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Abstract

Background: Milk production is an economically important sector of global agriculture. Much attention has been
paid to the identification of quantitative trait loci (QTL) associated with milk, fat, and protein yield and the genetic
and molecular mechanisms underlying them. Copy number variation (CNV) is an emerging class of variants which
may be associated with complex traits.

Results: In this study, we performed a genome-wide association between CNVs and milk production traits in 26,362
Holstein bulls and cows. A total of 99 candidate CNVs were identified using Illumina BovineSNP50 array data, and
association tests for each production trait were performed using a linear regression analysis with PCA correlation.
A total of 34 CNVs on 22 chromosomes were significantly associated with at least one milk production trait after
false discovery rate (FDR) correction. Some of those CNVs were located within or near known QTL for milk production
traits. We further investigated the relationship between associated CNVs with neighboring SNPs. For all 82
combinations of traits and CNVs (less than 400 kb in length), we found 17 cases where CNVs directly overlapped
with tag SNPs and 40 cases where CNVs were adjacent to tag SNPs. In 5 cases, CNVs located were in strong
linkage disequilibrium with tag SNPs, either within or adjacent to the same haplotype block. There were an
additional 20 cases where CNVs did not have a significant association with SNPs, suggesting that the effects of
those CNVs were probably not captured by tag SNPs.

Conclusion: We conclude that combining CNV with SNP analyses reveals more genetic variations underlying milk
production traits than those revealed by SNPs alone.
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Background
Milk production is an economically important sector of
global agriculture and much attention has been paid to
improve milk performance-related traits in cattle. Vari-
ous methods have been employed to identify significant
genetic markers for milk production. These methods
include quantitative trait loci (QTL) mapping with dif-
ferent mapping designs and genome-wide association
studies with a variety of statistical tests. Many QTL re-
lated to milk production traits have been reported using
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different populations and DNA markers, such as micro-
satellite [1-4] and SNPs [5-11]. The identification of
QTL and investigation of genetic and molecular mecha-
nisms underlying those QTL may result in more efficient
animal selection and increased rates of genetic progress.
However, most of these cattle QTL studies did not iden-
tify the casual variant, which is useful information for
breeding applications to avoid losses in accuracy because
of recombination between associated QTL markers and
the actual quantitative trait nucleotide (QTN). Only a
few casual mutations within genes of known function,
such as DGAT [3,12,13], ABCG [4] and GRH [14,15], have
been identified with their large effects on milk production
validated. Additionally, most of those GWAS studies
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concluded that SNP may only explain a small portion of
genetic variance. Alternative frameworks to explain the
missing heritability of complex traits were proposed [16].
Genomic structural variants are comprised mainly of

copy number variations (CNVs) in the form of large-scale
insertions and deletions, as well as inversions and translo-
cations [17]. Compared to SNPs, CNVs involve more
genomic sequence and have potentially greater effects, in-
cluding changing gene structure and dosage, alternating
gene regulation and exposing recessive alleles [18]. Human
and mouse studies have found that CNVs capture 18 to
30% of the genetic variation in gene expression [19,20].
Those CNVs were shown to be important in both normal
phenotypic variability and disease susceptibility. In live-
stock, most CNV studies have used limited CNV detection
methods, including CGH arrays, SNP arrays, and next gen-
eration sequencing [21-31]. Our previous studies have indi-
cated that some CNVs could be associated with resistance
or susceptibility to gastrointestinal nematodes in Angus
cattle [32] and residual feed intake in Holstein cows [33].
Moreover, Glick et al. identified a CNV associated with fer-
tility in Israeli Holsteins [34]. A recent study reported a
660 kb deletion with antagonistic effects on fertility and
milk production in Nordic Red cattle [35]. Kadri et al. pre-
viously reported linkage disequilibrium (LD) between one
deletion and its neighboring SNPs in Holsteins cattle [36].
However, no study has reported about genome wide CNV
association directly with milk production traits. Further-
more, no systematic study of the relationship between
CNVs and SNPs in the bovine genome has been published.
In this study, we reported a systematic CNV associ-

ation analysis with milk production traits in 26,362 US
Holsteins. Thirty-four CNVs have been identified as sig-
nificantly associated with milk production traits using an
association test, and most of them overlap known QTL.
Haplotype analysis for associated CNVs and neighboring
SNPs produced further evidence that CNVs provide add-
itional information that is not captured by SNPs alone.
Therefore, CNVs could be utilized as additional molecu-
lar markers for use in genetic improvement programs.

Methods
Samples
Holstein bulls and cows (26,362 samples) were genotyped
using the Illumina BovineSNP50 array version 1 (Illumina
Inc., San Diego, CA). Genotypes of those animals have been
included in the routine genomic evaluation program for the
United States and Canada since 2009 [37,38]. The main
source of extracted DNA for bulls was semen from the
Cooperative Dairy DNA Repository and from the National
Center for Genetic Resources Preservation, ARS, USDA
(Fort Collins, CO). The research did not involve any ex-
periment on animals and for this reason no ethics ap-
proval was necessary.
Phenotypic and dPTA values
Traditional predicted transmitting abilities (PTAs) for five
production traits, including milk yield (MY), fat yield
(FY), protein yield (PY), fat percentage (FP), and protein
percentage (PP), were calculated by USDA ARS AIPL
(Beltsville, MD). Those PTA are predicted additive genetic
effects after removing fixed non-genetic effects, and the
reliabilities of the PTA were used to quantify the amount
of information available for different individuals [39,40].
De-regressed PTAs (dPTA) were computed as in Garrick
et al. [40] by dividing PTA by their squared reliability
[dPTA = PTA/(reliability)2]. The dPTA were used as the
phenotypes for genome-wide association studies.

CNV segmentation and genotyping
The intensity data of 56,947 SNP probes were generated
by Illumina BovineSNP50 arrays. We imported Log R
Ratios (LRR) from the GenomeStudio software into
Golden Helix SNP & Variation Suite (SVS) 7.7 (Golden
Helix Inc., Bozeman, MT, USA) using its DSF Export
Plug-In 4.1.
A total of 48,669 SNPs were mapped onto the Bos

taurus genome assembly UMD 3.1 (https://ccb.jhu.edu/
bos_taurus_assembly.shtml) within 29 autosomes.
To normalize the LRR, we used the default GC correl-

ation file (GC Reference bos_taurus_UMD3.1.gc_digest.
dsf ) to correct for the waviness contributed by GC con-
tent. We then utilized the copy number analysis module
(CNAM) under the multivariate option to segment chro-
mosomes with a maximum of 20 segments per window,
a minimum of 3 markers per segment, and a significance
level of p = 0.01 for pairwise permutations (n = 1,000) as
described previously [41].

PCA-corrected association testing
In Golden Helix SVS 7.7, a linear regression under the
additive genetic model was employed to identify CNVs
associated with each production trait with the option of
Full Scan Permutations (10,000 permutations). We used
the principal component analysis (PCA) option to cor-
rect batch effects/stratification of the test input data.
Significant CNVs were counted at the significance level
of (p-value < 0.05) after FDR correction.

Association tests based on SNPs
Association tests were carried out using the linear
model plugin of SVS 7.7 software with PCA correction.
Significant SNPs were detected when their adjusted
p-values passed the threshold of p < 1 × 10−8 after FDR
correction.

Haplotype block analysis
To investigate linkage disequilibrium (LD) patterns in
the regions containing associated CNVs, pairwise LD
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statistics D’ and r2 were calculated using Haploview
(Version 4.2) [42] and the LD blocks were defined by
the criteria of Gabriel et al. [43]. Qanbari et al. [44] pre-
sented a linkage disequilibrium (LD) map for Holsteins
based on the same Bovine SNP50 array. Based on their
maximum haplotype block length (1.26 Mb), the regions
considered for LD analysis were extended 25 SNPs on
the both upstream and downstream directions of each
CNV (i.e., 1.26 Mb/average marker spacing of 50 kb).

Relationship between significantly associated CNVs and
significantly associated SNPs
We classified all 82 significant combinations of traits and
CNVs (less than 400 kb in length and p values < 0.05 after
Table 1 Relationship classification between trait associated C
trait and CNVs

CNV# P value after FDR correction

MY FY PY FP PP MY

1 2.56E-06 2.12E-08 0.0246 0.0657 3.96E-21 IN*

2 8.53E-07 1.32E-07 0.0020 0.8913 1.46E-09 IN

3 0.0810 0.1375 0.9468 0.6499 1.32E-32

4 1.26E-09 1.99E-08 4.06E-09 0.1334 0.0756 IN**

5 0.2506 0.0473 0.2410 0.0758 0.0008

6 0.0008 1.91E-06 4.95E-05 0.0004 6.95E-22 NN

7 0.0020 0.0001 0.0418 0.2851 1.38E-05 IN**

8 9.03E-10 5.38E-10 1.61E-06 1.0000 9.35E-05 IN*

9 0.0005 2.50E-06 0.2701 0.0049 9.47E-18 IN**

10 9.29E-12 8.38E-12 2.23E-07 1.0000 0.0997 IN

11 3.81E-05 6.52E-05 0.0345 0.7610 0.0037 IN*

12 0.0006 0.1336 0.5275 3.70E-09 1.52E-22 IN*

14 0.1484 0.5341 0.7490 0.0700 0.0371

16 0.2552 0.8739 0.0352 0.0033 0.2416

17 6.96E-07 2.87E-06 2.99E-05 0.4144 0.9401 IN*

18 0.0890 2.02E-05 0.0062 1.79E-13 6.21E-15

19 0.0032 3.53E-05 0.2698 0.0061 0.0035 IN*

20 0.9468 0.8614 0.6384 1.0000 0.0286

21 0.0798 0.1692 0.5656 0.3360 0.0433

22 0.6780 0.4652 0.3753 0.9048 0.0005

23 0.0065 0.0209 0.0008 0.5674 7.60E-05 NN

24 0.0616 0.0844 0.6569 0.8919 6.98E-09

25 4.43E-08 1.58E-08 1.94E-05 0.9206 0.4082 IN

26 0.8385 0.7831 0.8926 0.9465 2.51E-16

28 0.0016 1.70E-08 0.0008 2.21E-13 0.0002 LD* N

29 8.09E-07 2.03E-07 0.0007 0.7631 3.02E-05 IN + LD

31 0.1197 0.0159 0.1152 0.0773 3.15E-05

32 9.08E-09 3.95E-08 0.0001 0.5293 4.20E-07 LD NS

CNV27, CNV33 to CNV37 were not considered due to their large sizes (> 400 kb). Fo
were shown in bold and italic. For the meanings of IN*, IN**, LD*, please refer to th
FDR correction as shown in bold and italic in Table 1) in
the following way. First, when a significant SNP directly
overlapped with a CNV by genomic coordinate, we called
the situation as “IN”. If a SNP was directly adjacent to a
CNV, we called it “IN*”. When a SNP was the second SNP
next to a CNV, we called it “IN**”. Any SNPs beyond the
neighboring 2 positions of a CNV were not considered in
this comparison. We then evaluated the linkage relation-
ship between CNVs and neighboring SNPs. When a CNV
was in the same haploblock with at least one significant
SNP, we called it “LD”. When a CNV was adjacent to a
haploblock which contains at least one significant SNP, we
called it “LD*”. In contrast, when a CNV was in a haplo-
block which contained no significant SNP, we called it
NVs and their neighboring SNPs for 82 combinations of

Tagged by SNPs Breakpoint PennCNV

FY PY FP PP Support

IN* IN* NN

IN IN NN Yes

IN*

IN** IN** Yes

IN* IN* Yes Yes

NN IN NN NN Yes

IN** NN IN** Yes

IN* IN* IN* Yes

IN** NN IN

IN IN*

IN* IN* IN Yes Yes

IN* NN Yes

IN* Yes

NN LD* Yes

IN** IN* Yes

LD LD IN* + LD IN* Yes Yes

IN* IN* IN Yes

NN

IN + LD Yes

NN Yes Yes

IN** IN** NN

NN Yes Yes

IN** IN**

IN + LD Yes

S LD* NS LD* NS IN* + LD LD* Yes Yes

IN + LD IN + LD NN Yes

IN IN** Yes Yes

NN LD IN + LD

r CNVs less than 400 kb in length, their p values < 0.05 after FDR correction
e main text.



Table 2 Pairwise Pearson correlation coefficients for all
pairs of traits

Milk
Yield

Fat
Yield

Protein
Yield

Fat
Percentage

Protein
Percentage

Milk Yield - 0.7181 0.9040 −0.3285 −0.3596

Fat Yield 0.7181 - 0.7938 0.4206 0.0581

Protein Yield 0.9040 0.7938 - −0.1012 0.0723

Fat Percentage −0.3285 0.4206 −0.1012 - 0.5470

Protein Percentage −0.3596 0.0581 0.0723 0.5470 -
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“LD NS”. When a CNV was adjacent to a haploblock
which contained no significant SNP, we called it “LD*
NS”. For complicated situation where both “IN” and “LD”
existed, “IN” was considered first and used instead of “LD”
as the category. Finally, when a CNV did not overlap with
any SNPs and was not in a haploblock, we called it “NN”.

Results and discussion
Trait properties and correlations
We selected five traits related to milk production for an as-
sociation analysis: milk yield (MY), fat yield (FY), protein
yield (PY), fat percentage (FP), protein percentage (PP).
The descriptive statistics of PTA, including reliability and
heritability, are given in Additional file 1: Figure S1 and
Additional file 2: Figure S2, respectively. Pearson correl-
ation coefficients for all pairs of traits are provided in
Table 2. As expected, the three yield traits (MY, FY and PY)
are strongly and positively correlated. The two percentage
Figure 1 Manhattan plots of associated CNVs for five milk production
Protein Percentage) using linear regression model. Negative log10-tran
coordinates on 29 autosomal chromosomes.
traits (FP and PP) are positively correlated with each other,
but are negatively correlated with the yield traits.

CNV segmentation and genotyping
In contrast to conventional CNV discovery studies, which
try to detect as many variable regions as possible, this
CNV-based GWAS is intended to identify the common
CNVs shared among samples in order to detect associa-
tions with common diseases or traits. Using the multivari-
ate method of CNAM in SVS, a total of 2,626,669 distinct
segments were detected in the 26,362 samples. After mer-
ging across samples, 99 nonredundant CNVs were left for
subsequent association test (Additional file 3: Table S1).
Within these 99 segments, each sample was genotyped (i.e.,
called as loss, neutral or gain event) according to a three-
state model with strict threshold levels of marker mean ±
0.5. Since the multivariate CNAM method was developed
to identify common CNVs, only those segments with fre-
quencies above 0.4% were retained for further analysis in
order to filter away false positive calls. A total of 39 CNVs
ranging in size from 45,109 bp to 7.16 Mb were retained
(frequency > 0.04). These 39 CNVs have an estimated aver-
age size and SNP count of 962.71 kb and 18.4, respectively.

CNV association analyses
A total of 26,362 Holstein cattle were employed to test as-
sociations between CNVs and dPTA data. Using a linear
regression, we identified a total of 34 CNVs that were sig-
nificantly associated with at less one trait (Figure 1 and
traits (Milk Yield, Fat Yield, Protein Yield, Fat Percentage and
sformed P values from a genome-wide scan are plotted against genomic
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Additional file 4: Table S2). Among those 34 associated
CNVs, the CNV with the highest frequency (96.03%)
was found at chr14:11,250,157-11,307,423, while the
CNV with the lowest frequency (2.09%) was localized at
chr29:46,099,425-51,502,868 (Additional file 4: Table S2).
After we removed 6 CNVs larger than 400 kb (CNV27,
CNV33 to CNV37), we compared the 28 remaining CNVs
with 5 previously published results [23,26,27,45,46]. We
found 23 out of these 28 CNVs (82.1%) were also pre-
viously reported, and the 5 non-overlapping CNVs
(CNV4, 5, 8, 9 and 23) had high frequencies (ranging
from 30 to 70%) and large marker mean changes
(ranging from −0.56 to −1.31, deviated from 0), suggest-
ing they are probably real CNVs. Three CNVs: CNV6
(chr13:70,496,054-70,623,303), CNV28 (chr7:42,700,425-
42,788,788), and CNV33 (chr17:73,055,503-75,058,715)
had P values < 0.05 after FDR correction for all five traits.
Their frequencies were 66.88%, 16.95% and 7.55%,
Figure 2 Haplotype analysis of (A) IN for MY, (B) IN* for MY and CNV8
bars represent significant tag SNPs.
respectively (Additional file 4: Table S2). Another 12 CNVs
were significantly associated with four traits. The overlap-
ping relationship of these associated CNVs among 5 traits
was shown in aVenn diagram (Additional file 5: Figure S3).
We then overlapped these 34 associated CNVs with the

reported cattle QTL as reported by the Animal QTL data-
base at http://www.animalgenome.org/QTLdb/cattle.html
[47]. When considered together, 21 of the 34 signifi-
cant CNVs overlapped with at least one of the known
QTL for milk production. Among these 34 CNVs, we
found 15, 15, 14, 7 and 6 CNVs overlapping with QTL
for MY, FY, PY, FP and PP traits, respectively (Additional
file 4: Table S2). Based on the UMD 3.1 assembly,
Additional file 4: Table S2 summarizes these 34 CNV
regions, bovine RefSeq gene annotations within the
CNV regions (1X), and flanking regions (3X: extended
regions by one CNV length in both downstream and
upstream directions).
and (C) IN** for PP and CNV31. Black bar represents CNV and red

http://www.animalgenome.org/QTLdb/cattle.html
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CNVs significantly associated with milk traits
Of the 34 CNVs, 19, 23 and 18 were significantly associ-
ated with MY, FY and PY, respectively (Additional file 4:
Table S2). Taken together, 15 CNVs were significantly
associated with all three yield traits. One top-ranked
CNV, CNV10 (chr5:9,756,491-9,837,147), reached sig-
nificance values of 9.66 × 10−12, 8.38 × 10−12 and 2.23 ×
10−7 for MY, FY, and PY, respectively. In the proximity
of this region, two QTL effect peaks were reported at
the 1 to 3 cM region of chr5 for milk traits in Holstein
cattle using SNP data [11]. On chr14, we identified
CNV1 (chr14:11,250,157-11,307,423) starting from SNP
Hapmap29947-BTC-070181, near the previously re-
ported milk production QTL regions. This CNV had the
highest frequency (96.03%) and is 57,267 bp long. Ap-
proximately 6 Mb upstream of this CNV segment, the
NIBP gene has been reported to also have highly signifi-
cant effect for milk yield [8,48]. Several important genes
located further upstream, including DGAT1 and VPS28,
have been validated to have highly significant effects for
milk production traits [12,49]. Within the gene cluster
including DGAT1 and NIBP, our previous SNP-based
study using U.S. Holstein cows also identified some
SNPs, which are significantly associated with effects on
milk production trait [8].
We also identified 11 and 29 CNVs that were signifi-

cantly associated with FP and PP, respectively. The most
significant CNV associated with FP was CNV33 (chr17:73,
055,503-75,058,715) with a p-value of 7.00 × 10−23). We
also found other CNVs like CNV12, CNV18, CNV28 and
Figure 3 Haplotype analysis of (A) LD for FY and CNV18 and (B) LD* f
significant tag SNPs.
CNV34. However, CNV28 overlaps with only one QTL
previously reported on chr7 [50]. Using PP, we identified
the largest number (23) of significantly associated CNVs.
Eleven of them were also significantly associated with all
three yield traits (Table 1 and Additional file 5: Figure S3).
The top five CNVs were CNV3, CNV6, CNV1, CNV12
and CNV9 based on their p values of the association test.
QTL evidence from previous studies were also found in
CNV1 [50-52], CNV24 [53], CNV26 [53,54] CNV36 [55]
and CNV37 [56-58].

Relationship between associated CNVs and associated SNPs
To further explore the relationship between SNPs and
CNVs, we carried out association tests based on SNPs
using the same 26,362 Holstein cattle SNP array data.
Additional file 6: Table S3 contains SNP information
near CNV regions. For all 82 possible combinations of
traits and CNVs (less than 400 kb in length), we found
17 cases where significant SNPs directly overlapped with
CNVs (e.g. IN for MY and CNV2, Figure 2A), 26 cases
where significant SNPs were directly adjacent to CNVs
(IN* for MY and CNV8, Figure 2B), and 14 cases where
significant SNPs are the second SNPs next to CNVs
(IN** for PP and CNV31, Figure 2C). To determine if
there is any linkage between CNVs and neighboring
SNPs, we performed LD analysis by computing pairwise D’
around CNV regions which included 25 SNPs both down-
stream and upstream of associated CNVs. Our results
showed three cases (LD for FY and CNV18, Figure 3A)
where CNVs were enclosed in the same haplotype block
or FP and CNV16. Black bar represents CNV and red bars represent



Table 3 Summary of relationship between CNVs and SNPs

MY FY PY FP PP All

Count % Count % Count % Count % Count % Count %

NN 2 11.76% 2 10.53% 2 12.50% 2 28.57% 8 34.78% 16 19.51%

LD NS 2 11.76% 1 5.26% 1 6.25% 0 0.00% 0 0.00% 4 4.88%

Not tagged 4 23.53% 3 15.79% 3 18.75% 2 28.57% 8 34.78% 20 24.39%

LD 0 0.00% 1 5.26% 2 12.50% 0 0.00% 0 0.00% 3 3.66%

LD* 0 0.00% 0 0.00% 0 0.00% 1 14.29% 1 4.35% 2 2.44%

IN 4 23.53% 4 21.05% 3 18.75% 0 0.00% 6 26.09% 17 20.73%

IN* 6 35.29% 5 26.32% 5 31.25% 4 57.14% 6 26.09% 26 31.71%

IN** 3 17.65% 6 31.58% 3 18.75% 0 0.00% 2 8.70% 14 17.07%

Tagged 13 76.47% 16 84.21% 13 81.25% 5 71.43% 15 65.22% 62 75.61%

Total 17 19 16 7 23 82

For the meanings of IN*, IN**, LD*, please refer to the main text.
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with at least one significant SNP, two cases where
CNVs were directly adjacent to a haploblock which
contains at least one significant SNP (LD* for FP and
CNV16, Figure 3B), which suggested these CNVs could be
represented by tagged SNPs within the same haploblock.
Some cases were complex situations involving both IN

and LD. We generally assigned them to the IN, IN* and
IN** instead of LD or LD* classes. However, no matter
which class was used, CNVs in both the IN and LD clas-
ses were apparently well-captured by neighboring tag
SNPs. It is interesting to note that although 9 out of 31
CNVs were located within breakpoints of haploblocks
(Table 1 and Additional file 7: Figure S4), 7 of them
were still tagged by neighboring SNPs. For example, we
found one haploblock from Hapmap55972-rs29011387 to
Hapmap50751-BTA-64830 in CNV28 with a length of
385 kb. We observed one SNP ARS-BFGL-NGS-63581
which was significantly associated with MY, FY, and PY
(Additional file 7: Figure S4). We obtained one haploblock
from Hapmap54599-rs29019617 to Hapmap48210-BTA-
120730 in CNV21 and one SNPs Hapmap48210-BTA-
120730 were detected to associate with MY, FY, PY and
PP. For CNV32, one haploblock from ARS-BFGL-NGS-
Figure 4 Haplotype analysis of NN for PP and CNV6. Black bar represen
109612 to ARS-BFGL-NGS-26195 that contained a PY-
associated SNP INRA-655 was identified. For CNV26,
one large region containing three adjacent haploblocks
(161 kb, 286 kb, 85 kb), which ranged from ARS-BFGL-
BAC-28908 to ARS-BFGL-NGS-501, was found. These
regions contained many SNPs associated with produc-
tion traits. Additionally, two adjacent haploblocks were
detected near CNV4, from ARS-BFGL-NGS-234 to
ARS-BFGL-NGS-35131. This region contains one SNP
ARS-BFGL-NGS-102090, which was significantly associated
with MY, FY, and PY. Moreover, three adjacent haploblocks
were found near CNV 28 (from ARS-BFGL-NGS-100845
to ARS-BFGL-NGS-13798), several significant associated
SNPs were also found in this region.
Finally, we also found 20 cases where CNVs were not

related (overlapping, neighboring or LD) with signifi-
cantly associated SNPs (Table 3), suggesting that the im-
pacts of those CNVs were probably not captured (e.g.,
NN for PP and CNV6, Figure 4. For more examples,
please see Additional file 7: Figure S4). The possibility
for this observation is that CNVs are likely to work as
independent variants besides SNP. For example, we inden-
tified a haploblock embedded in CNV16, which spanned
ts CNV and red bars represent significant tag SNPs.
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363 kb on chr27. However, no significant associated SNPs
were found in this haploblock region for PY.

Conclusions
Previous and current genome wide association studies
have been investigated to identify significant genes or
linked markers based on SNPs. In this CNV-based study,
our results indicate that CNV are associated with, and
likely contribute to, differences in milk production. Our
study provides a systematic estimate that approximately
one-quarter of CNVs are not captured by LD with nearby
SNPs. This provides an alternative framework to explain
the missing heritability of complex traits. This study helps
to fill gaps left by current SNP-based genome wide associ-
ation and selection studies. Therefore, we conclude that
combining CNV with SNP analyses reveals more genetic
variations underlying milk production traits than can be
revealed by SNPs alone. Interrogation of the genome for
both CNVs and SNPs, including common and rare varia-
tions, could be an effective way to identify the causes of
complex diseases and traits [16,59]. A more comprehen-
sive appreciation of the full spectrum of genetic variation
may unravel the genetic basis for milk production.
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