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Expression quantitative trait loci infer the
regulation of isoflavone accumulation in soybean
(Glycine max L. Merr.) seed
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Abstract

Background: Mapping expression quantitative trait loci (eQTL) of targeted genes represents a powerful and widely
adopted approach to identify putative regulatory variants. Linking regulation differences to specific genes might assist
in the identification of networks and interactions. The objective of this study is to identify eQTL underlying expression
of four gene families encoding isoflavone synthetic enzymes involved in the phenylpropanoid pathway, which are
phenylalanine ammonia-lyase (PAL; EC 4.3.1.5), chalcone synthase (CHS; EC 2.3.1.74), 2-hydroxyisoflavanone synthase
(IFS; EC1.14.13.136) and flavanone 3-hydroxylase (F3H; EC 1.14.11.9). A population of 130 recombinant inbred lines
(F5:11), derived from a cross between soybean cultivar ‘Zhongdou 27’ (high isoflavone) and ‘Jiunong 20’ (low
isoflavone), and a total of 194 simple sequence repeat (SSR) markers were used in this study. Overlapped loci of eQTLs
and phenotypic QTLs (pQTLs) were analyzed to identify the potential candidate genes underlying the accumulation of
isoflavone in soybean seed.

Results: Thirty three eQTLs (thirteen cis-eQTLs and twenty trans-eQTLs) underlying the transcript abundance of the four
gene families were identified on fifteen chromosomes. The eQTLs between Satt278-Sat_134, Sat_134-Sct_010 and
Satt149-Sat_234 underlie the expression of both IFS and CHS genes. Five eQTL intervals were overlapped with pQTLs.
A total of eleven candidate genes within the overlapped eQTL and pQTL were identified.

Conclusions: These results will be useful for the development of marker-assisted selection to breed soybean cultivars
with high or low isoflavone contents and for map-based cloning of new isoflavone related genes.
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Background
Soy food has been taken as a functional food because it
contains many health beneficial molecules such as isofla-
vones [1]. Studies on human nutrition have shown that
soybean isoflavones play an important role in preventing a
number of chronic diseases [2,3]. Equally, isoflavones are
critical factors in defending soybean crops against pests
[4,5], in promoting nodulation by rhizobia [6], and in
changing or adjusting the microorganisms around plant
roots [7]. The major bioactive components of soybean iso-
flavones in human nutrition are daidzein (DZ), genistein
(GT) and glycitein (GC). Isoflavone contents in soybean
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seed are inherited as complex quantitative traits [8-11].
Since soy seed isoflavones are regulated by multiple gen-
etic factors, their concentrations in seed are highly vari-
able [1,12-14]. Over fifty QTLs underlying individual and/
or total soybean isoflavone content have been reported
[8,15-23]. However, only 12 of these QTLs were in gen-
omic regions encoding isoflavone synthesis enzymes.
A group of enzymes in the phenylpropanoid pathway

lead to the biosynthesis of DZ, GT and GC [11]. Phenyl-
alanine ammonia lyase (PAL; EC 4.3.1.5), chalcone syn-
thase (CHS; EC 2.3.1.74) and flavanone 3-hydroxylase
(F3H; EC 1.14.11.9) [24] are the first three enzymes that
convert the amino acid phenylalanine into p-Coumaroyl-
CoA in this pathway [11]. In the isoflavonoid biosynthetic
pathway [25], the co-catalytic action of CHS [26,27] with
chalcone reductase (CHR; EC 2.3.1.170) [28] produces iso-
liquiritigenin and naringenin chalcone, which are isomers
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of the central isoflavanone intermediates naringenin and
liquiritigenin, respectively. Isoliquiritigenin and naringenin
chalcone are respectively converted into liquiritigenin and
naringenin by chalcone isomerase (CHI; EC 5.5.1.6) [29].
These two products are the precursors of DZ and GT,
which are formed after the catalysis of the precursors by
the key enzyme 2-hydroxyisoflavanone synthase (IFS; EC
1.14.13.136) [30,31]. The enzyme F3H, that competes with
IFS in utilizing naringenin, catalyzes the conversion of
flavanones to dihydroflavonols, which are intermediates in
the biosynthesis of flavonols, anthocyanidins, catechins
and proanthocyanidins [32,33]. For the synthesis of GC,
isoliquiritigenin is likely a precursor to form GC after sev-
eral biochemical steps, which are not entirely known yet
[34]. However, seed isoflavone concentrations in soybean
can be regulated by metabolic engineering of the complex
phenylpropanoid biosynthetic pathways [35].
Regulating transcript abundance is an effective ap-

proach to improve phenotypes [36]. The integrated ana-
lysis of genotype and transcript abundance data for
association with complex traits can be used to identify
novel genetic pathways involved in complex traits. ‘Ex-
pression QTL’ (eQTL), first defined by Jansen and Nap
[37], could identify the genetic determinants of tran-
script abundances and is widely used for investigating
gene regulation pathways. This approach treats tran-
script abundance of individual genes as quantitative
traits in a segregating population. The eQTL map infor-
mation enables genetic regulatory networks to be mod-
eled that can provide a better understanding of the
underlying phenotypic variation. It has been successfully
applied in humans [38-40], plants [41-44], yeasts [45,46],
worms [47], flies [48], mice [49,50], pigs [51] and rats
[52] populations. These studies showed that transcript
abundance was highly heritable and could be linked to
either a local locus (cis-eQTL) or a distant locus (trans-
eQTL). Cis-eQTL is mapped to the same genomic loca-
tion like an expressed gene (within 5 Mb), and trans-
eQTL is mapped to a different genomic location from
an expressed gene (>5 Mb or on different chromosomes)
[40,53]. In general, cis-eQTL tends to produce stronger
statistical associations than does by trans-eQTL [54].
This phenomenon is regarded as evidence of greater bio-
logical plausibility for the existence of true functional
cis-eQTL [55]. Trans-eQTL could occur individually at a
single genomic locus or could occur collectively as part
of eQTL trans-bands [55]. This genomics approach has
been employed to identify eQTL related genes in soy-
bean [36,56-58]. To date, no information concerning
eQTLs underlying soybean isoflavone synthetic enzyme
genes is available.
It has been proved that many enzymes in the phenyl-

propanoid pathway underlie QTLs that determine the
accumulation of isoflavone contents in soybean seeds
[11]. Meanwhile, the modification of enzyme encoded
genes that are involved in phenylpropanoid pathway
could promote the biosynthesis of isoflavone [31,35]. In
this study, PAL, CHS, IFS and F3H in the phenylpropanoid
pathway were selected as the target genes (TGs) to analyze
isoflavone-relative eQTL. Potential candidate genes under-
lying the accumulation of isoflavone contents in soybean
seed were also evaluated. In addition, overlapped loci both
for eQTL and phenotypic QTL (pQTL) were identified.
Results
Total and individual isoflavone contents, target gene
transcript abundance and correlation analysis
Transcript abundances of target genes (TGs) between par-
ents from R3 to R8 developmental stages were compared.
Total and individual isoflavone contents and transcript
abundances of TGs at R6 stage of soybean development
were measured in the F5:11 population. The results showed
that significant differences among the transcript abun-
dances of TGs between the two parents existed at the R6
stage. The phenotypic variation of individual and total
isoflavones showed a continuous distribution (Table 1).
GT showed a high positive correlation coefficient with

DZ (r = 0.762, P < 0.01; Table 2). The transcript abun-
dance of PAL was positively correlated with both GT
and TI, but exhibited no significant correlation with DZ
and GC. The transcript abundance of CHS was positive
correlated with DZ, GT and TI, but negatively associated
with GC amount. The transcript abundance of IFS
displayed a positive correlation with DZ, but showed no
correlation with other isoflavone components. The tran-
script abundance of F3H showed significantly negative
correlation with individual and total isoflavone contents.
Identification of genomic region for target genes
Through BLAST searches (http://www.phytozome.net/
soybean), the PAL has six homologous regions (E ≤ 0),
which are located on Gm10 (LG O, PAL1/ PAL2), Gm13
(LG F, PAL1), Gm03 (LG N, PAL1), Gm19 (LG L, PAL1),
Gm20 (LG I) and Gm02 (LG D1b, PAL1). Homologous
regions encoding CHS (E-value ≤ 1.0E-05) are located on
Gm11 (LG B1, CHS8), Gm01 (LG D1a, CHS6/CHS7),
Gm08 (LG A2, CHS1/CHS2/CHS3/CHS4/CHS5/CHS9),
Gm05 (LG A1, CHS2), Gm02 (LG D1b), Gm09 (LG K,
CHS6), Gm19 (LG L) and Gm13 (LG F). Genes that en-
code F3H are located on Gm02 (LG D1b, F3H1/F3H2),
Gm16 (LG J), Gm01 (LG D1a), Gm11 (LG B1), Gm18
(LG G) and Gm19 (LG L). Genes encoding IFS are lo-
cated on Gm07 (LG M IFS1), Gm13 (LG F, IFS2), Gm10
(LG O), Gm03 (LG N), Gm12 (LG H), Gm19 (LG L),
Gm17 (LG D2) and Gm11 (LG B1). Genes encoding IFS
have the function of P450 cytochromes [27] and might
have additional functional homologs.
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Table 1 Total and individual isoflavone content of the RIL populations and parents

Traitsa Meanb SDb Minb Maxb Zhongdou 27c Jiunong 20c Skewness Kurtosis

DZ 9.61 3.04 4.36 15.88 8.92 ± 2.97 4.79 ± 1.12 −0.040 −0.765

GC 0.41 0.32 0.29 2.64 0.36 ± 0.16 0.42 ± 0.23 0.138 0.825

GT 4.38 2.55 0.77 9.51 4.22 ± 2.75 2.81 ± 1.01 0.480 −0.860

TI 14.40 5.21 5.70 25.11 13.50 ± 5.21 6.81 ± 2.27 0.187 −1.061

PAL expression(ΔΔCT) 3.926 7.388 0.009 37.570 0.252 0 0.590 0.846

CHS expression(ΔΔCT) 0.013 0.013 0.0002 0.051 0.328 0 1.203 0.616

IFS expression(ΔΔCT) 0.896 1.334 0.002 5.199 0.707 0 0.954 1.700

F3H expression(ΔΔCT) 4.798 3.481 0.013 10.550 10.550 −16.047 0.156 −1.340
aDZ, Daidzein; GC, Glycitein; GT, Genistein; TI, Total isoflavone content.
bμg/100 g(DZ, GC, GT, TI).
cMean ± SD.
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eQTL analysis for four TGs
The linkage map that included 194 SSR markers (accepted
by Molecular Biology Reports) and covered 2,312 cM with
mean distance of about 12 cM between markers was used
to identify eQTLs associated with the expression of the
four TGs. Thirty-three eQTLs that appeared to underlie
transcript abundance of the four TGs are detected and
located on fifteen LGs (Table 3, Figure 1). Regarding to
the locational relationships between the eQTL and the
genes, thirteen of the eQTLs were cis-acting (within 5 Mb
upstream or downstream of the genes) and twenty of the
eQTLs were trans-acting (more than 5 Mb away or on dif-
ferent chromosomes) [40,53].
Among the identified eQTLs (Table 3), qPALB2_1 and

qPALD2_1 were associated with PAL transcript abun-
dance, and could explain 8.11% and 6.67% of the pheno-
typic variation, respectively. Eight eQTLs, underlying
CHS transcript abundance, were located on six LGs, and
could explain 2.07-15.65% of the phenotypic variation.
qCHSDla_1 (Satt436-Sat_345, Gm01) was detected with
a higher LOD score (8.64) in the regions where cis-
elements and CHS family genes were located.
Two eQTLs (qCHSDlb_1, qCHSDlb_2), located in the

interval of Satt459 and Satt546, could explain 2.13% and
Table 2 Correlations among individual and total isoflavone co
TGs in the RIL populations

Traits DZ GC GT TI

GC 0.249*

GT 0.762** 0.294*

TI 0.943** 0.363* 0.928**

PAL expression −0.094 0.092 0.269* 0.304*

CHS expression 0.223* −0.191* 0.201* 0.230*

IFS expression 0.327* −0.032 0.169 0.140

F3H expression −0.248* −0.248* −0.276* −0.273

P values were as follows: *P < 0.05, **P < 0.01.
3.90% of phenotypic variance and overlap with qGCD1b_1.
qCHSF_1 (Satt149-Sat_234), associated with CHS and IFS
transcript abundance, were overlapped with the marker
interval of qGTF_2, and could explain 3.57% of pheno-
typic variance. qCHSL_1 (Satt278-Sat_134) and qCHSL_2
(Sat_134-Sct_010) were associated with the same SSR
marker (Sat_134), and contributed 16.12% and 17.97% of
the variation of IFS transcript abundance.
Twelve eQTLs were associated with IFS expression. Of

them, qIFSD2_1 (Satt186-Satt226) explained 16.67% of
the phenotypic variation. qIFSF_1 (Satt423-Satt569, R2 =
15.84%) shared the same SSR marker Satt569 with other
three QTLs (qDZF_2, qGTF_1, qTIF_2). qIFSN shared
the same SSR marker (Satt530) with qGCN_1 (Table 3,
Figure 1).
Eleven eQTLs were associated with F3H expression

(Table 3, Figure 1). Of them, four eQTLs were located
on Gm02 (LG Dlb), and explained 5.54-14.32% of the
phenotypic variation. qF3HDlb_2 (Sat_135-Sat_096) had
higher LOD score and explained 14.32% of the pheno-
typic variation. qF3HE_1 (R2 = 4.85%) had the same
interval (Sat_112- Sat_380) with qGCE_1, qGTE_1 and
qTIE_1, meanwhile, qF3HF_1 and qDZF_1 shared the
same marker interval (Sat_262- Sat_103) (Figure 1).
ntents, as well as the transcript abundances of the four

PAL expression CHS expression IFS expression

0.063

−0.022 0.022

* 0.105 0.108 −0.001



Table 3 The eQTLs for target genes of PAL, CHS, IFS and F3H

Traits eQTLa Gm(LG) Marker Marker interval Positionb Environment LOD score R2(%)c

PAL dqPALB2_1 14(B2) Satt560 Satt560 ~ Satt556 0.01 2011Harbin 3.39 8.11
dqPALD2_1 17(D2) Sat_209 Sat_209 ~ Sat_022 15.90 2011Harbin 4.24 6.67

CHS qCHSA1_1 05(A1) Satt 236 Satt 236-D26A 0.01 2011Harbin 5.48 4.21

qCHSDla_1 01(Dla) Satt436 Satt436-Sat_345 0.01 2011Harbin 8.64 2.71

qCHSDlb_1 02(Dlb) Satt546 Satt546-Satt459 214.80 2011Harbin 2.55 2.13

qCHSDlb_2 02(Dlb) Satt546 Satt546-Satt459 211.22 2011Harbin 2.18 3.90
dqCHSD2_1 17(D2) Satt528 Satt528-Satt256 10.74 2011Harbin 2.73 2.07

qCHSF_1 13(F) Sat_234 Sat_234-Satt149 46.17 2011Harbin 2.72 3.57

qCHSL_1 19(L) Satt278 Satt278-Sat_134 14.00 2011Harbin 2.40 15.65

qCHSL_2 19(L) Sat_134 Sat_134-Sct_010 24.51 2011Harbin 2.09 9.98

IFS dqIFSA2_1 08(A2) Sat_129 Sat_129-Sat_181 55.45 2011Harbin 7.46 17.67
dqIFSC1_1 04(C1) Sat_042 Sat_042-Satt524 6.67 2011Harbin 5.63 22.8
dqIFSD2_1 17(D2) Satt186 Satt186-Satt226 54.88 2011Harbin 8.87 16.67

qIFSF_1 13(F) Satt569 Satt569-Satt423 6.97 2011Harbin 3.09 15.84

qIFSF_2 13(F) Sat_234 Sat_234-Satt149 56.01 2011Harbin 10.92 17.89
dqIFSH_1 12(H) Satt302 Satt302-Satt279 0.01 2011Harbin 3.23 7.27
dqIFSL_1 19(L) Sat_134 Sat_134-Satt278 20.99 2011Harbin 7.26 16.12
dqIFSL_2 19(L) Sct_010 Sct_010-Sat_134 43.95 2011Harbin 9.75 17.97

qIFSN_1 03(N) Satt152 Satt152-Satt530 6.67 2011Harbin 2.50 27.42

qIFSN_2 03(N) Satt530 Satt530-Satt152 29.53 2011Harbin 2.50 12.80
dqIFSO_1 10(O) Satt345 Satt345-Satt592 6.00 2011Harbin 9.43 19.43
dqIFSO_2 10(O) Sat_341 Sat_341-Satt585 88.39 2011Harbin 9.78 15.69

F3H dqF3HC2_1 06(C2) Satt322 Satt322-Satt658 57.64 2011Harbin 2.27 2.37

qF3HDlb_1 02(Dlb) Satt157 Satt157-Satt271 25.71 2011Harbin 3.62 10.01
dqF3HDlb_2 02(Dlb) Sat_135 Sat_135-Sat_096 30.28 2011Harbin 7.53 14.32

qF3HDlb_3 02(Dlb) Sat_069 Sat_069-Sat_279 168.62 2011Harbin 2.41 8.49
dqF3HDlb_4 02(Dlb) Satt459 Satt459-Sat_069 185.58 2011Harbin 2.18 5.54
dqF3HD2_1 17(D2) Satt031 Satt031-Sat_326 0.01 2011Harbin 2.67 1.05
dqF3HE_1 15(E) Sat_112 Sat_112-Sat_380 22.09 2011Harbin 2.10 4.85
dqF3HF_1 13(F) Sat_262 Sat_262-Sat_103 101.22 2011Harbin 2.63 2.24
dqF3HK_1 09(K) Satt349 Satt349-Satt518 141.56 2011Harbin 2.08 1.57
dqF3HN_1 03(N) Sat_084 Sat_084-Sat_304 41.45 2011Harbin 4.70 6.10
dqF3HO_1 10(O) Satt592 Satt592-Satt633 27.54 2011Harbin 2.62 2.32

aeQTL: The nomenclature of the eQTL included four parts: QTL, trait, linkage group name and QTL order in the linkage group, respectively.
bPosition from the left marker of the interval on each linkage group.
cProportion of phenotypic variance (R2) explained by a eQTL.
dTrans-eQTL, others are cis-eQTL.
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Identification of candidate genes underlying the
overlapped loci of pQTL and eQTL
Thirty four pQTLs for both individual and total seed iso-
flavone contents of soybean were compared with eQTLs
to identify the overlapped loci. Five eQTL intervals were
overlapped with pQTLs, and a total of eleven candidate
genes within the overlapped eQTL and pQTL were identi-
fied (Table 4). Two genes, C4H (Glyma02g40290.1) and
PAL1 (Glyma02g47940.1), were identified on Gm02 (LG
D1b) between Satt546-Satt459. CHI (Glyma17g34430.1)
and DFR (dihydroflavonol reductase; EC 1.1.1.219) were
identified on Gm17 (LG D2) between Satt186-Satt226.
Genes encoding 4-coumarate-CoA ligase (EC 6.2.1.12;
Glyma13g01080.1/2), FLS (Glyma13g02740.1) and CHS
(Glyma13g09640.1) were identified on Gm13 (LG F)
between Satt423-Satt569. Additionally, CHS (Gly-
ma13g24200.1) and IFS (Glyma13g09640.1) was found
within another eQTL/pQTL interval (Satt149-Sat_234).



Figure 1 Summary of eQTL and QTL locations detected in the soybean genome. eQTL/ QTL represented by bars were shown on the left of
the linkage groups, close to their corresponding markers. The lengths of the bars were proportional to the confidence intervals of the
corresponding eQTL/QTL in which the inner line indicates the position of maximum LOD score.
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Discussion
Soybean isoflavones have been broadly used in food, medi-
cine, cosmetics and animal husbandry [59]. Increasing and
decreasing seed isoflavone content will be an important
target of soybean breeding. MAS based on genotype selec-
tion rather than solely on phenotype selection provides
additional power for the selections during soybean breed-
ing [60]. Cultivar ‘Zhongdou 27’ proved to have high-
isoflavone content (3,791 μg/g isoflavone in seed) as
reported previously [16]. Meng et al. [19] identified two
QTL underlying resistance to soybean aphid through
leaf isoflavone-mediated antibiosis in soybean cultivar
‘Zhongdou 27’. A number of pQTLs associated with seed
isoflavone were identified in multiple environments from
cultivar ‘Zhongdou 27’ using 194 SSR markers (accepted
by Molecular Biology Reports). Therefore, ‘Zhongdou 27’
should be given more attention as an elite germplasm to
improve soybean seed isoflavone concentration, disease
and pest resistances.
In our previous studies, some identified QTLs associ-

ated with individual/total isoflavone contents showed
higher contribution to phenotypic variation. Some specific
copies of genes (PAL, CHS, IFS, F3H) in the phenylpropa-
noid pathway were near or falling into these quantitative
trait loci by browsing the reference genome sequence of
Williams 82 (http://www.phytozome.net/soybean).
To investigate the regulation mechanism of isoflavone

synthetic enzyme genes, the transcript abundances of PAL,
CHS, IFS and F3H in the mapping population were exam-
ined, and the genomic regions affecting the expression of

http://www.phytozome.net/soybean


Table 4 Identification of candidate genes underlying overlapped locus of eQTL and QTL

Marker
interval

Gm(LG) Physical location
of markers

Candidate genes Physical location of
candidate genes

Function of candidate
genes

Satt546-Satt459 Gm02(LGD1b) 43,775,407-48,390,089 Glyma02g40290.1 45,490,798-45,495,043 C4H

Glyma02g47940.1 51,366,326-51,368,943 PAL1

Satt186-Satt226 Gm17(LG D2) 26,768,866-39,047,375 Glyma17g34430.1 38,398,978-38,401,025 CHI

Glyma17g37060.1 40,920,379-40,923,898 DFR

Satt423-Satt569 Gm13(LG F) 5,231,035-9,567,285 Glyma13g01080.1/2 798,836-805,844 4CL

Glyma13g02740.1 2,707,784-2,712,790 FLS

Glyma13g09640.1 11,153,569-11,158,812 CHS

Satt149-Sat_234 Gm13(LG F) 4,976,740-26,460,745 Glyma13g24200.1 27,567,360-27,569,061 IFS

Glyma13g20800.1 24,273,025-24,278,037 PAL1

Glyma13g27380.1 30,577,113-30,579,230 DFR

Glyma13g09640.1 11,153,569-11,158,812 CHS

Glyma13g02740.1 2,707,784-2,712,790 FLS

Sat_262-Sat_103 Gm13(LG F) 7,233,012-25,478,474 Glyma13g20800.1 24,273,025-24,278,037 PAL1

Glyma13g24200.1 27,567,360-27,569,061 IFS

Glyma13g09640.1 11,153,569-11,158,812 CHS

Glyma13g02740.1 2,707,784-2,712,790 FLS
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the TGs were identified using the eQTL methodology [61].
A global microarray eQTL analysis of a limited number of
samples can be used for exploring functional and regulatory
gene networks and for scanning cis-eQTL, whereas the
subsequent analysis of a subset of likely cis-regulated genes
by real-time RT-PCR in a larger number of samples may
identify QTL region by targeting these positional candidate
genes [62]. In this study, real-time PCR reactions were used
to analyze the transcript abundance variations of the four
TGs in the F5:11 RI lines.
When combined with classical QTL phenotypes, correl-

ation analysis can directly provide an overview of potential
genes underlying isoflavone traits [63,64]. Through the
comparison of the transcript abundances of the four TGs
(PAL, CHS, IFS and F3H), the parents (‘Zhongdou 27’ and
‘Jiunong 20’) showed different patterns at the R6 stage.
This observation was consistent with the previous report
by Sarah et al. [65]. Significant correlations between the
transcript abundances of TGs and isoflavone contents
were found in developing seeds at the R6 stage, indicating
that these genes could affect total and individual isofla-
vone accumulations (Table 2).
Previously, two major QTLs that affect isoflavone con-

tent across multiple environments were mapped on Gm05
(LG A1) and Gm08 (LG A2) by Gutierrez et al. [17] and
Yang et al. [20], respectively. In the present work, one
eQTL qIFSA2_1 (Sat_129-Sat_181) was mapped close to
qGCA2_1 on Gm08 (LG A2) (Figure 1, Table 5). This
result suggested that qIFSA2_1 might be a cis-enzyme
related locus. Some of these identified eQTLs associated
with seed isoflavone content did not coincide with the
TGs, suggesting that the differences in TGs transcript
abundances might be caused by several trans-acting
factors [66].
In this study, since the 194 markers were not uni-

formly distributed, large gaps appeared with low marker
density on chromosomes Gm02, 04, 13, 16 and 18, im-
plying that more markers should be developed among
these gaps and the authenticity of pQTL or eQTL
should be further clarified. Among these gaps, special at-
tention should be paid to eQTL qF3HDlb_2 on chromo-
some Gm02 and qIFSC1_1 on chromosome Gm04
because of their higher LOD score and contribution to
phenotypic variation (Table 3). Overlapped loci of
qF3HF_1 and qDZF_1, and genes that fall into this
region should also be further clarified with more
markers. Consequently, fine mapping on these intervals
with more SSR or SNP markers and to determine the
authenticity of these loci as well as the underlying genes
were extremely essential in the future work.
The analysis of eQTL overlapped with pQTL suggested

that the candidate genes or elements among the marker
intervals could affect phenotypic traits [49,67,68]. There-
fore, overlapped loci of eQTLs and pQTLs were analyzed
to find the potential candidate genes affecting the accu-
mulation of isoflavone contents in soybean seed. Five
eQTL intervals were overlapped with pQTLs according to
the comparison of genomic regions between pQTLs and
eQTLs (Table 5). These results indicated that some candi-
date genes or elements in these intervals could regulate
the biosynthesis of isoflavone components, and affect their
accumulation. Additionally, some eQTLs overlapped with



Table 5 Partial QTLs for individual and total isoflavone contents

Traitsa QTLb Gm (LG) Marker Marker interval Positionc Environmentd LOD score R2(%)e

DZ fqDZF_1 13(F) Sat_103 Sat_103-Sat_262 188.34 E2 2.00 10.57

GC qGCA2_1 08(A2) Sat_040 Sat_040-Satt233 38.46 E3 2.65 6.01
fqGCD1b_1 02(Dlb) Satt546 Satt546-Sat_459 215.67 E2 2.38 3.12

E5 2.21 4.17

GT fqGTD2_1 17(D2) Satt186 Satt186-Satt226 50.81 E1 2.00 3.41

E2 2.36 5.23

E3 5.76 10.98

E5 3.09 8.23
fqGTF_2 13(F) Satt149 Satt149-Sat_234 41.23 E1 2.00 1.56

E3 2.49 4.17

E7 4.03 5.47

TI fqTIF_1 13(F) Satt423 Satt423-Satt569 6.01 E6 4.59 3.21

E7 2.15 4.2
aDZ: Daidzein; GC:Glycitein; GT: Genistein; TI: Total isoflavone.
bThe nomenclature of the QTL included four parts : QTL, trait, linkage group name and QTL order in the linkage group, respectively.
cPosition from the left marker of the interval on each linkage group.
dE1: at Harbin in 2005, E2: at Harbin in 2006, E3: at Hulan in 2006, E4:at Suihua in 2006, E5: at Harbin in 2007, E6: at Hulan in 2007, E7: at Suihua in 2007.
eProportion of phenotypic variance (R2) explained by a QTL.
fOverlapped loci of pQTL and eQTL.
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other eQTLs or shared the same markers with pQTLs,
suggesting that some candidate genes or elements were
located near these loci.
Several genes involved in isoflavone accumulation in

soybean seed had been identified [22,27,31]. 11 candi-
date genes falling into the overlapped intervals of pQTL
and eQTL were found (Table 4). Bolon et al. [58] identi-
fied eQTL for genes with seed-specific expression and
discovered striking eQTL hotspots at distinct genomic
intervals on chromosome Gm13. A chalcone isomerase
(CHI3) and IFS2 gene were located in the same region
identified by qGEN13 on Gm13 [11]. Another QTL for
GC that encoded PAL and 4CL paralog was also re-
ported on Gm13 [10,11]. In the present work, seven can-
didate genes on Gm13 (LG F) were identified, implying
that there could be a hotspot of gene cluster that regu-
lated seed isoflavone content on Gm13. Among them,
CHS (Glyma13g09640.1) and FLS (Glyma13g02740.1)
were identified on three overlapped loci, implying that
they could interact or trans-regulate other genes in the
phenylpropanoid pathway. Furthermore, PAL1 (Gly-
ma13g20800.1) and IFS (Glyma13g24200.1) paralogs
were identified within two overlapped loci. In the marker
interval (Satt149-Sat_234) associated with qCHSF_1,
qIFSF_2 and qGTF_2, both Glyma13g24200.1 and Gly-
ma13g09640.1 were found to encode CHS and IFS, indi-
cating that they could be the potential candidate genes.
It was supposed that Glyma13g09640.1 could interact or
trans-regulate the expression of IFS. However, the func-
tion of these potential candidate genes should be tested
in future works.
Although open questions about the biology and appli-
cations of eQTL mapping still exist [69], there are con-
siderable advances in the eQTL studies. Detailed analysis
of eQTL combined with cluster analysis of transcript
abundance and eventually gene expression patterns
could assist map-based cloning of genes underlying
these traits. Markers based on underlying genes are also
desirable for MAS in soybean breeding programs. The
mechanism underlying seed isoflavone synthesis and its
accumulation may contribute to the development of
marker-assisted selection for soybean cultivars with high
or low isoflavone contents.

Conclusions
A total of thirty three eQTLs (thirteen cis-eQTLs and
twenty trans-eQTLs) were identified on fifteen chromo-
somes. Five eQTL intervals were overlapped with pQTLs
and a total of eleven candidate genes within the over-
lapped eQTL and pQTL were identified. These results
might be beneficial for the development of marker-
assisted selection to breed soybean cultivars with high
isoflavone contents.

Methods
Plant materials and growing conditions
The mapping population of 130 F5:11 recombinant inbred
(RI) lines were derived through single-seed-descent from
the cross between ‘Zhongdou 27’ (developed by the
Chinese Academy of Agricultural Sciences, Beijing, China)
and ‘Jiunong 20’ (developed by Jilin Academy of Agricul-
tural Sciences, Jilin, China). ‘Zhongdou 27’ contains high
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individual and total isoflavone (TI) contents in seed (daid-
zein, DZ, 1,865 μg/g; genistein, GT, 1,614 μg/g; glycitein,
GC, 311 μg/g and total isoflavone, TI, 3,791 μg/g),
whereas ‘Jiunong 20’ has low individual and TI contents
(DZ, 844 μg/g; GT, 1,046 μg/g; GC, 193 μg/g and TI,
2,061 μg/g).
To detect eQTL, the parents and the 130 F5:11 RI lines

were planted at Harbin, Heilongjiang Province, China, in
2011. Randomized complete block designs were used for
all experiments with rows 3 m long, 0.65 m apart, and a
space of 6 cm between plants. Mature and immature seeds
in the reproductive stages (from soybean growth stage R3
to R8) [70] were harvested from a bulked sample collected
from three plants in each plot. These samples were quan-
tified for individual and total seed isoflavone contents and
transcript abundances.

Isoflavone extraction and quantification
Approximately 150 g of soybean seed samples were
ground to a fine power using a commercial coffee grinder.
Isoflavones were extracted from flour and separated using
HPLC as described previously [16]. Measurements were
done as micrograms of isoflavone per gram of seeds plus
and minus the standard deviations (μg/g ± SD).

Synthesis of cDNA, Real-Time PCR and data collection
To investigate the expressions of four TGs, total RNA was
isolated from soybean seed samples from R3 to R8 stages
using plant RNA purification reagent Kit (D9108A,
TaKaRa, Japan). RNAs were transcribed to cDNA using
the first strand DNA synthesis reagent Kit (D6110A,
TaKaRa, Otsu, Shiga, Japan). Four TGs (PAL, GenBank ac-
cession: GQ220305; CHS, GenBank accession: EU526827;
IFS, GenBank accession: FJ770473 and F3H, GenBank ac-
cession: AY595420) in the phenylpropanoid pathway, were
selected to analyze the transcript abundance variations in
the F5:11 RI line population. These four TGs were analyzed
by real-time PCR (Kit DRR081A, TaKaRa, Japan). Gene-
specific primers for expression analysis of the four TGs
were listed in Table 6. Primer specificity was confirmed
based on each primer pair sequence against soybean gen-
ome sequences by BLASTing (http://www.phytozome.net/
soybean) using the BLASTN algorithm. Moreover, through
the BLASTN of the sequences of the TGs, PAL2 (located
on Gm10 (LG O)) of the PAL gene family, CHS8 (located
Table 6 Real-time PCR primer pairs for the expression analyse

Gene Forward primer (5′-3′) Re

Actin4 GTGTCAGCCATACTGTCCCCATTT GT

PAL ATTATGGATTCAAGGGAGCT AA

CHS AAAATGCCATCTCCTCAAACA GG

F3H GCTTGCGAGAATTGGGGTAT CC

IFS GCCCTGGAGTCAATCTGG CA
on Gm11 (LG B1)) of the CHS gene family, IFS1 (located
on Gm07 (LG M)) of the IFS gene family, and F3H1 and
F3H2 (located on Gm02 (LG D1b)) of the F3H gene family
were amplified [11].
PCR amplification was performed as follows: 95°C for

60 s, followed by 40 cycles of 95°C for 11 s, 60°C for 12 s
and 72°C for 18 s. The soybean actin4 (GenBank accession:
AF049106) gene was used as a reference to quantify the
expression levels of the target genes [71]. Three replicates
for each reaction were performed. The relative transcript
abundance of TGs in different samples was calculated using
2-ΔΔCt method [72], defined as: ΔCt =Ct (target) – Ct
(actin). Pearson correlations between total/individual isofla-
vone contents and the expression of the four TGs in F5:11
RILs were evaluated using SAS 8.2 (Cary, NC, USA) [73].

Identification of genomic region of target genes
The whole genome sequence Glyma1 assembly for Wil-
liams 82 [74] provided a powerful tool for interrogating
QTL data. Previously reported genes for isoflavone bio-
synthesis [75] were used in BLAST searches against the
whole genome sequence to identify homologous regions
in the genome with assigned or putative functions. All
twenty soybean chromosomes have regions sharing a
high percentage of homology with genes of known func-
tion in the phenylpropanoid pathway [11]. The coding
regions of TGs were compared with genome of Williams
82 through BLAST (E-value ≤ 1.0E-05, http://www.phy-
tozome.net/soybean) to identify homologous regions.

eQTL analysis
In previous work, fifteen QTL underlying seed isoflavone
contents of soybean were identified based on RI line pop-
ulations derived from a cross between ‘Zhongdou 27’
(high isoflavone) and ‘Jiunong 20’ (low isoflavone) through
a genetic linkage map including 99 SSR markers [16]. An-
other 95 SSR markers were added to the map of Zeng
et al. [16] to identify novel phenotypic QTLs (pQTLs)
associated with seed isoflavone contents of soybean (ac-
cepted by Molecular Biology Reports). In this study, 194
polymorphic markers were assembled onto the 20 linkage
groups (LGs) by Mapmaker 3.0b with the Kosambi mapping
function [76]. WinQTLCart2.1 [77] was used to detect
eQTL between marker intervals by 1,000 permutations
at significance (P≤ 0.05). The genetic linkage map was
s of PAL, CHS, F3H, and IFS genes

verse primer (5′-3′) PCR product length (bp)

TTCAAGCTCTTGCTCGTAATCA 214

TGAGGAAAGTGGAGGACA 182

ATCTCAGCTACGCTCACC 155

TTGGAGATGGCTGGAGAC 176

AGACTATGTGCCCTTGGA 171

http://www.phytozome.net/soybean
http://www.phytozome.net/soybean
http://www.phytozome.net/soybean
http://www.phytozome.net/soybean
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constructed using Mapchart 2.1 [78]. The nomenclature of
the eQTLs/pQTLs included four parts following the recom-
mendations of the Soybean Germplasm Coordination Com-
mittee. For example, qCHSF_1, q, CHS, F and 1 represent
eQTL, trait (CHS), linkage group name and eQTL order in
the linkage group, respectively.

Identification of candidate genes underlying overlapped
loci of pQTL and eQTL
Coincident genetic locations of eQTL and pQTL may be
available to identify important regulatory genes underlying
traits, and lead to the identification of molecular mecha-
nisms [49,67,68]. Previous studies have combined eQTL
and pQTL mapping to gain insight into regulatory pathways
involved in determining phenotypic traits [49,68,79-81].
eQTL located in the same marker intervals of pQTL
might contribute to significant phenotypic variations
[49,67,68]. In this study, thirty four phenotypic QTL
(pQTL) identified with the 194 SSR markers were com-
pared with eQTL to identify overlapped loci. Genetic map
positions were estimated by identifying the nearest flank-
ing SSR markers using the genome browser (http://www.
soybase.org). The candidate genes underlying overlapped
loci of pQTL and eQTL were identified by browsing after
using BLAST search of flanking markers against the whole
genome sequence of Williams 82 (available at: http://
www.phytozome.net/soybean).
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