [106] as are intermediate filaments,
connecting the nuclear membrane with the cell periph-
ery [107]. In this study 84 genes annotated as cytoskel-
etal were down-regulated when mechanical stimulation
was removed. These include 33 genes directly associated
with actin microfilaments, 13 with microtubules and 4
with intermediate filaments (Figure 4). The most highly
affected group, the Filamentous-actin cytoskeleton, has
been shown to be involved in articular cartilage chon-
drocyte mechanotransduction, converting a mechanical
stimulus into a biochemical response [103,108-110].
Other studies have confirmed the involvement of the
actin cytoskeleton in cartilage chondrocyte mechano-
transduction via manipulation of the actin accessory
proteins [108,111], but there are few reports on the
affect of mechanical stimulation on microtubule and
intermediate filaments [112]. Among the DE genes is an
actin-binding protein, cofilin2 (Cfl2); cofilin was previ-
ously shown to be increased following cyclic mechanical
loading of chondrocytes [111].
The identification of cytoskeletal genes down-

regulated following the removal of mechanical stimula-
tion indicates that the cytoskeleton is affected, but is this
because the mechanical integrity of the cell is altered or
because mechanotransduction from the ECM is affected,
or perhaps a combination of both? The finding that
ECM and cell adhesion associated genes are also affected
further supports changes in mechanotransduction path-
ways. The cell-adhesion associated integrins (Itga4,
Itga7, Itgb6) and cadherins (Cdh4, Cdh15, Cdhr3) are
down-regulated and these proteins potentially function
to physically couple cells to the ECM and play a role in
mechanical signal transduction [103,104]. Articular
chondrocytes have been shown to express both integrin
[113] and non-integrin [114] ECM receptors. Another
actin-associated protein identified to be down-regulated
is actinin-α2 (Actn2); this protein also couples the cyto-
skeleton to the ECM and may be involved in transducing
mechanical stimulation.
Secreted phosphoprotein 1 (Spp1), previously known

as Osteopontin (Opn), is one of the abundant non-
collagenous proteins in bone matrix produced by osteo-
blasts and osteoclasts reviewed in [115]. Spp1 binds to
hydroxyapatite and is a potent inhibitor of the mineral-
isation process, inhibiting the growth of bone matrix
crystals [116]. Spp1 is expressed early in bone develop-
ment, however it was concluded not to be required for
normal development of bones as null mice (OPN−/−)
have no apparent effect on the structure or distribution
of cells within bone tissue [117]. However, Spp1 expres-
sion has been shown to be regulated by mechanical
stimulation both in vitro and in vivo [35,118-120]. We
found Spp1 to be down-regulated in the developing hu-
merus at TS23 in muscle-less embryos and in situ hy-
bridisation showed a dramatic absence of detectable
Spp1 expression in hypertrophic chondrocytes whereas
it is still detectable in the perichondrium (Figure 6N), in-
dicating a specific effect on expression in hypertrophic
chondrocytes and not a delay in the onset of normal ex-
pression. It was previously shown that OPN−/− mice did
not suffer bone loss in response to mechanical unloading
[120], suggesting that mice lacking Spp1 could not sense
the changes in mechanical stress, thus indicating its po-
tential role in the signal transduction of mechanical
stimulation. It has been suggested that mechanotrans-
duction through Spp1 is dependent on microfilament in-
tegrity, as mechanically stimulated increases in Spp1
expression was blocked by disruption with cytochalasin-
D in osteoblasts [119]. This again highlights the link be-
tween an ECM component and the cytoskeleton in a
mechanoresponse implicating these components in sig-
nal transduction, either directly through the cytoskeleton
or through cell adhesion complexes via the cytoskeleton.
An example of a non-integrin ECM component that is

down-regulated in the absence of mechanical stimula-
tion is Cd44, a target gene of the Wnt signalling pathway
[50], encoding a single-pass membrane glycoprotein that
binds proteoglycan and hyaluronan (HA) to produce a
pericellular matrix surrounding chondrocytes reviewed
in [121]. Cd44 has been implicated in joint cavitation
through interaction with HA [122]. We previously
showed loss of expression of the Cd44 gene in the inter-
zone of the forming knee joints of immobilised chick
embryos [16], one of a number of gene expression pat-
terns reflecting a general loss of organisation of differen-
tiating tissue territories, and here we show a similar
effect on Cd44 expression in the elbow and shoulder
joint of muscle-less mouse limbs, where we previously
showed a similar loss of tissue organisation [9]. The very
restricted expression of Cd44 in the interzone of forming
joints in control embryos at TS23 is barely detectable in
muscle-less mutants (Figure 6A-D). As well as the gene
being sensitive to mechanical stimulation, as an integral
part of the ECM and a regulator of joint formation, the
gene product may also be an important mediator of
mechanical stimuli.
The link between Cd44 and the Wnt signalling path-

way highlights perhaps the most striking finding of this
analysis; the altered expression of 34 genes implicated in
the Wnt signalling pathway (Figure 5). Canonical Wnt
signalling has been shown to be involved in maintaining
joint integrity [80,96] and is disturbed in the joints of
muscle-less mouse embryos [8]. Wnt signalling might
also be involved in co-ordinating ossification and joint
development; both processes altered in muscle-less
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embryos [5]. Non canonical signalling has also been im-
plicated in planar cell polarity during growth plate regu-
lation [123,124]. There are also previous indications that
the Wnt pathway is responsive to mechanical stimula-
tion in mesenchymal stem cells [125] in mature bone
in vivo [126] and in response to injury of articular cartil-
age [127]. Here, genes encoding four Wnt ligands are
up-regulated in muscle-less embryos and in the case of
Wnt4 we show specific up-regulation in the elbow and
shoulder joint region (Figure 6I-L). Two of the up-
regulated genes (Wnt2 and Wnt2b) have not previously
been associated with skeletal development. The Wnt sig-
nalling antagonist Sfrp2 is also up-regulated specifically
in the joint region (Figure 6E-H). The majority of known
Wnt target genes affected are down-regulated (Figure 5),
perhaps due to increased expression of negative regula-
tors Sfrp2 and Dkk2 and down-regulation of the Fzd10
receptor; however ligands and agonists Rspo2 and Rspo3
are up-regulated as are some target genes indicating ef-
fects at multiple levels of regulation of the pathway. It is
interesting that a number of the up-regulated targets
feedback as negative regulators of the pathway (for ex-
ample: Dkk2, Sfrp2). It is now important to functionally
test the mechanisms linking mechanical stimulation with
Wnt signalling. This work provides sets of candidate
genes to use in functional assays to excavate this import-
ant link. Understanding how mechanical stimuli influ-
ence the Wnt signalling pathway would be a major step
forward in understanding how mechanical cues work to-
gether with classical molecular positional information to
guide spatially appropriate tissue differentiation and pro-
vide indications of how conditions can be effectively rec-
reated in vitro to guide stem cell differentiation.
In situ hybridisation analysis showed altered gene ex-

pression of 3 Wnt pathway genes in the developing
shoulder and elbow joints; one down regulated (Cd44)
and two upregulated (Sfrp2 and Wnt4) (Figure 6).
Changes in the spatial restriction of Sfrp2 and Wnt4 ex-
pression were also seen. This does not represent a delay
in normal expression in the mutant because the altered
pattern is not reminiscent of earlier stages [82] and the
changes are consistent with altered patterning of the tis-
sue territories in the forming joint and the fusion pheno-
type seen in the mutant, with cartilage forming across
the joint at later stages [8,9].
In this study differential expression in developing skel-

etal rudiments is documented in the absence of limb
muscle; this will include genes that respond to lack of
mechanical stimulation but perhaps also as a paracrine
response to adjacent muscle cells. We know that pheno-
typic effects on ossification and joint formation are due
to the lack of mechanical stimulation rather than phys-
ical absence of muscle cells because phenotypic analysis
of a range of mouse mutants where muscle is immobile [8],
reduced [9] or absent [8,128] have similar effects and we
see similar effects in immobilised chick embryos [15,16].
Therefore, although some of the genes identified here may
respond to lack of adjacent muscle tissue, many must
underlie the phenotypic effects seen in response to lack of
mechanical stimulation. This is further supported by the
overlap of some of the genes identified here and in skeletal
cells in culture or adult tissues, in response to mechanical
stimulation [18,19].
Another important limitation in this work is the possibil-

ity that a proportion of the down-regulated genes may be
due to contamination of the dissected control humeri with
adjacent mesenchyme/muscle, since this is being compared
to tissue from muscle-less embryos. Although care was
taken with the dissections, it is impossible to be sure that
all muscle tissue was eliminated from the control. The
down-regulated gene set also showed enrichment for
muscle associated genes (Additional file 1: Table S4), con-
sistent with possible contamination of the dissected control
humeri by neighbouring muscle. To inform this we also se-
quenced the transcriptome of mesenchyme adjacent to the
humerus of control embryos at TS23 and compared it to
the transcriptome of control humeri. We then cross refer-
enced this to the down-regulated gene set in control versus
muscle-less humeri (Additional file 1: Table S2), noting any
genes enriched more than 3 fold in mesenchyme compared
to control humeri; these are indicated in column 2 of
Additional file 1: Table S2. It is possible that these genes are
involved in both cartilage and muscle development so no
genes have been removed from the data set, however, DE
genes also showing higher expression in mesenchyme com-
pared to control humeri must be treated with caution with
respect to a skeletal specific response to mechanical stimu-
lation. Such genes have not been prioritised in any of our
subsequent exploration of candidate mechanosensitive
genes.
The developing humerus at TS23 constitutes different

cell and tissue populations at different stages of differen-
tiation including the joint region, the perichondrium and
the organised zones within the cartilage rudiment.
Therefore the experimental design employed here will
capture genes associated with different cells types at dif-
ferent stages of differentiation. It will now be important
to sort out which cells and tissues have altered expres-
sion of specific genes. This can be addressed for a sub
set of genes by in situ hybridisation, with an initial ana-
lysis of 4 genes presented in Figure 6. It can be ad-
dressed in a high throughput manner by isolating
specific cell populations using laser microdissection
from tissue sections (laser capture), purification of RNA
and quantitative RT-PCR gene expression profiling,
comparing control and mutant tissue from,, for example
the hypertrophic, prehypertrophic or the elbow joint re-
gion alone.
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We used both RNA-sequencing (Illumina) and Micro-
array (Agilent) technologies in parallel to determine dif-
ferential expression. Microarray technology has been
utilised to determine expression of chondrogenic and
osteogenic genes from developing whole tissues
[32,87,89], and from in vitro differentiation procedures
[19,34,129-131]. The use of RNA-seq technology to de-
scribe the transcriptome is more recent [132-134]. Previ-
ous direct comparisons between microarray and RNA
sequencing-based approaches to reveal alterations in
gene expression between tissues reported that RNA-seq
identified more DE genes [23,24,135]. We also found
that RNA-seq is more sensitive in reproducibly detecting
alterations in gene expression, detecting more genes al-
tered at lower quantitative levels (Additional file 1: Table
S1; 5 > 2 fold). This was further emphasised by reducing
the stringency of the statistical analysis to p ≤ 0.08,
which increased the number of genes detected by micro-
array specifically (not shown). An example of the im-
portance of the increased sensitivity and reproducibility
of RNA-seq is shown by the Spp1 gene which did not
show statistical significance by microarray but has been
verified by qRT-PCR and in situ hybridisation (Table 2
and Figure 6). The larger dynamic range [24] and higher
reproducibility across replicates [135] has also been
found in other studies.

Conclusion
This study examines the set of genes active at a key stage of
skeletal development (TS23) and reveals the genes that are
differentially regulated in the developing humerus when
skeletal muscle is absent. Since we previously showed that
the lack of muscle contractions leads to common pheno-
typic defects in both ossification and joint formation in sev-
eral chick and mouse models, this provides an insight into
the genome wide alterations in gene transcription that take
place when the mechanical environment is altered. Given
the importance of appropriate mechanical stimulation gen-
erated by embryo movement on skeletal development we
postulated that mechanical stimuli must integrate with bio-
chemical cell signalling pathways known to be essential for
normal development. We show that multiple signalling
pathways are affected, with components of the Wnt signal-
ling pathway most strongly disturbed including 4 Wnt li-
gands and both down-regulation and up-regulation of
target genes. Down-regulated genes include Cd44, Dll1 and
Fgf4 which are involved in further cellular interactions dur-
ing joint formation or feed into other important cell com-
munication events. Among the up-regulated Wnt targets
are several genes that feed back into the Wnt pathway itself
as antagonists (Sfrp2 and Dkk2) or agonists (Rspo2, Rspo3).
This finding, together with alteration of cytoskeletal com-
ponents, indicates the biological processes involved in inte-
grating biophysical stimuli during cell differentiation and
patterning. Understanding the mechanistic basis for how
developing cells interpret and respond to biophysical cues
is a major challenge, relevant to all developing systems, and
will impact our ability to control differentiation of progeni-
tor cells for regenerative therapies. This work is an early
step in unravelling the mechanistic basis of biophysical
regulation of skeletal development and provides a focus for
future studies.

Methods
RNA preparation
Heterozygous Splotch-delayed (Pax3Spd/+) [12] mice
were purchased from Jackson Laboratories (Jax®). All
animal work was carried out under the guidelines of
Trinity College Dublin Bioresources Unit and Bioethics
Committee. The generation of homozygous Pax3Spd/Spd

mutant embryos was achieved by crossing heterozygous
Pax3Spd/+ males and females. Embryonic material was
collected from timed pregnancies on the afternoon of
the 14th day (E14.5). Individual embryos were dissected
and the developmental stage according to Theiler cri-
teria [21], and the phenotype were recorded. All em-
bryos were genotyped following PCR amplification as
described in [136]. The humeri, including the associated
joint regions, were finely dissected from control and mu-
tant embryos at stage TS23 (Figure 1A). Tissue was
mechanically homogenised and total RNA extracted (SV
Total RNA Isolation System: Promega, UK). Pooling of
rudiment tissue from multiple embryos of the same
genotype (2–4) was performed. RNA integrity was
assessed on a 2100 Bioanalyser (Agilent Technologies);
RNA samples with RIN (RNA integrity number) values
of 8.2-9.6 were used for Microarray and RNA-seq
analysis.

Microarray
Four independent pooled sets of samples were used for
microarray (n = 4 biological replicates) analysis. All micro-
arrays were processed at IMGM® Laboratories (Martinsried,
Germany). 100 ng of total RNA per sample was reverse
transcribed into cDNA and then converted into labelled
cRNA by in vitro transcription incorporating cyanine-3-
CTP (Low input quick-amp labelling kit one-colour, Agilent
Technologies). Genome wide expression profiling was car-
ried out using the Agilent Mouse GE v2 Microarrays
(4x44K format) (G4846A, Agilent Technologies) which
contains 39,485 coding and non-coding sequences of the
mouse genome (Figure 1B). A one-colour based hybridisa-
tion protocol was performed at 65°C for 17 hours on separ-
ate mouse GE v2 microarray platforms. Microarrays were
then washed with increased stringency using Gene Expres-
sion Wash Buffers (Agilent Technologies) followed by dry-
ing with Acetonitrile (Sigma). Fluorescent signal intensities
were detected with Scan Control A.8.4.1 software (Agilent



Table 7 Primer sequences for qRT-PCR analysis of
differentially expressed genes

Gene Primer sequence Amplicon length

Fgf4 Fwd CCGACGAGTGTAAATTCAAAGAAA 97

Rv TTCTTACTGAGGGCCATGAACA

Cilp Fwd AAAAAGACGGCTTTCCAAATCA 78

Rv GGCATAGATAGGCCCATTGC

Rxrg Fwd CGTTGAGTGGGCCAAACG 75

Rv CCTGCCCGGAGTAGAATGAC

Dll1 Fwd GACCGCCGCTTCCTAATAGG 74

Rv GCCCAGATGTTCAGCTTAATTCC

Spp1 Fwd CCCTCGATGTCATCCCTGTT 69

Rv TGCCCTTTCCGTTGTTGTC

Vstm2a Fwd GTGGAGCTCTTACCCGACAGA 73

Rv CATTGCCTTGGACTTTCACTGTAC

Figf Fwd GGTTGCCTGAAACAGAGTAGTAGGT 71

Rv AGCATTGCCCTTGGACTTTG

Fgf10 Fwd GGGCTGCTGTTGCTGCTT 94

Rv GGCCTCCTGTGACACCATGT

Sfrp2 Fwd CAGAGAGAGTTCAAGCGCATCTC 68

Table 8 Details of cDNA clones used as expression probes

Gene Extent of probe on genbank sequence Source

Sfrp2 Nucleotide 82 to 852 on gene bank sequence
U88567

A. Rattner

Cd44 Nucleotide 222 to 3020 on gene bank sequence
NM_00103915.1

IMAGE
Library

Spp1 Nucleotide 27 to 1472 on gene bank sequence
NM_001204201

IMAGE
Library

Wnt4 Nucleotide 639 to 1101 on NM_009523.1 A.
McMahon
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Technologies) in the Agilent DNA microarray scanner and
extracted from the images using Feature Extraction 10.7.3.1
software (Agilent Technologies). The software tools Feature
Extraction 10.7.3.1, GeneSpring GX 11.5.1 and Spotfire De-
cision Site 9.1.2 (TIBCO) were used for quality control and
statistical data analysis. Quantile normalisation was applied
to each data set in order to impose the same distribution of
probe signal intensities for each array [137], thus adjusting
them to a uniform level that can allow for comparable
downstream analysis. Welch’s approximate t-test (“unpaired
unequal variance”, parametric) was applied to compare the
control and mutant groups. A corrected p-value was calcu-
lated based on the algorithm of Benjamini and Hochberg
[27], based on control of the False Discovery Rate (FDR). A
fold change of ≥ 2 and FDR-adjusted p-value of ≤0.05 were
used as criteria to indicate differential expression between
the two groups.

RNA-sequencing: alignment and differential expression
analysis
Three independent pooled sets of samples were used for
RNA-seq (n = 3 biological replicates) analysis. The
DNase-treated RNA (3 μg) was used to prepare RNA-
Seq libraries with the TruSeq RNA Sample Prep kit. A
total of six cDNA libraries were constructed, represent-
ing triplicate biological replicates for each group. 40 bp
single end reads were obtained from an Illumina GAII in
FASTQ format, one sample per sequencing lane. The
Tophat aligner (http://tophat.cbcb.umd.edu/) was used
to align the reads to the mouse reference genome
(mm9). After alignment the read counts for each gene
were extracted using htseq-count (http://www-huber.
embl.de/users/anders/HTSeq/) based on an mm9 Refseq
gff file. Differential expression in our two groups was
evaluated using DESeq version 1.4.1, implemented in R
2.14.1. DESeq uses a negative binomial distribution to
model genic read counts following normalisation based
on size factors and variance. As for the microarray ana-
lysis, p-values were adjusted by the procedure of Benja-
mini and Hochberg to control the type I error rate, and
a cut off of p ≤ 0.05, and a fold change of ≥ 2 were used
as a threshold to define differential expression.

Quantitative real-time reverse transcription-polymerase
chain reaction
Quantitative real-time reverse transcription-polymerase
chain reaction (qRT-PCR) was used to verify the relative
gene expression changes in nine genes indicated to be
differentially expressed (DE) by microarray and RNA seq
analysis; Fgf4, Cilp, Rxrg, Dll1, Spp1 Vstm2a, Figf, Fgf10
and Sfrp2 (Table 7). All primers were designed using Pri-
mer Express Software®, version 3.0, under default set-
tings for TaqMan® quantification and purchased through
Sigma (Sigma-Aldrich, UK). Primers sets were designed
with a primer Tm range of 58°-60°, an optimal length of
20 bp and an amplicon range of 50–150 bp. Total RNA
was reverse transcribed (100 ng) into cDNA using
iScript™ cDNA systhesis kit (BioRad) as per manufac-
turer’s instructions. SYBR green gene expression quanti-
fication was performed using QuantiTect SYBR green
kit. 5 μl of cDNA preparation was diluted 1:5 with
RNase free water, 10 μl of 2x QuantiTect SYBR green
PCR master mix, 0.5 ul (10 μM) of each primer and 4ul
RNase free water). Samples were assayed in triplicate in
one run (40 cycles), which was composed of three stages,
95°C for 10 min, 95°C for 15 s for each cycle (denatur-
ation) and 60°C for 1 min (annealing and extension).
Real-time PCR was performed using an ABI 7500 Se-
quence Detection system (Applied Biosystems). qRT-
PCR data was analysed using relative quantification and
the Ct method as described previously [138], with the
Gapdh gene as the endogenous control. The level of
gene expression was calculated by subtracting the

http://tophat.cbcb.umd.edu/
http://www-huber.embl.de/users/anders/HTSeq/
http://www-huber.embl.de/users/anders/HTSeq/
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averaged Ct values (Ct is the threshold cycle) for Gapdh
from those of the gene of interest. The relative expres-
sion was calculated as the difference (ΔΔCt) between the
Ct of the test sample (mutant) and that of the control
sample. The relative expression of genes of interest were
calculated and expressed as 2-ΔΔCt. Relative quantifica-
tion values are presented as fold changes plus/minus the
standard error of the mean relative to the control group,
which was normalised to one.

Gene ontology annotation analysis
Gene Ontology (GO) terms were utilised to reveal sig-
nificant enrichment of groups of genes among the DE
datasets from the microarray and the RNA-seq analysis
using the Database for Annotation, Visualisation and In-
tegrated Discovery, DAVID (http://david.abcc.ncifcrf.
gov/) [28], and GOstat (http://gostat.wehi.edu.au/) soft-
ware. Analysis of GO terms associated with biological
process, molecular function and cellular component was
performed on all data-sets independently and combined
to identify significantly (p ≤ 0.05) enriched gene sets. The
strength of the enrichment of any GO term-associated
gene set is reflected in the calculated p-values, compar-
ing the proportion of genes in the data-set and the pro-
portion of genes in the genome bearing that annotation.

In situ Hybridisation
Expression probes were prepared from cDNA clones ob-
tained from a mouse expressed sequence tag (EST) li-
brary (IMAGE, Source Biosciences); details given in
Table 8. Antisense and sense digoxigenin-labelled RNA
was transcribed in vitro from 1 μg of linearised plasmid
using T7, T3 and SP6 promoter sites (according to insert
orientation and vector), all components for in vitro tran-
scription were purchased from Roche, Germany. DNA
template was degraded by incubation of probes with
RNase free DNase (Roche) and probes purified on G25
columns (Amersham Biosciences, USA) according to
manufacturer’s instructions. Probe concentrations were
determined by spectophotometry and probes stored
at −20°C. Embryonic limbs at TS23 were fixed (4% Para-
formaldehyde (PFA)), dehydrated (graded series of
Methanol/Phosphate Buffered Saline with 0.1% Triton
(PBT) washes) and stored at −20°C prior to sectioning.
Limbs were rehydrated in a reverse series of Methanol/
PBT washes. Sectioning was performed with a vibrating
microtome (VT1000S, Leica; embedded in 4% low melt-
ing point agarose (Invitrogen)/PBS (80 μm)). Hybridisa-
tion of sections was largely carried out as described
previously [128].

Availability of supporting data
The data sets supporting the results of this article are avail-
able in the EMBL-EBI ArrayExpress repository (http://
www.ebi.ac.uk/arrayexpress/). The differential expressed
data set from the Microarray [E-MTAB-1744], the differen-
tial expressed data set from the RNA-sequencing
[E-MTAB-1746] and for the transcriptome [E-MTAB-
1745]. Lists of differentially expressed genes are available in
Additional file 1.

Additional file

Additional file 1: Supplementary data Tables S1-S4.
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