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Abstract

Background: Inflammation triggered by infection or injury is tightly controlled by glucocorticoid hormones which
signal via a dedicated transcription factor, the Glucocorticoid Receptor (GR), to regulate hundreds of genes. However,
the hierarchy of transcriptional responses to GR activation and the molecular basis of their oftentimes non-linear
dynamics are not understood.

Results: We investigated early glucocorticoid-driven transcriptional events in macrophages, a cell type highly responsive
to both pro- and anti-inflammatory stimuli. Using whole transcriptome analyses in resting and acutely lipopolysaccharide
(LPS)-stimulated macrophages, we show that early GR target genes form dense networks with the majority of control
nodes represented by transcription factors. The expression dynamics of several glucocorticoid-responsive genes are
consistent with feed forward loops (FFL) and coincide with rapid GR recruitment. Notably, GR binding sites in genes
encoding members of the KLF transcription factor family colocalize with KLF binding sites. Moreover, our gene
expression, transcription factor binding and computational data are consistent with the existence of the GR-KLF9-KLF2
incoherent FFL. Analysis of LPS-downregulated genes revealed striking enrichment in multimerized Zn-fingers- and KRAB
domain-containing proteins known to bind nucleic acids and repress transcription by propagating heterochromatin. This
raises an intriguing possibility that an increase in chromatin accessibility in inflammatory macrophages results from broad
downregulation of negative chromatin remodelers.

Conclusions: Pro- and anti-inflammatory stimuli alter the expression of a vast array of transcription factors and chromatin
remodelers. By regulating multiple transcription factors, which propagate the initial hormonal signal, GR acts as a
coordinating hub in anti-inflammatory responses. As several KLFs promote the anti-inflammatory program in
macrophages, we propose that GR and KLFs functionally cooperate to curb inflammation.

Keywords: Transcriptional regulation, Glucocorticoid receptor, Inflammation, Feed forward loops,
Gene regulatory network, KLF transcription factors
Background
Preserving homeostasis is the primary function of the in-
nate immune system that detects “danger and stranger”
signals and eliminates invading microorganisms, re-
sponds to irritation and injury and eventually initiates
tissue repair. Innate immune cells, such as macrophages,
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neutrophils and dendritic cells constantly sample their
environment for lipopolysaccharides (LPS), double and
single-stranded nucleic acids, microbial proteins and
other broad molecular patterns that are not normally
present in eukaryotes and, in response, produce cyto-
kines and chemokines that attract additional immune
cells to the site of infection or injury. Normally a pro-
tective response, excessive or persistent inflammation is
associated with tissue damage and needs to be regulated.
Indeed, numerous mechanisms have evolved that control
inflammation at multiple levels. Systemically, inflam-
matory stimuli activate neuro-endocrine circuitry that
triggers the production of glucocorticoids by the adrenal
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glands, which ultimately attenuate the expression of in-
flammatory cytokines [1]. These potent anti-inflammatory
properties made glucocorticoids exceedingly common for
managing a wide range of autoimmune and inflammatory
conditions such as rheumatoid arthritis, systemic lupus
erythematosus, inflammatory bowel disease, psoriasis and
multiple sclerosis [2].
Glucocorticoids signal through the glucocorticoid recep-

tor (GR) – a ubiquitously expressed ligand-dependent
transcription factor (TF) of the nuclear receptor (NR)
superfamily. GR regulates transcription by either binding
directly to specific DNA sequences known as glucocortic-
oid response elements (GREs) or by tethering to other
DNA-bound regulators, such as Activator Protein (AP)1,
Nuclear Factor (NF) κB and Signal Transducers and
Activators of Transcription (STAT) family members [3].
Although GR is expressed in all immune cells, the phy-
siological outcomes of GR activation are highly cell type-
specific: for example, glucocorticoids are anti-apoptotic in
neutrophils, but pro-apoptotic in eosinophils, dendritic
and some T-cells [4]. Moreover, prolonged glucocorticoid
treatment induces cells polarization toward a new pheno-
type with either pro- or anti-inflammatory properties [5,6].
The analyses of glucocorticoid-regulated transcriptomes

paint a complicated picture encompassing hundreds of
up- and down-regulated genes that vary in different cell
types and populations and over time of glucocorticoid ex-
posure [7,8]. Although shared GR target genes certainly
exist, system-specific regulators and pathways drastically
affect transcriptional outcomes, response dynamics and
relative activities of such shared genes and their products.
The existence of intricate inter-protein and inter-pathway
interactions contributing to the NR-mediated gene regula-
tion has been proposed almost 30 years ago [9]. The struc-
tural analysis of NR transcriptional networks, however,
was lagging due to the lack of genome-wide data and li-
mited availability of analytical tools. More recently, studies
in bacteria and yeast have defined specific patterns of
functional interactions (“network motifs”) between inter-
dependent TFs and provided a computational framework
for the analysis of gene expression data to identify such
motifs [10-12]. The simplest motif - a positive or negative
auto-regulatory loop - consists of a single TF that regu-
lates its own expression. More complicated feed forward
loops (FFL) involve three factors: a signal-responsive mas-
ter regulator TF, an intermediate TF controlled by the
master TF and a jointly regulated gene under the control
of both the master and intermediate TFs [12]. Depending
on the specific activities of the master and intermediate
TFs (activation or repression) and the response thresholds
of participating genes, the dynamics of the FFL transcrip-
tional outputs vary, yielding unique expression patterns
for various TF and target gene combinations. Dynamic
responses elicited by FFLs deviate from simple gene
regulation providing for unusual control mechanisms
that are responsible for noise filtering, fold-change
sensing, pulse generation and transcription response
acceleration [11,13,14].
Gene expression networks can be represented as graphs

with TFs and other expression regulators acting as nodes
and functional interactions between regulators and bet-
ween regulators and their targets as directional edges
[12,15]. Of particular interest are the networks and net-
work motifs in which TFs regulate each other, or them-
selves act as transcriptome organizers and ultimately
determine the topology of the entire network [12]. Several
computational algorithms and experimental approaches
have been successfully applied to map global trans-
criptional networks and identify novel functional motifs in
various organisms [16,17]. In metazoans, this analysis is
often complicated by the lack of information about the
edge identity (not all targets for a given TF are known,
some known “targets” are not regulated directly) and di-
rection (a TF can either activate or repress the same gene
in a tissue-specific manner). To complicate matters
further, the role of intermediate TFs can be fulfilled by miR-
NAs or regulators of RNA translation and stability [18,19].
Thus, dissecting regulatory networks requires a combi-
nation of computational and experimental approaches.
We reasoned that a highly branched response to gluco-

corticoids is determined by the early transcriptional
events. Here, we focused on the regulatory network elic-
ited by an acute stimulation of mouse macrophages with
glucocorticoids and/or LPS. Combined with high-reso-
lution kinetic experiments and dynamics modeling, this
analysis enabled us to dissect early post-stimulation events
prior to extensive signal propagation, which usually masks
the bona fide response to GR activation by a web of
secondary effects.
Results
Transcriptome analysis of mouse macrophages exposed
to acute glucocorticoid and LPS stimulation
To analyze early regulatory events initiated by glucocorti-
coids and inflammatory stimuli we treated BMMФ with
either ethanol vehicle (U), LPS (L), Dex (D), or a combin-
ation of the two (L +D) for 1 h, isolated and sequenced
PolyA-enriched RNA as described in (Additional file 1).
The sequencing results are summarized in Additional
file 2: Table S1.
To uncover the regulatory patterns in gene expression

data, we performed k-mean cluster analysis of ANOVA-
filtered differentially expressed genes (see Additional file 1).
To minimize magnitude-based clustering, the log2-trans-
formed expression values were first converted to Z-scores
as in Z ¼ Xgene−X

−� �
=σ where Xgene is an expression value

for a given gene at a given condition, X
−

is an average
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expression value across conditions and σ is a standard
deviation of X

−
across conditions. The optimal number of

clusters was determined using the “elbow” method by
plotting within-cluster variance vs. the number of clusters.
The analysis was performed using Euclidian distance with
progressively increasing number of clusters from 8 to 14 to
determine a stable configuration using the cluster analysis
module of STATISTICA 8.0. We grouped ANOVA-filtered
data into 12 clusters of co-regulated genes (Additional file
2: Table S2). We further evaluated the significance of differ-
ences in gene expression within clusters by the Mann–
Whitney test and validated the results for a limited number
of genes by RT-qPCR. As many glucocorticoid- and LPS-
responsive genes have been previously characterized by us
and others [20-22], we selected for validation either poorly
characterized or novel target genes. Based on patterns of
co-regulation, we grouped these clusters into four larger
categories (Figure 1).

I) Genes activated by either LPS (Cluster 2) or
glucocorticoids (Cluster 7)
The majority of genes in these two clusters are upregulated
by either LPS or Dex independently, with little evidence
for inter-treatment interactions at 1 h. The LPS-induced
Cluster 2 (Figure 1, Mann–Whitney, PU-L = 4.11*10−13)
contains genes encoding pro- and anti-inflammatory cyto-
kines and chemokines (Il10, Cxcl1, 3, 5 and 7, Ccl7 and
Tnfsf9), TFs involved in stress response (Maff, Ets2, Fosl2
and Kdm6b) and proteins involved in TLR signaling (Tlr2,
Cd14 and Cd40) and signal transduction (Itpkc, Rabgef1,
Gbp5a).
Cluster 7 contains Dex-induced genes (PU-D = 0.0013),

including several well-characterized GR targets such as
TFs Per1 and Klf9, immunophilin Fkbp5, potassium chan-
nel Kcnk6. In addition, this cluster includes several genes
whose regulation by Dex has not been previously reported:
Interleukin 15 receptor alpha (Il15ra), the Wnt pathway
receptor Fzd4, the TF Klf2 and chemokine Ccl17.

II) Genes co-activated by LPS and Dex
These genes display either predominantly additive (cluster
1) or synergistic (cluster 6) activation by LPS and Dex.
Several genes in these clusters are previously characterized
GR targets including Dusp1, Nfil3 and Cited2 (cluster 1)
and Mt2 and Pfkfb3 (cluster 6), whereas the glucocor-
ticoid and LPS responsiveness of several others, such as
histone chaperon Jdp2 (cluster 1), has not been reported
previously.

III) Genes induced by LPS and repressed by Dex
This large group of genes is represented by clusters 3, 4 and
5. Cluster 3 contains LPS-induced genes (PU-L = 1.95*10−11)
expressed at relatively high level in resting BMMФ. The
basal expression of these genes is significantly more sen-
sitive to hormonal treatment (PU-D = 0.0107) than their
LPS-induced expression. This cluster encompasses a
number of inflammatory cytokines (Ccl2, 3 and 4, Tnf,
Tnfaip2), TFs (Ier5, Junb, Bcl6, Prdm1 and Irf1) and pro-
teins involved in signal transduction (Gadd45b, Dusp5,
Rasgef1b). Interestingly, several genes in this cluster (Ccl2,
3 and 4, Tnf) are characterized by the presence of the
stalled RNA Pol II near the transcription start site in unin-
duced conditions and are activated primarily at the level
of the Pol II pause release during early elongation [23-25].
Cluster 4 combines a heterogeneous group of genes with
low basal expression (PUcluster 4<Ucluster3 = 0.0003) that are
strongly induced by LPS and includes inflammatory cyto-
kines (Il1a, Il1b, Cxcl10, Ifnb1, Tnfsf4 and Il1f9) and other
direct mediators of inflammation (Ptgs2, mIR-155 host
gene, Hsp1a), TFs (Egr3) and signaling molecules (Gpr84,
Areg). Cluster 5 contains many genes whose LPS induction
is strongly inhibited by Dex treatment (PL-(L+D) = 0.02) in-
cluding several cytokines and chemokines (Il12b, Lif, Il1rn
and Il17ra ) and TFs (Mxd1, Etv3, Klf7 and Ets1).
Cluster 8 contains statistically heterogeneous previously

reported (Atf3, Egr2 and Ier3) as well as novel (Enc1 and
Bhlhe40) targets for GR-mediated repression that are
largely unaffected by LPS treatment. Thus, this cluster is
formally outside of group III.

IV) Genes downregulated by LPS
LPS-repressed genes were separated into 3 clusters based
on the combined effect of Dex and LPS on gene ex-
pression. The LPS-mediated downregulation is either
weakly potentiated (cluster 12) or antagonized (cluster 11)
by Dex. The functions of the majority of these genes are
poorly understood or unknown, however, 32% of genes in
cluster 11 and 20% in cluster 12 encode uncharacterized
C2H2 Zn-finger proteins implicated in transcription and
chromosome maintenance.
Expression of genes in cluster 10 is downregulated by

Dex and LPS in an additive manner. At least one gene in
this cluster (Angptl4) is a known GR target. Several genes
encode regulators of immune cells activities including Rit1
and Cd300lb. Cluster 9 contains Dex-induced genes that
are weakly repressed by LPS including previously reported
Ddit4, Arl4d and Sik1.

Cluster validation by RT-qPCR
Two representative genes in each cluster were chosen
for validation. Total RNA was isolated from treated (D,
L, or L + D for 1 h) and control BMMФ and transcript
levels for indicated genes (Figure 1) were determined
by RT-qPCR using Act1 or Hprt as housekeeping control
genes. As several LPS-induced, Dex-repressed genes
coding for various cytokines that we found in clusters 3
(Tnf, Ccl2, 3 and 4), 4 (Il1a and b) and 5 (Lif, Niacr1,
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Figure 1 Dex- and LPS-regulated genes in BMMФ form distinct clusters depending on specific patterns of expression. ANOVA-filtered
RNA-seq expression values (RPKM) were Z score-transformed and subjected to k-mean clustering. For each cluster, the upper left panel shows the
cluster average Z score-transformed log2 RPKM for each treatment condition where the central square represents standardized cluster mean, the
rectangle is the mean +/− standard deviation (SD) and the whiskers are a 95% confidence interval; the upper right panel shows log-transformed raw
cluster mean expression values. Symbols representing treatment conditions are black - untreated (U), blue - Dex-treated (D), pink - LPS-treated (L) and
purple - co-treated (DL) cells. The expression of two representative genes per cluster were determined by RT-qPCR with gene-specific primers and
shown at the bottom. The statistical significance of differences (Mann–Whitney test) is indicated by asterisks as following: * - p < 0.05, ** - p < 0.01,
*** - p < 0.001 and ns is non-significant.
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Mmp13) have been previously characterized by us and
others [20-22], we focused on uncharacterized LPS/
Dex targets. The expression patterns determined by
RT-qPCR closely resembled those determined by RNA-
seq, with the exception of several weakly expressed
genes that were not detectably repressed by Dex
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following a 1-h treatment (e.g., Bcl2, Med21; data
not shown).

Glucocorticoid-regulated genes form a highly
interconnected association network with distinct
response-specific modules
To determine the prevalent functional patterns in groups
of co-regulated genes, we performed gene enrichment
analysis and visualization using GeneMANIA plugin [26]
for Cytoscape 2.8 and Exploratory Gene Association
Networks (EGAN) software [27].
Using a list of genes that were up- (clusters 1, 6, 7 and 9)

and down- (clusters 3, 4, 5, 8 and 10) regulated by Dex, we
generated a consensus association network consisting of
333 nodes and 8296 edges. To discern underlying data
structure in the Dex-regulated network, we decomposed
this network using the Newman-Girvan community clus-
tering algorithm [28], a divisive procedure that iteratively
removes network edges with largest “edge betweenness”,
recalculates this metric for a novel network and repeats
the procedure until the network is split into several
groups. The Newman-Girvan algorithm disregards edge
weights and uses only connectivity to define communities.
Community clustering partitioned Dex-regulated network
into three unequal modules that were significantly en-
riched with Dex-repressed genes (Module 1, Figure 2A),
Dex-induced genes (Module 2, χ2 = 18.33, p = 0.0001,
Figure 2B) or LPS-repressed genes (Module 3, χ2 = 15.347,
p = 0.00046, Figure 2C).
Network topology analysis of Dex-responsive modules

revealed significantly greater network densities and clus-
tering coefficients in Modules 1 and 2 compared to net-
works generated from the same number of non-expressed
genes extracted from the same BMMФ experiments
(Figure 2D). Similarly, the average neighborhood connec-
tivities and average clustering coefficients for Modules 1
and 2 were considerably greater than the values for non-
expressors (Figure 2E), indicating that nodes in these mo-
dules form tight interconnected local groups. A broader
shared neighbors distribution in Modules 1 and 2 indicates
high prevalence of shared nodes, suggesting an enrich-
ment for multiple input motifs. Interestingly, Module 2
(enriched with Dex-induced genes) was more structured
than Module 1 (predominantly Dex-repressed genes)
as evidenced by consistently higher average neighbor-
hood connectivities and average clustering coefficients
(Figure 2E). Although Module 3 has a non-random com-
position, with the exception of network heterogeneity, all
other analyzed topological metrics were typical of net-
works composed of randomly selected non-expressed
genes (Figure 2D). Therefore, we focused the rest of the
analysis of Modules 1 and 2. Relatively high heterogeneity
for both modules (0.506 and 0.581; Figure 2D) indicates
the presence of network hubs - nodes with high degree of
connectivity. Indeed, 10 most connected nodes in Mo-
dules 1 and 2 account for 36 and 32% of all edges, res-
pectively (Figure 2F). Interestingly, eight out of 10 most
connected nodes in Module 2 are sequence-specific DNA-
binding TFs (bold in Figure 2F).

Glucocorticoid response-specific modules are functionally
distinct
Using gene ontology (GO) analysis to determine enriched
gene categories in subsets of functionally related genes, we
identified 425 enriched GO categories for Module 1, 285
for Module 2 (FDR corrected p < 10−3) and 77 for Module
3 (FDR corrected p < 10−2). Only 115 GO categories over-
lapped between Modules 1 and 2 (Figure 3A, 3C). To fa-
cilitate visualization and interpretation of these results and
compare enriched functional categories among groups of
Dex-regulated genes, we generated GO terms similarity
networks using Gene Set Enrichment Mapping Cytoscape
plug-in. Multiple GO categories related to regulation of
metabolic processes, embryonic and post-embryonic de-
velopment and regulation of apoptosis and signaling are
enriched in Module 2 (Figure 3A) that contains a large
number of Dex-upregulated genes. Notably, 32/285 GO
categories enriched in Module 2 were related to regulation
of gene expression, regulation of transcription, sequence-
specific DNA binding transcription factors. For example,
negative regulation of gene expression (GO:10629), ne-
gative regulation of transcription (GO:16481), negative
regulation of transcription - DNA-dependent (GO:45892),
sequence-specific DNA binding (GO:43564), negative re-
gulation of transcription from RNA polymerase II pro-
moter (GO:122) and transcription regulator activity (GO:
30528) were all enriched in Module 2, but not Module 1
(Figure 3C). Overrepresentation of genes coding for re-
gulators of gene expression in the early Dex-responsive
transcriptome suggests that GR initiates a transcriptional
program that relies on the step-wise activation of multiple
TFs. Only a few categories related to immune/inflamma-
tory responses have been found in Module 2 (Figure 3A).
Conversely, the majority of enriched GO categories in

Module 1, which contains predominantly Dex-repressed
genes, are related to immune and inflammatory responses,
signaling and regulation of signal transduction and meta-
bolic regulation including immune response (GO:6955),
immune system process (GO:2376), inflammatory re-
sponse (GO:6954) and regulation of cytokine production
(GO:1817) (Figure 3B, 3C). The fraction of gene expres-
sion-related GO categories in this module is significantly
smaller (22/425, χ2 = 8.05, df = 1, p = 0.00455) than in
Module 2.

Dex-responsive transcription regulators
We identified 37 Dex-responsive genes whose products
are involved in the regulation of gene expression (Figure 4).
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(See figure on previous page.)
Figure 2 Hormone-regulated genes in BMMФ participate in highly interconnected networks with TF control nodes. (A) Ranked list of
Dex-responsive genes was used as an input for GeneMania network building algorithm. The resulting combined network was partitioned using
the Newman-Girvan algorithm into three Modules enriched with (A) Dex-repressed, (B) Dex-induced and (C) LPS-repressed genes. To simplify the
view, the edges representing co-expression, co-localization and shared protein domains were hidden. The size of the node is proportional to the
node connectivity. The nodes are colored according to the magnitude of Dex effect on respective gene expression using MulticoloredNode Cytoscape
plugin. The nodes predicted by GeneMania are colored gray. Both (D) network-wide and (E) node-specific network topological parameters in Modules
1 and 2 demonstrate high level of interconnectivity with a large number of shared nodes. (F) Nodes with the highest degree of connectivity in the
Modules 1 and 2. The genes coding for TFs are shown in bold.

Chinenov et al. BMC Genomics 2014, 15:656 Page 7 of 19
http://www.biomedcentral.com/1471-2164/15/656
12 of these genes including TFs Klf2, 4 and 9, Per1, Jdp2,
Cited2, Nfil3 and Tiparp are upregulated by Dex; 12
others including TFs Junb, Atf3, Tgif1, Irf1 and Bcl3 are
downregulated; for 13 regulatory proteins (e.g., Zfp131,
Zfp36, Nr4a3, Rela, Nfkb2, Klf7 and Ets1), the inhibitory
effect of Dex is apparent only in LPS-induced MФ. For all
Dex-induced and a subset of Dex-repressed TFs, we have
independently confirmed RNA-seq data by RT-qPCR
(Additional file 3: Figure S1; also see Figure 1 for Cited2,
Irf1, Etv3 and Atf3).
To uncover potential functional interactions between

Dex-regulated TFs, we treated BMMФ with Dex for up
to 9 h and determined expression levels of a subset of
Dex-regulated genes by RT-qPCR. We observed a stri-
king difference in expression patterns over time. Nfil3,
Cited2, Jdp2 and Per1 (Figure 5A) are characterized by
an accelerated burst phase, with the mRNA level rea-
ching maximum within 30–60 min and then remaining
constant (Nfil3 and Cited2) or slowly declining over time
(Per1 and Ncoa5). Klf4, Klf9, Tsc22d3 and Ddit4 are
strongly induced within the first 2 h, and their RNA
levels continue to increase for the next 6 h (Figure 5A).
The expression profile of Fkbp5 exhibits an initial delay,
followed by a robust and sustained induction (Figure 5A).
Conversely, Klf2 and Tiparp displayed pulse-like rapid
upregulation within 1–3 h followed by a decline in tran-
script level, which in the case of Klf2 reaches baseline
(Figure 5A); a similar biphasic pattern of expression was
observed for Tgfb3, Il15ra and Mt2 (Figure 5A). Interes-
tingly, Bcl3, Junb and Tgif1 responded with rapid pulse-
like downregulation followed by a slow return to basal
expression level, whereas Atf3 was rapidly downre-
gulated within the first hour and remained repressed
throughout the time course (Figure 5A). Unexpectedly,
the Pparg expression was only modestly induced by Dex
at the early time points, then decreased dramatically by
3 h and remained low for up to 9 h (Figure 5A).
The dynamics of expression for several Dex-regulated

TFs suggests that they are under combinatorial controls
that involve GR and additional GR targets which either
cooperate with or antagonize GR actions. As such a model
implies transcription/protein production of these putative
GR targets, we first examined the expression of Dex-
regulated genes in the presence of a protein synthesis
inhibitor cycloheximide (Chx). Treatment with Chx up for
to 3 h had no dramatic effects on Dex-mediated re-
gulation of Klf9, Tcs22d3, Tgfb3 and Bcl3 (Figure 5B),
suggesting a direct regulation by GR that does not rely on
synthesis of additional proteins. Conversely, the expres-
sion of Atf3 became refractory to Dex in the presence of
Chx (Figure 5B) suggesting that additional proteins in-
duced by Dex rather than GR itself are likely to directly
regulate this gene. For several Dex-responsive genes (Klf2,
Klf4, Nfil3, Tiparp, Tgif1), however, treatment with Chx
dramatically upregulated their basal expression, complicat-
ing the assessment of the relative contribution of direct vs.
indirect effects of GR to their regulation (Additional file 3:
Figure S2) and necessitating an alternative approach.

Temporal dynamics of hormone-regulated gene
expression is consistent with feed forward logic
The dynamics of the transcriptional response of several
genes to Dex imply the existence of some feedback me-
chanism that limits activation by GR yet, at the same time,
is GR-dependent. Because Chx elicits many off-target ef-
fects and does not enable us to discriminate between the
secondary targets of GR and those jointly controlled by
GR and a GR-regulated TF, we performed dynamic mo-
deling of expression data in an attempt to discern specific
regulatory patterns. Several mechanisms including positive
and negative autoregulation, positive and negative feed-
back and feed forward loops (FFL) could account for de-
viations from a simple model with a single TF regulating
gene expression via a single DNA binding site [12]. The
kinetics of GR expression following Dex stimulation is not
consistent with auto-regulatory models (Figure 5A). De-
pending on the overall regulatory outputs and activities of
individual FFL components, two types of FFL have been
recognized – coherent (C-FFL) and incoherent (I-FFL).
In type 1 I-FFL (I1-FFL), the activating master TF and a
repressing intermediate regulator have opposite effect on
a jointly regulated gene. Dynamic modeling and experi-
mental studies of I1-FFL dynamics have demonstrated
several properties of this network motif, including its
ability to produce sharp pulse-like activation of a jointly
regulated gene with a fast relaxation time [11,13]. Several
GR-regulated genes, including Klf2, Tiparp, Tgfb3, Mt2
exhibit pulse-like kinetics at constant Dex exposure



Figure 3 (See legend on next page.)
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(See figure on previous page.)
Figure 3 Distinct functional GO categories are enriched in Dex-regulated network Modules in BMMФ. GO categories enriched among
Dex-regulated genes in Modules 2 (A) and 1 (B) (p < 10−3, hypergeometric test) were used to create GO terms similarity networks where the
nodes represent GO gene sets and the edge length between two nodes is proportional to the fraction of shared genes in categories. Individual
clusters were manually repositioned to simplify network layout and colored as indicated; the broad top GO terms are colored grey. The word tags
were generated with WordTag Cytoscape plugin [29] to represent frequency-based semantic summary of words in GO category titles found in
individual clusters and the size of the nodes is proportional to the number of genes in the respective GO gene set. (C) GO enrichment analysis of
individual GO categories in Modules 1 and 2 relative to the mouse genome. The FDR-corrected p-values (hypergeometric test) are shown for
each bar.
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(Figure 5A). Near-baseline relaxation of Klf2 expression
suggests that this gene is under control of both GR and a
strong Dex-induced repressor. Because GR is largely in-
active in the absence of ligand, glucocorticoids act as a low-
latency on-off switch eliminating the need to correct for a
baseline activity of GR. The dynamics of Klf2 and repressor
(R) expression is described by the ordinary differential
equations (2) and (3) (see Additional file 1) [11,13].
Assuming equal degradation rates of Klf2 and R, these

equations can be solved analytically (equation (1) and
[13]) and used to fit the expression data for Klf2. When
limited to the early data points (up to 4 h), the expres-
sion data fit very well to the predicted expression pattern
(Figure 5C, R2 = 0.9225), however, at the later time, when
the contribution of degradation rates becomes sig-
nificant, the quality of fit decreases (R2 = 0.5491). Using
parameter estimates derived from equation (1) fitting,
we solved equations (2) and (3) numerically. Figure 5C
shows a good concordance between the experimental
data for Klf2 expression as determined by RT-qPCR and
the numerical solution (R2 = 0.8317) that describes the
dynamics of the I1-FFL. This result strongly suggests
that Klf2 and, potentially, several other GR targets that
exhibit similar expression dynamics (Tiparp, Tgfb3 and
Mt2) are jointly regulated by GR and a GR-induced re-
pressor via the I1-FFL network motifs.
Numerical solutions of equations 2 and 3 also provide

a theoretical prediction of an intermediate repressor dy-
namics in the GR-R-Klf2 I-FFL. Interestingly, among
several known transcription repressors activated by GR,
the expression kinetics of Klf9 fits the best to the pre-
dicted model (Additional file 3: Figure S3). The dynam-
ics of the GR-R-KLF2 FFL can be tested by perturbing
the concentration of a hypothetical intermediate repres-
sor which should uncouple the FFL thus shifting peak-
like FFL-mediated kinetics to simple monotonous kinetics
eventually converging to a steady-state level. To test the
role of Klf9 as a potential GR-activated repressor of
Klf2 transcription, we derived M from Klf9-KO mice
[30] kindly provided by Dr. Simmen and treated them
with 100 nM Dex as above. Interestingly, in Klf9 null
BMMФ the peak-like Klf2 induction profile “degenerated”
to monotonous activation kinetics that plateaued at a
steady state level by 3 h (Figure 5D), replicating the
profiles of previously reported uncoupled experimental I-
FFLs [11,31], consistent with the proposed role of KLF9 as
an intermediate repressor in the GR-KLF9-KLF2 I-FFL. At
the same time, deletion of Klf9 did not affect the expres-
sion dynamics of either GR itself or the GR target gene
Tsc22d3 with a simple monotonous activation profile
(Figure 5D).

GR is recruited to binding sites associated with
Dex-regulated genes
The FFL gene regulatory circuitry predicts that the master
TF binds DNA to regulate transcription of both FFL
nodes. Using several published mouse ChIP-seq datasets
of acute GR recruitment [32,33] we interrogated Dex-
induced genes for the presence of GR binding sites within
the gene and 15 Kb upstream and downstream of the gene.
With the exception of Sox4 and Klf4, all genes encoding
Dex-induced TFs contained at least one peak within the
analyzed intervals (Figure 6A, Figure 4). To compare these
peaks to those in MФ, we analyzed GR recruitment by
ChIP-seq using untreated MФ as a control and identified
16,657 peaks induced by a 40-min Dex exposure at 2%
FDR. Selective comparison of binding site distributions re-
vealed a high level of concordance between Dex-induced
peaks in MФ and those previously described in adipocytes
[32] (Figures 6A, 7B and Additional file 3: Figure S4) and a
partial overlap with a GR cistrome in MФ polarized with
high dose long-term glucocorticoid exposure [34]. By
ChIP-qPCR, we detected GR recruitment as early as
40 min post Dex treatment at multiple putative GR bin-
ding sites, including those at Per1, Cited2, Klf2, Klf9, Nfil3,
Jdp2, Tiparp and Ncoa5 (Figure 6B). These observations
correlate well with the expression data (Figures 1 and 5A).
Although Klf4 was strongly induced by Dex, no gluco-
corticoid response elements (GREs) near the gene has
been previously reported. We performed a scanning ChIP
with evenly spaced primers within the Klf4 gene and
several primers flanking potential GR binding sites
(Figure 6C). Two of the putative GREs located at −3830 bp
(gGcACAgcaTGTaTC) and +5896 bp (aGaACAgaaTG
Tagttc) relative to the Klf4 transcription start site recruited
GR following a 40-min treatment with Dex (Figure 6C),
consistent with the notion that, similar to genes shown in
Figure 6B, GR is likely to regulate Klf4 directly.



Figure 4 Dex-responsive regulators of gene expression.
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We then used a set of Dex/LPS-regulated genes to
analyze the distribution and enrichment of binding sites
for TFs that were present in Chip-Enrichment Analysis
(ChEA) database [35]. The ChEA database contains cu-
rated published genome-wide datasets of TF binding
sites in human, mouse and rat. After filtering out TFs
that were not expressed in MФ (RPKM < 1), we noted
that binding sites for several Dex-responsive TFs, such
as KLF2, KLF4, ATF3, EGR1, CEBPβ and IRF1 are
enriched among Dex/LPS-regulated genes. Interestingly,
binding sites for PPARγ, whose expression was inhibited
upon prolonged Dex treatment, were found near the
majority (22/37) of Dex-responsive gene expression
regulators (Figure 4) and highly enriched among Dex/
LPS-regulated genes in general.
We then determined the frequency of genes associated

with binding sites for several TFs identified by ChEA and
induced by Dex in individual clusters of Dex/LPS-regu-
lated genes (Figure 1). We defined a binding site as
‘gene-associated’ if its genomic intervals overlapped with
genomic intervals encompassing all mouse genes anno-
tated in mm9 +/− 15 Kb by at least one nucleotide. In
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Figure 5 The dynamics of hormone-responsive gene expression is consistent with FFL network motifs. (A) BMMФ were treated with 100
nM Dex for indicated time and the expression levels of Dex-responsive genes were determined by RT-qPCR. (B) BMMФ were treated with Dex
either alone or in the presence of the protein synthesis inhibitor Chx for 1–3 h; the expression of indicated genes were determined by RT-qPCR
and expressed relative to transcript levels in the absence of Dex (‘Control’), with or without Chx (=1). (C) The dynamics of Klf2 expression is
consistent with the I1-FFL with a strong repressor (R) as an intermediate regulator. Klf2 expression data (black circles) collected over 9 h was
subjected to a global least square analysis (red line) using the equation (1) (Additional file 1). The quality of the fit as determined by calculating
coefficient of determination R2 (Additional file 1) improved considerably when the expression data were limited to initial 4 h (green line). The
numerical solution of the equation (3), which allows for variation in degradation rates of both “R” and Klf2, yields a better fit (blue line) to the Klf2
expression data. The R2 for curve fitting analyses are shown in the legend. (D) Glucocorticoid induction of Klf2 in BMMФ derived from Klf9-KO
mice (red squares) loses peak-like kinetics, characteristic of I1-FFL controlled genes (blue diamonds). WT and Klf9-KO BMMФ were cultured in the
presence of Dex for indicated time and the expression of Klf2, Tsc22d3 and Nr3c1 (GR) was assessed by RT-qPCR as in A. Basal levels of each
transcript were set to 1 for untreated BMMФ of each genotype. Error bars are standard errors of the mean.
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good correlation with the RNA-seq data, acute GR re-
cruitment peaks previously identified by ChIP-seq in Dex-
treated adipocytes [32] were enriched in Dex-induced
clusters 1, 6, 7 and 9 (Figure 7A, arrow up). Among Dex-
regulated TFs, mouse genome-wide binding datasets are
currently available for KLF4 (ChIP-seq), KLF2 (chip-on-
chip), PPARγ (ChIP-seq) and NFIL3 (chip-on-chip) [36-40].
Although KLF4 sites are enriched in the entire Dex/
LPS dataset compared to non-expressing genes, only in
cluster 8 (Dex-repressed genes) the enrichment level at-
tains significance (Figure 7A). Conversely, KLF4 binding
sites are underrepresented in the LPS-induced cluster 2.
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Figure 6 GR binds genomic sites associated with genes encoding Dex-induced TFs. (A) ChIP-seq data from BMMФ (black; see also Additional
file 3: Figure S4), adipocytes (crosshatched) and C2C12 cells (red) reveal multiple Dex-dependent GR binding peaks associated with Dex-induced genes
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Although the KLF2 chip-on-chip dataset available was
relatively small, several KLF2 targets were regulated by
Dex and contained GR binding sites, including Klf2 itself,
Klf4, Klf9 and Tgfb3 [37].
Two mouse PPARγ datasets, one from differentiated

adipocytes and one from resting MФ are currently
available [38,39]. Consistent with the previously re-
ported role of PPARγ in repression of inflammatory
genes, PPARγ binding sites are overrepresented in
several LPS-induced clusters (clusters 2, 3 and 5;
Figure 7A) in both datasets. In addition, in the MФ
dataset, PPARγ binding sites were enriched in Dex-
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induced and -repressed clusters, 7 and 8, respectively
(Figure 7A).
The only available genome-wide dataset of Nfil3 bind-

ing was acquired in a neuronal cell line [40]. Among
Nfil3-occupied genes identified in that study, only four
genes overlap with Dex/LPS-regulated dataset reported
here; however, one of them, Tsc22d3 (GILZ), is a well-
characterized GR target.
To identify genes that might be under combinatorial

control by GR and another Dex-responsive TF, we
searched for loci that contained GR, KLF and/or PPARγ
binding sites located close to each other within a gene +/−
15 Kb. Intriguingly, several GR targets including Klf2,
Klf9, Cited2 and Mt2 contained tight clusters of binding
sites for GR, KLF(4) and PPARγ (Figure 7B) suggesting
that these TFs may interact functionally or physically at a
subset of GR-regulated genes.

LPS downregulates a unique class of genes encoding the
C2H2-KRAB gene expression regulators
Even a brief LPS treatment results in a marked downreg-
ulation of a large number of genes confined to clusters
10–12. GO overrepresentation analysis of LPS-repressed
genes revealed that many of them participate in the
regulation of nucleic acid metabolism, gene expression
and transcription however, detailed information on spe-
cific functions of many of these proteins is lacking. Inter-
estingly, 33 proteins in these clusters contained tandem
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zinc-finger motifs (COG:5048, p = 3.49*10−29, Figure 8A).
We confirmed that the expression of 10 of these Zn-finger
proteins is rapidly downregulated by LPS in MФ, and re-
mains suppressed for up to 6 h of treatment (Figure 8B).
Further analysis of domain architecture revealed that in
the majority of these proteins, tandem Zn-fingers co-
occur with domains such as Kruppel-Associated Box
(KRAB, Pfam01352, p = 1.029*10−19), BTB (Pfam00651,
p = 5.68*10−5) and SCAN (Pfam 02023, p = 2.1*10−4,
Figure 8A). KRAB is a Tetrapoda-specific domain that
defines one of the largest sub-families of Zn-finger pro-
teins [41] which are involved in nucleic acid binding
and regulation of gene expression. Although the spe-
cific functions of the majority of KRAB proteins with
respect to innate immunity are not well studied, in a
few characterized cases KRAB proteins have been asso-
ciated with transcriptional repression, establishing re-
versible patterns of histone and DNA methylation and
reversible heterochromatization [42-44].
Discussion
Glucocorticoids- and LPS-regulated gene expression
programs
GR is a ubiquitous ligand-dependent TF capable of elicit-
ing highly divergent transcription programs with up to a
third of protein-coding genes differentially expressed fol-
lowing a 24-h glucocorticoid treatment [7]. Establishing
the hierarchy of regulatory events upon prolonged hormo-
nal exposure in individual cell types is challenging, which
complicates both accurate mechanistic predictions and
clinical decisions. Multiple GR ligands have been designed
in an attempt to create a highly specific compound that
selectively regulates desired subsets of genes. Mechanistic
analyses of these ligands usually focus on a specific group
of disease-relevant genes and often involve long-term
treatments, which obscure primary and transient re-
sponses to GR activation by a plethora of secondary path-
ways. In the context of inflammation, both immediate and
delayed regulatory events are clinically relevant as they
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reflect typical glucocorticoid treatment modalities. We
reasoned that by analyzing early transcriptomes elicited
by the inflammatory and glucocorticoid exposure in
MФ, a clinically relevant cell type, we will be able to
isolate a key set of immediate GR targets responsible
for the delayed gene expression patterns. Our results
indicate that early glucocorticoid- and LPS-dependent
changes establish a highly organized program of gene
expression with distinct groups of genes following co-
operative and antagonistic regulation. As expected from
previous work [22,34,45] a large group of LPS-induced
genes that included among others inflammatory cyto-
kines, was rapidly downregulated by glucocorticoids.
Another group encompassing glucocorticoid-induced
genes, some of which encode TFs (Cited2, Nfil3, Jdp2)
or signaling proteins (Dusp1, Tsc22d3), are involved in
curbing inflammatory signaling [46]. We identified several
previously unreported glucocorticoid-induced genes whose
products are involved in signaling (Ccl17, Il15ra and
Fzd4), regulation of transcription (Klf2, Jdp2, Ncoa5
and Tiparp) and mRNA stability (Zfand5). Several of
these genes add to the arsenal of anti-inflammatory me-
diators regulated by GR. For example, KLF2 interferes
with AP1- and NFκB-mediated transcription of Tnf and
several chemokines including Ccl2, 3 and 4 [47]. Fur-
thermore, Klf2 haploinsufficiency in mice results in an
exaggerated inflammatory response and more severe
disease in arthritis models [48]. CCL17, another previ-
ously unreported glucocorticoid-induced chemokine, is
a marker and promoter of the polarization of ‘alterna-
tively activated’ M2 MФ, which are considered anti-
inflammatory and mediate tissue repair and wound
healing [49,50]. In addition to repressing cytokine gene
transcription, glucocorticoids downregulate expression
of several TFs including Atf3, Junb, Irf1, Bcl3, Tgif1,
some (e.g., Rela, Nfkb2, Myc, Ets1) in the context of LPS
induction, and, unexpectedly, Pparg An enrichment in
positive regulators of inflammation and cell proliferation
among Dex-downregulated TFs is consistent with the
anti-inflammatory and anti-proliferative effects of gluco-
corticoids. The role of GR in repression of the Pparg
gene in MФ has not been previously reported, the effect
might be indirect and mediated by a well-established
GR target GILZ [51], which may also account for the
delay (Figure 5A). Finally, we described a previously
overlooked group of LPS-downregulated genes encod-
ing proteins with the C2H2 Zinc-fingers adjacent to the
KRAB domain. Despite being one of the largest TF
family, KRAB proteins remain poorly characterized.
Among those whose functions were described, several are
involved in transcriptional regulation, RNA and DNA
binding and splicing [42-44,52]. KRAB domains interact
with a scaffolding co-repressor TRIM28 (KAP1, TIF1β)
which in turn binds the heterochromatin protein 1,
chromatin remodeler MI2A and H3K9-specific methyl-
transferase [53]. Indeed, some KRAB proteins reportedly
repress transcription by heterochromatin spreading [52].
Interestingly, several KRAB proteins have been linked to
NR actions [54,55]. The role of KRAB proteins in inflam-
mation is essentially unknown; however, genomic studies
indicate that inflammatory signaling increases accessibility
of large sections of the genome [56]. It is tempting to
speculate that a broad downregulation of proteins in-
volved in heterochromatin maintenance and spreading
serves to increase DNA accessibility and inflammatory
gene transcription.

The dynamic response to GR activation is consistent with
feed forward logic
Functional relationships between GR and its targets are
often classified as “direct”, that involve GR recruitment
to genomic binding sites associated with regulated genes,
and “indirect”, whereby primary GR-regulated factors,
rather than GR itself, are responsible for activation of
the downstream targets. Thus, the activation of these
secondary targets is often described as sequential or de-
layed. Such a model, however, cannot explain many in-
stances of non-monotonous expression dynamics (see
Figure 5) and non-linear response to varying hormone
concentration of many GRE-driven genes [57]. The large
number of shared neighbors, overrepresentation of TFs
and their high interconnectivity in GR regulatory net-
works (Figure 2) are consistent with more intricate regu-
latory modalities such as FFL. Variations in kinetic
parameters for participating TFs, target gene structure
and activation/repression thresholds often lead to para-
doxical responses to stimulation of the master TF with
profound functional implications. C-FFLs serve as delayed
response organizers that detect the duration/strength of a
signal that activates the initiating TF [11,12]. Interestingly,
the dynamics of Fkbp5 induction by Dex, characterized by
a substantial post-exposure delay followed by a robust ex-
pression (Figure 5A), is reminiscent of the C-FFL in which
the jointly regulated gene is activated by both the master
and intermediate TFs [12]. Although additional experi-
ments are required to establish the precise mode of Fkbp5
regulation, this gene is a known direct GR target that re-
cruits GR to several GREs (Additional file 3: Figure S5).
Incoherent loops are responsible for negative and posi-

tive pulse generation, accelerated response and fold
change sensing [11,13,14]. Here, we observed that sev-
eral GR target genes exhibit both positive (Klf2, Tiparp,
Tgfb3 and Mt2) and negative (Tgif1, Junb and Bcl3)
pulse-like dynamics consistent with the I-FFL. In keep-
ing with the role of a potential master regulator, GR
binds to the GREs in regulatory regions of many of these
genes (Figure 6). Furthermore, using a system of ordin-
ary differential equations which describe FFLs in the
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“fold sensors” model [13], we showed that Klf2 expres-
sion is consistent with that of a gene under joint control
of GR and a strong GR-activated repressor (Figure 5C).
Several GR-activated genes are either known transcrip-
tion repressors (e.g., Klf4, 9, Nfil3, Per1 and Jdp2) or
may downregulate gene expression by destabilizing RNA
transcripts (Zfand5, [58]). Curiously, the expression dy-
namics of Klf9 fits closely with the computational pre-
diction of an intermediate repressor in the GR-R-Klf2
I-FFL (Additional file 3: Figure S3). GR is recruited to
the Klf9 and Klf2 GREs as early as 40 min of Dex treat-
ment. Both Klf9 and Klf2 regulatory regions also contain
functional GAGGCGTGG KLF sites ([36], Figure 7B)
which can be occupied by various TFs of the KLF family
[59] including KLF9. Finally, in KLF9-KO macrophages,
the induction profile of Klf2 loses the early peak
followed by a decrease and acquires monotonous kinet-
ics (Figure 5D) strongly suggesting a collapse of the I1-
FFL to simple GR-dependent activation. Interestingly,
KLF binding sites are overrepresented in glucocorticoid-
regulated genes and are located near GREs in several bona
fide GR target genes suggesting that these factors may co-
regulate a number of GR targets.

KLF proteins in inflammation
Both KLF2 and KLF4 have been implicated in myeloid cell
biology. KLF2 inhibits monocyte activation by inhibiting
NFκB activity, which correlates with decreased expression
of multiple cytokines and HIF1α, a TF that regulates mye-
loid cell response to bacterial infection and reactive oxygen
species [60]. Consistent with the anti-inflammatory role of
KLF2, mice hemizygous for Klf2 have elevated levels of in-
flammatory mediators, such as CCL2 and PTGS2 (COX-2).
By extension, in KLF2-deficient mice, the manifestations of
both Me-BSA- and IL1β-experimentally induced inflamma-
tory arthritis are more severe [48].
KLF4 is involved in inflammatory monocyte differenti-

ation [61,62] and in MФ polarization toward the M2
anti-inflammatory phenotype [63]. KLF9 can act as
either a transcriptional activator or a repressor [64,65],
however its role, if any, in inflammation has not been
described. We showed here that GR regulates Klf genes
with distinct temporal dynamics and proposed that
KLF9 may act as a GR-induced Klf2 repressor. Thus, it
is tempting to speculate that GR anti-inflammatory ac-
tivities rely in part on the activation of Klf genes whose
products regulate transcription of additional targets in
concert with GR. Indeed, glucocorticoids and KLF4
regulate partially overlapping set of genes during epider-
mal barrier establishment in embryogenesis [66]. The
proximity of the GREs and KLF binding sites in the gen-
ome suggests an intriguing possibility that GR and KLFs
interact functionally or physically. Curiously, a func-
tional interaction with the I-FFL logic has been reported
for GR and another member of KLF family, KLF15 [67].
Although KLF15 is not expressed in MФ, our studies
strongly suggest extensive crosstalk between GR and
other KLF family members in the innate immune cells.

Conclusions
Anti-inflammatory activities of glucocorticoids involve down-
regulation of inflammatory mediators and activation of
various anti-inflammatory genes. The early glucocorticoid-
driven transcriptome in MФ contains an unusually
large number of genes coding for transcriptional regu-
lators. Temporal dynamics of hormone-regulated gene
expression is consistent with feed forward logic sug-
gesting that GR and GR-induced TFs jointly regulate
GR target genes. In particular, our data suggest that GR
is rapidly recruited to and activates genes encoding sev-
eral members of the KLF family of TFs with profound
anti-inflammatory activities, such as Klf2 and Klf4. Fur-
thermore, GR appears to regulate Klf2 expression via
the GR-Klf9-Flf2 I1-FFL. We propose that by acting as
a hub for highly branched regulatory networks and acti-
vating genes encoding TFs to propagate the initial sig-
nal, GR coordinates anti-inflammatory responses.

Methods
Mice and macrophage cultures
C57BL/6 mice (NCI, Charles River Laboratories) were
maintained in the Hospital for Special Surgery Animal
Facility in full compliance with institutional guidelines
approved by the HSS Animal Care and Use Committee.
Klf9-KO mice [30] were generously provided by Dr. R.
Simmen (U. of Arkansas). BMMФ were prepared from
8–12 weeks old mice as in [23]. For RNA-seq, BMMФ
from two independent mice were treated with vehicle,
Dex (100 nM), LPS (10 ng/ml) or LPS + Dex for 1 h. For
qPCR and ChIP analyses, BMMФ were treated as above
for time indicated in Figure Legends.

RNA isolation, RT-qPCR and RNA-seq
Total RNA was isolated using the RNeasy kit (Qiagen).
0.25 μg of total RNA was used for random primed
cDNA synthesis which was performed with M-MuLV re-
verse transcriptase (NEB) according to the manufac-
turer’s recommendations. Quantitative PCR (qPCR) was
performed using Maxima Sybr Green/ROX/ 2x master
mix (Fermentas) on StepOne Plus real time PCR system
(ABI) and analyzed using δδCt method as described pre-
viously [22] with Hprt or Act1 as a normalization control.
Primer pairs are listed in Additional file 2: Table S3. RNA-
seq is described in (Additional file 1).

ChIP-qPCR and ChIP-seq
BMMФ were incubated −/+100 nM Dex for 40 min and
ChIPs were performed as in [23] using N499 [22] and
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sc1004 (Santa Cruz Biotechnology) anti-GR antibodies,
or normal rabbit IgG as a background control. The data
for each recruitment site was normalized to non-specific
signals at the unrelated 28S ribosomal gene. Primer pairs
are listed in (Additional file 2: Table S3). ChIP-seq is de-
tailed in (Additional file 1).

Gene association network construction, analysis and
expression data modeling
GeneMANIA algorithm was used to build gene associ-
ation networks. Starting from a gene list of interest (e.g.,
combined list of Dex up- and downregulated genes),
geneMANIA algorithm creates a consensus network and
predicts gene functions based on integration of multiple
prebuilt gene association networks. The detailed descrip-
tion of Gene association network construction, analysis
and expression data modeling is in the Supplemental In-
formation section.

Additional files

Additional file 1: Supplemental methods and references.

Additional file 2: Table S1. Contains statistical summary of combined
RNA-seq experiments. Table S2. contains a detailed summary of genes
regulated in BMMΦ upon a 1-h treatment with Dex (D), LPS (L) and LPS +
Dex (L + D) compared to untreated control (U). Table S3. contains RT-qPCR
and ChIP primers used in this study.

Additional file 3: Figure S1. Is RT-qPCR confirmation of RNA-seq
expression data for Dex-responsive genes encoding TFs. Figure S2. shows
the effect of Chx on the basal and Dex-regulated levels of GR-responsive
transcripts. Figure S3. shows the dynamics of Klf9 induction by Dex
compared to the predicted expression of a putative Klf2 repressor in the
GR-induced I1-FFL. Figure S4. shows ChIP-seq data for acute Dex-induced
GR recruitment to genomic binding sites in mouse macrophages. Figure S5.
demonstrates that GR binds to multiple sites within the Fkbp5 gene in
response to Dex.
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