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Abstract

Background: Hypoxia is a critical aspect of the glioma microenvironment and has been associated with poor
prognosis and resistance to various therapies. However, the mechanisms responsible for hypoxic survival of glioma
cells remain unclear. Recent studies strongly suggest that microRNAs act as critical mediators of the hypoxic
response. We thus hypothesized their prominent role in hypoxia resistance in glioblastoma (GBM) and aimed to
identify those.

Results: With this study, we present the first detailed analysis of small RNA transcriptome of cell line U87MG, a
grade IV glioma cell line, and its alteration under hypoxic condition. Based on deep sequencing and microarray
data, we identify a set of hypoxia regulated microRNAs, with the miR-210-3p and its isomiRs showing highest
induction in GBM cell lines U87MG and U251MG. We show miR-210-3p, miR-1275, miR-376c-3p, miR-23b-3p,
miR-193a-3p and miR-145-5p to be up-regulated, while miR-92b-3p, miR-20a-5p, miR-10b-5p, miR-181a-2-3p and
miR-185-5p are down-regulated by hypoxia. Interestingly, certain hypoxia-induced miRNAs are also known to be
over-expressed in GBM tumors, suggesting that hypoxia may be one of the factors involved in establishing the
miRNA signature of GBM. Transcription factor binding sites for Hypoxia inducible factor 1 A (HIF1A) were identified
in the promoter region (5 kb upstream) of 30 hypoxia-induced miRNAs. HIF-1A over-expression and silencing
studies show regulation of specific miRNAs, including miR-210-3p, to be HIF1A dependent. On the other hand,
miR-210-3p leads to an increase in transcriptional activity of HIF and its target genes vascular endothelial growth
factor (VEGF) and carbonic anhydrase 9 (CA9). MiR-210-3p levels were found to be high in GBM patient samples
and showed good correlation with the known hypoxia markers CA9 and VEGF. We show that miR-210-3p promotes
hypoxic survival and chemoresistance in GBM cells and targets a negative regulator of hypoxic response, HIF3A.
Additionally, a total of 139 novel miRNAs were discovered by the analysis of deep sequencing data and three of
these were found to be differentially expressed under hypoxia.

Conclusions: Overall, our study reveals a novel miRNA signature of hypoxia in GBM and suggests miR-210-3p to be
an oncogenic player and a novel potential intrinsic marker of hypoxia in glioblastoma.
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Background
Hypoxia, or low oxygenation, has emerged as an important
factor in tumor biology and response to cancer treatment
[1]. It has been shown to be a negative prognostic factor
for several cancers, including those of the cervix, head and
neck, prostate, pancreas, and brain [2]. GBM is the most
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common primary brain tumor, representing about
17% of all primary brain tumors and about 60-75% of
all astrocytomas [3,4]. The severity of tumor hypoxia
is known to strongly correlate to tumor progression,
metastasis, invasion, therapeutic resistance [5,6]. High
levels of hypoxic markers like VEGF, CA9 and OPN are
correlated with poor prognosis for GBM patients [7,8].
Recent report shows that the hypoxic microenvironment
maintains glioblastoma stem cells and promotes repro-
gramming towards a cancer stem cell phenotype [9]. This
suggests to target hypoxia, or hypoxia-regulated genes for
therapeutic purposes. However, the results have been
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unsatisfactory so far, emphasizing the need to identify
novel players in hypoxia signalling as potential targets for
cancer therapy.
MicroRNAs (a class of small non-coding RNAs) have

emerged as key players in cellular transformation and
tumorigenesis and show great potential for cancer
diagnostics and therapeutics [10,11]. Recent studies
strongly indicate that miRNAs are involved in the
pathogenesis of GBM [12]. The first report demonstrating
altered expression of microRNAs in GBM was published
in 2005 [13]. MiR-21 was the first miRNA found strongly
upregulated in six cell lines of GBM and is now established
as an important oncogene that targets multiple com-
ponents of p53 and transforming growth factor-beta
(TGF-beta) pathways in GBM cells [14]. Functional
analysis of other miRNAs aberrantly expressed in
GBM, like miR-221/222, −34a, −146b and -10b, showed
an influence on cell cycle, glioma cell migration and
invasion and stem cell properties [15-17]. Recently,
Moore et al. showed that during progression from low
grade to high grade glioma, the amount of mature miRNAs
increases in comparison to precursor hairpins [18].
Importantly, miRNAs have also been recently reported

to act as critical mediators of hypoxia signalling [19]. The
pioneering work by Ivan’s group shows that a specific set
of hypoxia-regulated miRNAs (HRMs) modulates cell
cycle, apoptosis and DNA repair pathways in response to
hypoxia in breast cancer [20-22]. Since then, several
studies have found that HRMs fine- tune their hypoxic
response through cellular processes such as angiogenesis,
cell cycle regulation, metabolism, apoptosis, metastasis,
proliferation and resistance to anticancer therapy [23].
Considering the wide impact of miRNAs in hypoxic

tumor biology, it seems important to identify and
functionally characterize HRMs in GBM. This can give
insight into the molecular mechanism of hypoxia-resistance
in GBM and might have implication for GBM diagnosis
and therapy. In this study, we used deep-sequencing
profiling of small RNAs (sRNAs), along with microarray
hybridization to study the expression pattern of miRNAs
in response to hypoxia in a GBM cell line (U87MG).
The advantage of deep sequencing over other detection
methods, like northern blot analysis, RNAase protection
assays, microarray chip techniques or real-time PCR, lies
in the ability to detect low abundant and novel transcripts.
The signature we obtained contains known as well as novel
miRNAs. Subsets of these were found to carry HIF1A
response elements (HREs) in their promoters and were
shown to be HIF-1A regulated. Interestingly, a well-known
HRM, miR-210-3p, was found to be highly induced in
hypoxic glioma cell lines (U87MG and U251MG) as
well as in hypoxic GBM tumor samples, suggesting
its use as a hypoxia marker or therapeutic target in
GBM. Based on our results, miR-210-3p promotes
survival of GBM cells in the tumor microenvironment,
promotes aggressiveness by imparting temozolomide
resistance and targets HIF3A, which is known to
function as a negative regulator of hypoxia-inducible
gene expression [24].

Methods
Cell culture
Cell line U87MG was obtained from the National Centre
for Cell Sciences, Pune. U251MG and A172 were kind
gifts from Dr. Kunzang Chosdol (AIIMS, Delhi, India)
and Dr. Ellora Sen (NBRC, Manesar, India), respectively. All
cell lines were maintained in DMEMmedium. The medium
was supplemented with 10% Fetal Bovine Serum, 100 U/ml
penicillin and 100 μg/ml streptomycin. It was incubated at
37°C and 5% CO2. To create hypoxic conditions, cells
were grown in a hypoxia workstation (In vivo 200, Ruskinn
Technology Ltd., UK) at 0.2% O2, 5% CO2 and 37°C.

Glioblastoma patient samples
Thirty samples of human glioblastoma (GBM: WHO
Grade IV) were obtained from the Neuropathology
Laboratory of the Department of Pathology, All India
Institute of Medical Sciences (AIIMS), New Delhi. The study
was approved by the ethical committee of the institute. Cases
were selected on the basis of availability of adequate tumor
tissue. The haematoxylin- and eosin- (H&E) stained slides of
these cases were reviewed and a concordant agreement
was established on the diagnosis between three trained
pathologists, based on the WHO 2007 tumor classification
[25]. Clinical data, viz. age, sex and history were noted.
The age range of the patients was from 19 to 80 years,
and the mean age was about 51. The male to female ratio
was around 1.5. All cases were de novo primary GBMs.
Five control brain tissues were also obtained from cases of
epilepsy surgery. We used the epileptic tissue as non-
neoplastic reference, as this serves as best control. We
avoided the use of tissue adjacent to the tumor as control,
since there is the possibility of tumor cell infiltration.

Transient and stable transfections
U87MG cells were seeded in 6 well plates (3×105 cells/well)
24 h before transfection. Cells were transfected with
plasmid (2.5 μg), using transfection reagent Lipofectamine
2000 (Invitrogen). In case of the miR-210 inhibitor and
the respective control (Sigma), 30 nM of each were
transfected. The plasmids – pCDNA3.1, pCDNA3.1-HIF1A,
pLK0.1-shGFP and pLK0.1-shHIF1A were a kind gift from
Dr. Mircea Ivan (Indiana University, IN).

Construction of stable polyclonal cell lines
The miR-210 overexpressing vector (pBABE-miR-210)
or the empty parent vector pBABE-puro were prepared
as described in Crosby et al., [26]. The plasmids were
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then transfected into U87MG cells, and stable polyclonal
cell lines were selected with 2 μg/ml puromycin for up
to one month.

Hypoxia, serum starvation and drug treatment
The stable polyclonal cell lines were seeded in 24-well plate
(5 × 104 cells/well) in triplicate. For hypoxic stress, the cells
were placed 24 h post-seeding in a hypoxia chamber main-
taining 0.2% oxygen and 5% CO2. For serum starvation, the
supplemented medium was replaced with medium lacking
serum. For drug treatment, temozolomide was added to a
concentration of 5 μM. Cell survival was quantified at dif-
ferent time points using 3-(4,5-dimethylthiazole-2-yl)-2,5-
diphenyl tetrazolium bromide (MTT) at 595 nm.

RNA isolation
Cells were suspended in TRIzol (Invitrogen), and total
RNA was isolated according to the manufacturer's protocol
using the GeneJET™ RNA purification kit. To isolate RNA
from tumor tissues, tissues were pre-treated with xylene
and protease, followed by RNA isolation using an RNA
isolation kit (Ambion) according to the manufacturer’s
protocol. The concentration and purity of the extracted
RNA was measured with a NANODROP 2000c spectro-
photometer (Thermo Scientific). RNA was stored at −80°C.

Small RNA preparation
Total RNA was isolated using TRIzol, and isolated RNA
was run on a denaturing polyacrylamide gel. A section of
the gel was cut out that corresponded to RNA of 16–30
nucleotides, as judged using a standard oligonucleotide
marker. After size fractionation, of the sRNA, a ligation
step was carried out. A single-stranded DNA 5′ adaptor,
followed by a 3′ adaptor, was ligated to the small RNAs.
The ligation products (70–90 nucleotides) were purified
using urea-PAGE. The adaptors act as primer binding
sites for reverse transcription and PCR amplification.
Adaptor-ligated sRNAs were reverse-transcribed and
amplified by PCR. The resulting cDNA tag libraries
were sequenced with an Illumina genome analyzer.

Analysis of deep sequencing data
The total sequences from the normoxic and hypoxic sam-
ples numbered 12,577,383 and 7,110,799, respectively. After
3′ adaptor removal and length range filtering (16–35),
7,297,894 and 5,256,222 sequences, respectively, remained.
The following databases were used in the analysis of our
deep sequencing data:

A. Mature miRNAs: miRBase, release 20.
B. ncRNAs: Ensembl “Homo_sapiens.CRCh37.69.ncrna.

fa.red” (includes precursor miRNAs and other
ncRNAs).

C. piRNA: piRNA Bank.
D. RNA database: NCBI FTP site (includes rRNAs and
mRNAs).

E. Exons and intergenic/intronic sequences: obtained
through in-house built perl script using the reference
contig files from the NCBI FTP site. A detailed
analysis of the deep sequencing data is given in
Additional file 1.

Expression pattern of known MiRNAs
To obtain the expression pattern of known miRNA, se-
quences from both samples were matched against known
mature miRNA databases using an in-house built shell
script. No mismatch was allowed, and sequences showing
100% similarity to a database entry were considered candi-
dates for known mature miRNAs (Additional file 2).

Data normalization
Normalization is required to make data comparable across
experiments and to reduce the impact of non-biological
variability. We performed “transcript parts per million”
(TPM) and “reads per kilobase per million” (RPKM)
normalization for our samples. To calculate TPM, the
number of reads or frequency of the sequence are divided
by total clone count of the sample and multiplied by
106 while to calculate RPKM, TPM values are divided
by the nucleotide length of the mature miRNA. Total
clone count is the sum of the frequencies of all sequences
present in the sample.

Differentially expressed MicroRNAs
Known miRNAs expressed in normoxic sample were
compared to those from hypoxic sample. A fold change
of 1.5 was set as the minimum threshold to count as
differential expression. A list of differentially expressed
miRNAs is given in Additional file 3.

Identification of novel MiRNAs
Sequences from both samples were matched against
the above mentioned already existing and compiled
databases, from mature miRNAs to intronic sequences.
An elimination pipeline was used in the prediction process
for novel miRNAs [27]. An elimination pipeline perl script
was used for the alignments, and a mismatch of up to 2
nucleotides was allowed. Sequences that exactly matched
intergenic/intronic regions were extracted along with 70
nucleotides flanking on either side. These sequences
served as potential precursor miRNAs. The sequences
were then analysed with the miRNA prediction algorithm
tool CID-miRNA [28]. Folded precursors predicted by this
program were then checked for the presence of sRNA.
After this, those hairpins were considered as potential
precursor, in which the mature sequence arises from
the stem portion and not from the loop part. This



Agrawal et al. BMC Genomics 2014, 15:686 Page 4 of 16
http://www.biomedcentral.com/1471-2164/15/686
prediction was further checked with MiPred [29]. The
list of novel miRNAs is given in Additional file 4.

IsomiRs of novel MiRNAs
A list of all the predicted novel miRNA precursors was
created. Sequences that differed from the representative
mature miRNA by a few nucleotides at the 5′- or 3′-end
were listed as isomiRs. A representative mature miRNA
was selected on the basis of presence of highest number
of sequence reads. IsomiRs of miR-210 were identified in
an equivalent way.

Microarray expression profiling and analysis
U87MG cells were kept under normoxia (21% O2) or
hypoxia (0.2% O2) for 48 h. Two technical replicates of
total RNA were harvested and sent for microarray
expression profiling (Genotypic Technology, Bangalore).
The miRNA expression data were generated using Agilent
Human miRNA 8 × 15 k arrays. The normalization
was done using the software GeneSpring GX 11.5.
Fold differences are provided in terms of log base 2.
A ± 0.6 fold change (log base 2) cut-off was used for identi-
fying differentially expressed miRNAs (Additional file 5).

MiRNA and mRNA quantitation
Candidate miRNAs were reverse-transcribed into cDNA
using specific stem-loop RT primers (Additional file 6).
Quantitation was done with a CFX96™ real time PCR
system (Bio-RAD) using a cDNA-specific forward
primer and a universal reverse primer, as listed in
Additional file 6. RNU6B was used for normalization for
all samples. A list of primers along with their sequences is
given in Additional file 6.
To determine the transcript levels of HIF1A, HIF3A,

VEGF and CA9, total RNA was reverse-transcribed into
cDNA with the RevertAid first strand cDNA synthesis
kit (Fermentas), using an oligo-dT primer. The cDNA
was further amplified with gene specific primers using
the Fermentas SYBR Green PCR master mix. GAPDH
was used for normalization.

Target prediction of MiR-210-3p and differentially
regulated novel MiRs
Potential targets of miR-210-3p were predicted using
established target prediction programs. Targets were
only further considered when predicted by at least three
out of 11 target prediction programs (PITA, PicTar,
miRanda, mirTarget2, TargetScan, NBmirTar, RNAhybrid,
MicroInspector, MiTarget, RNA22 and DIANA MicroT),
using the online software miRECORDS [30]. Potential
targets of differentially regulated novel miRs were
predicted by the TargetScan Human 5.2 custom program.
A list of targets, along with their description, is given in
Additional file 7.
Prediction of HREs in the promoter of MiRNAs
The miRNAs found to be up-regulated by hypoxia
(based on deep sequencing or microarray profiling) were
searched for the presence of HREs within the promoter
region (within 5 kb upstream of the 5′ends of pre miRNAs).
The upstream region of these miRNAs was extracted from
the Ensembl genome browser. HREs were predicted with
program PROMO [31,32]. PROMO uses version 8.3 of the
TRANSFAC database. A list of predicted HREs is given in
Additional file 8.

Construction of 3ʹ-UTR-luciferase or promoter-luciferase
constructs
To determine whether miR-210-3p down-regulates target
transcripts through direct binding to the 3ʹ untranslated
region (UTR), the fragment of 3ʹ UTR of the target gene
[hypoxia inducible factor 3A (HIF3A)] containing the
miR-210-3p binding site was PCR-amplified and cloned
into a luciferase reporter vector (pMIR-Report) downstream
of a firefly luciferase gene. To further test whether
the predicted target HIF3A is the direct target of
miR-210-3p, the miR-210-3p binding site in the 3ʹ
UTR of the HIF3A gene was mutated by site-directed
mutagenesis, and luciferase activity was determined.
All clones were confirmed by PCR, restriction digests
and sequence analysis.

Dual luciferase assay
For luciferase assays, U87MG cells (5 × 104 cells/well)
were co-transfected with the 3ʹ UTR luciferase constructs
along with vectors pBABE or pBABE-miR-210, using
Lipofectamine 2000. pRL-TK was co-transfected in all wells
for normalization of transfection efficiency. The activities of
firefly (Photinus pyralis) and renilla (Renilla reniformis)
luciferases were quantified 48 h post-transfection, using a
dual luciferase reporter assay kit (Promega).

Results
MicroRNA signature of hypoxia in GBM
Though there are several reports on aberrant expression
of miRNAs in hypoxic tumors, as determined by Next
Generation Sequencing or microarrays, but none in GBM
cells so far. Here, we present for the first time the small
RNA transcriptome of U87MG, a model GBM cell line for
the study glioma, and its aberrant miRNA expression
profile under hypoxic conditions.
The U87MG cell line was exposed to normoxia (21% O2)

or hypoxia (0.2% O2) for 48 h. RNA was then harvested,
processed (see above) and analysed by deep sequen-
cing using the Illumina platform. A detailed analysis
of the sRNA deep sequencing data with respect to
read lengths, annotations, expression patterns and a
list of highly expressed miRNAs and piRNAs are given
in Additional files 1 and 2. The expression patterns of
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miRNA clusters were also investigated and, in agreement
with the recent literature, miRNA genes present within the
same cluster showed huge variability in their expression
levels in GBM cells (Additional file 1).
The deep sequencing data were normalized according

to TPM or RPKM, as described in the “Methods”. A
comparison of the normalized normoxic and hypoxic
profiles of U87MG cells identified many differentially
expressed miRNAs (>1.5 fold regulated). A total of
141 miRNAs were found to be differentially regulated
(102 up-regulated and 39 down-regulated) in response
to hypoxia (Figure 1a and Additional file 3). The highly
up-regulated miRNAs include miR-210-3p/5p, miR-196a-
5p, miR-629-3p, miR-23b-3p, miR-455-3p/5p, miR-335-
3p/5p, miR-129-5p/3p, miR-342-3p, miR-132-5p, miR-
382-3p, miR-193a-3p, miR-221-5p, miR-708-5p and miR-
183-5p (Figure 1a and Additional file 3). These miR-
NAs showed a more than 3-fold higher expression in hyp-
oxic cells and are among the top twenty up-regulated
miRNAs. Notably, miR-210, a miRNA shown to be hypoxia
up-regulated in several cell lines of various tissues, showed
highest induction of both miR-210-3p (25-fold) and
miR-210-5p (12-fold) in response to hypoxia.
Among the down-regulated miRNAs, miR-29b-1-5p,

miR-7974, miR-3607-3p, miR-589-3p, miR-92b-3p, miR-
485-5p, miR-4662a-5p, miR-16-2-3p, miR-20a-5p and
miR-194-5p were found to be down-regulated by
more than 2-fold in hypoxic cells (Figure 1a and
Additional file 3).
We next checked which members of any miRNA cluster

were co-regulated. Interestingly, we found that 29
miRNAs were upregulated as part of 11 miRNA clusters
while members of the miR-374b cluster and miR-17/92
cluster were down-regulated (Figure 1b).
We compared the published GBM tumor and nor-

mal brain miRNA signatures with the GBM hypoxia
miRNA signature and interestingly found that several
of the hypoxia-induced miRNAs were also overex-
pressed in GBM, suggesting that the GBM-associated
miRNA profile may have a hypoxia signature [33,34]
(Figure 1c).
We also conducted miRNA microarray profiling of

U87MG cells grown in normoxia (21% O2) or hypoxia
(0.2% O2) for 48 h. A total of 10 microRNAs were
found to be up regulated and 23 microRNAs were
found to be down regulated in hypoxia [>0.6-fold (log
base 2), p < 0.05] (Additional file 5). A comparison of both
microarray and deep sequencing data found miR-210-3p
and miR-1275 to be up-regulated and miR-10b-5p,
miR-181a-2-3p and miR-185-5p to be down-regulated,
according to both data sets.
Generally, hypoxia-regulated genes or miRNAs bear

HREs in their promoters, to which a transcription factor
called HIF1 binds, which induces their expression
[19]. We therefore looked for the presence of HREs
within the promoter regions of those miRNAs upreg-
ulated by hypoxia. A total of 5 kb upstream of these
miRNAs was extracted, and HREs were predicted
using the prediction program PROMO (details in the
Methods). A total of 30 upregulated miRNA genes
were found to contain one or more HREs (Figure 2
and Additional file 8).
We next validated the expression of the differentially

regulated candidate miRNAs identified by deep sequencing
or microarray profiling or both, using quantitative stem
loop RT-PCR, which is used for detection of mature
miRNAs (Figure 3a, b). Among the upregulated miRNAs,
an additional criterion of presence of HREs in their
promoter was considered for their validation. Notably,
miR-210-3p was found to be most induced on the
basis of qRT-PCR data too. To check for the universality
of differential expression of miRNAs in normoxic v/s
hypoxic cells, the results were further verified for cell line
U251MG. Out of 11 miRNAs tested, eight showed a
similar expression pattern as in U87MG cells, with miR-
210-3p showing the highest induction (Additional file 9).
However, expression of miR-376c-3p, miR-193a-3p and
miR-10b-5p did not change significantly in response to
hypoxia in U251MG cells, as opposed to U87MG. These
differences could be due to several factors, including
genotypic differences in the two cell lines, which are
derived from two different GBM patients.
Often miRNAs exist in alternative forms, called “isomiRs”

that differ from each other in terminal nucleotides.
We analysed if the isomiR profile of miR-210 changes
in normoxic versus hypoxic samples. A total of 320
isomiR species were detected, of which the normoxic
samples expressed only 73, while the hypoxic samples
expressed 312 isomiRs, of which 175 were singletons
(Additional file 10). While the reference miR-210 sequence
from miRBase was most abundant (Nor-396 and
Hyp-7252 reads), several other miR-210 isomiRs also
showed high expression levels, ranging from 113 to 699
among the highly expressed hypoxia sequences.

Hypoxia-inducible factors (HIFs) and their role in miRNA
induction
HIFs are transcription factors that respond to hypoxia in
the cellular environment [35]. Promoter regions of HRM
genes contain HREs that are bound by HIF1 in response
to hypoxia [19]. Many HRMs, such as miR-210 [19], −155
[36], −373 [37] have been shown before to bear HREs in
their promoter regions and are dynamically regulated by
HIF1 in response to hypoxia.
To evaluate HIF1-mediated induction of hypoxia-regulated

miRNAs, U87MG cells were transfected with either a
control (pCDNA3.1) or HIF1A-overexpressing plasmid
(pCDNA3.1-HIF1A). Since HIF1A is degraded under



Figure 1 Hypoxia regulated miRNAs. Hierarchical clustering of hypoxia-induced and down-regulated miRNAs (>1.5-fold) in response to hypoxia
(0.2% O2) in cell line U87MG (a). List of hypoxia-regulated miRNA clusters in U87MG cells (b). A table showing correlation of microRNAs altered in hypoxia
or in GBM tumor tissues (c).
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Figure 2 Figure showing location of HREs in the promoters of hypoxia-induced miRNAs, predicted by the program PROMO.
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normoxia, we expressed a HIF1A mutant (proline to
alanine mutations) that is extremely stable. Interest-
ingly, miRNAs upregulated under hypoxia and con-
taining HREs showed a higher expression in HIF1A
transfected cells than in control cells. MiR-210-3p
showed an about 5-fold and miR-1275, miR-376c-3p,
miR-23b-3p, miR-193a-3p and miR-145-5p showed an
about 2-fold induction in HIF1A transfected cells
(Figure 3c). In parallel, we transfected U87MG cells
with a control plasmid (pLK0.1-shGFP) or a shHIF1A
over-expressing plasmid (pLK0.1-shHIF1A) and ex-
posed the cells to hypoxia (0.2% O2) for 48 h. The
transcript level of HIF1A was determined and was
found to be down-regulated up to 2.4-fold compared to
control cells in hypoxia (Figure 3d). As expected, down-
regulation of HIF1A by using specific shRNA inhibited
hypoxia-mediated induction of these miRNAs (Figure 3e).
Overall, these results show that expression of miR-210-3p,
miR-1275, miR-376c-3p, miR-23b-3p, miR-193a-3p and
miR-145-5p is HIF-1 dependent.
MiR-210-3p promotes HIF transcriptional activity
We also tested if a feedback loop of the miR-210-3p and
HIF pathways exists. MiR-210-3p levels were modu-
lated under hypoxia, and HIF transcriptional activity
was measured using a control HRE luciferase vector.
Interestingly, miR-210-3p overexpression led to an
increase in HRE activity, while miR-210-3p inhibition led
to a decrease (Figure 4a). This shows that miR-210-3p
promotes HIF transcriptional activity, which was also
reflected in the increase in expression of the HIF target
genes VEGF and CA9 in response to miR-210-3p
over-expression and in their down-regulation in response
to miR-210-3p inhibition (Figure 4b, c).

MiR-210-3p a putative novel hypoxia marker in GBM
patients
Hypoxia is a critical aspect of the glioma microenviron-
ment, and it has been associated with poor prognosis [38].
Thus, the hypoxic state of GBM tumors is often measured
to predict patient treatment response [39]. Also, identifying



Figure 3 Quantitative RT-PCR data showing miRNA levels in response to hypoxia or HIF1A. Graph showing miRNAs that are upregulated
(a) or downregulated (b) in response to hypoxia. (c) U87MG cells were transfected with pCDNA3.1or a HIF1A over-expressing plasmid
(pCDNA3.1-HIF1A), and miRNA levels were determined. U87MG cells were transfected with pLK0.1-shGFP or a shHIF1A over-expressing plasmid
(pLK0.1-shHIF1A) and levels of HIF1A (d) and miRNAs (e) in response to hypoxia were determined. The graphical data points represent mean ± S.
D. of at least three independent experiments. (*P > 0.01 and < 0.05; **P < 0.01). Error bars denote ± S. D.
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hypoxia-related molecular targets may be useful to develop
novel treatment approaches.
Since miR-210-3p is highly up-regulated in hypoxic

GBM cells, as identified by deep sequencing and other
detection methods like microarray and quantitative stem
loop RT-PCR, its level was assessed in 30 GBM patient
samples, and efforts were made to correlate the levels
with known hypoxia marker genes in GBM. Notably,
miR-210-3p was highly expressed (>1.5 fold, p < 0.05 in
30/30; > 2.0 fold, p < 0.05 in 22/30) GBM patient samples
as compared to normal control (Figure 5a). Further,
transcript levels of hypoxic markers VEGF and CA9
were also checked in patients, and normal samples and
correlations were tested between miR-210-3p and
VEGF/CA9 levels. We found that 27 out of 30 GBM sam-
ples showed a > 2 fold increased VEGF/CA9 expression
level compared to normal, suggesting their high hypoxic
content (Figure 5b). Interestingly, miR-210-3p levels
were found to be highly correlated (Pearson correlation
coefficient > 0.8), with both hypoxic markers, suggesting
that miR-210-3p is regulated by hypoxia in GBM
tumor tissues and may serve as an intrinsic hypoxia
marker (Figure 5c, d).

MiR-210-3p promotes hypoxia/stress/chemo-resistance
in GBM
Several hypoxia-regulated microRNAs have been reported
to modulate survival, growth advantage and therapy
resistance of cancer cells [40]. We thus investigated
whether miR-210-3p plays a similar role. MiR-210-3p
over-expression and silencing strategies were used to
analyse its functions. Quantitative RT-PCR data show that
miR-210-3p was ~ 4.2 fold up-regulated in miR-210-3p
over-expressing U87MG cells (Additional file 11a), while
miR-210-3p was down regulated up to ~5.6 fold in
U87MG cells transiently transfected with a miR-210-3p
inhibitor (Additional file 11b). Interestingly, miR-210-3p
overexpressing U87MG, U251MG and A172 cells showed
better survival in tumor microenvironment conditions,
i.e. hypoxia and serum starvation, while the GBM cells



Figure 4 MiR-210-3p induces HIF transcriptional activity. U87MG cells were transfected with a HRE luciferase vector, along with either
miR-210-3p overexpression - [(pBABE-miR210) or control (pBABE)] or inhibition - [(miR-210 inhibitor) or (control)] vectors, and HRE transcriptional
activity was assayed (a). U87MG cells were transiently transfected with either a miR-210-3p over-expression vector (pBABE-miR-210) or the empty
pBABE-puro parent vector (b) or with either a miR-210-3p inhibitor or control oligos (c), and VEGF/CA9 levels were determined by qRT-PCR. The
graphical data points represent mean ± S.D. of at least three independent experiments. (*P > 0.01 and < 0.05; **P < 0.01). Error bars denote ± S. D.
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transfected with the miR-210-3p inhibitor showed the
opposite trend (Figure 6a, b). Moreover, miR-210-3p
over-expressing GBM cells showed increased resistance to
temozolomide (a routinely used drug for GBM patients)
mediated death while miR-210-3p inhibition made cells
more sensitive (Figure 6c). Overall, miR-210-3p seems
to promote aggressiveness and therapy resistance of
GBM cells.

MiR-210-3p targetome
MicroRNAs exert their effect either by binding directly
to the 3′ UTRs of target transcripts, or indirectly by
inhibiting the expression of transcription factors or regula-
tors. We performed in silico searches, as described in the
“Methods”, to identify target transcripts of miR-210-3p
(Additional file 7). Interestingly, HIF3A, a negative regula-
tor of hypoxic response was identified as putative
target of miR-210-3p by three target prediction programs
(PITA, miRanda and RNAhybrid). To determine the effect
of miR-210-3p on HIF3A transcript, we transiently over-
expressed miR-210-3p in U87MG cells and determined
the HIF3A transcript level 48 h post-transfection by
qRT-PCR. We found ~ 0.6 fold downregulation at the
transcript level (Figure 7a).
To further validate the results from qRT-PCR, a

HIF3A 3′UTR-luciferase reporter assays were performed.
Interestingly, results showed robust downregulation
(~0.2 fold) in luciferase activity, suggesting that miR-210-3p
binding to the HIF-3A 3′UTR leads to its down-
regulation. To verify this, the miR-210-3p binding site
in the HIF3A 3′UTR was mutated through site-directed
mutagenesis (Figure 7b). As anticipated, only minimal
inhibition was observed when the mutated 3′UTR
was used, suggesting HIF3A to be a direct target of
miR-210-3p (Figure 7c).

Discovery of novel miRNAs
Deep sequencing profiling of sRNAs is a powerful tool for
the identification of novel miRNAs, since this method
is independent of the prior knowledge of candidate
sequences. Since miRNAs mainly arise from intergenic and
intronic regions of genomes, sequence reads that matched
these regions were extracted along with 70 nucleotide
flanking regions from both ends. Novel miRNAs were
predicted using various miRNA identification algorithms,
as described in the “Methods”.
A total of 139 novel miRNAs were predicted, with only

14 common in both the samples. A total of 7 miRNAs
also exhibited isomiRs that differed from the standard
mature sequence by a few nucleotides, mostly at the 3′
end (Additional file 4). A total of 7 miRNAs showed
more than 10 reads. Secondary structures of these are
shown, as predicted by RNAfold [41] (Figure 8a). Three
of these novel miRNAs with higher read numbers were
validated by quantitative stem loop RT-PCR and, in
agreement with the deep sequencing reads, displayed
differential expression (Figure 8b). The novel miRNAs,
iithsa_40 and iithsa_92 showed an about 3-fold reduced
level, while iithsa_15 showed induction of expression in
hypoxic cells, as determined by real time PCR. We also



Figure 5 Quantitation and correlation of miR-210-3p levels with hypoxia markers VEGF and CA9. The graph showing levels of miR-210
(a) and VEGF, CA9 (b) in normal and GBM tumor tissue (n = 30) samples using qRT-PCR. Correlation between miR-210-3p and VEGF (c) and miR-210-3p
and CA9 (d) in GBM tumor tissues. The miR-210-3p levels have been normalized with RNU6B, while GAPDH was used for VEGF and CA9 normalization.
The graphical data points in a and b represent mean ± S.D. of at least three independent experiments. (*P > 0.01 and < 0.05; **P < 0.01). Error bars
denote ± S. D.
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performed target site analyses of these three hypoxia-
regulated novel miRNAs. The target lists were compared
with the hypoxia-regulated mRNA list in GBM [42]
(Additional file 7). Interestingly, we found that iithsa_40
showed inverse correlation with SERPINE1, while iithsa_15
showed inverse correlation with hypoxia-regulated genes
HNRNPA1 and EIF2C1. What significance these correla-
tions have, needs to be investigated. We could further valid-
ate by qRT-PCR the expression of 2 novel miRNAs having
1–3 reads, using a higher amount of template cDNA
(Figure 8b). This was particularly important to distin-
guish the fact whether novel miRNAs displaying 1
reads were really existent or they appear as a result
of sequencing error.

Discussion
This study sheds light on the sRNA composition of
GBM cell line U87MG and its alteration in response to
severe (0.2% O2) and chronic (48 h) hypoxia, using deep
sequencing of sRNA populations. The analysis of the
deep sequencing reads reveals that miRNAs form the
most abundant class of sRNA (75–80%) in both normoxic
and hypoxic samples. A total of 643 and 627 mature
miRNAs were found to be expressed in normoxic and
hypoxic cells, respectively, with a range of expression
from 1 to > 10,000 reads. Interestingly, miRNAs expressed
within a cluster also showed a large variation in expression.
This was also reported in recent papers, based on analysis
of deep sequencing reads. The reason for this variation
remains unclear. Possible explanations may be the use
of different promoters, different post-transcriptional
processing or differences in stability of mature miRNAs.
We identified several highly expressed miRNAs (>0.1
million counts) in GBM cells. A comparison with
published lists of highly expressed miRNAs from other
cancer cell lines shows that the highly expressed miRNA
pool varies between cell lines. Secondly, some of the
highly expressed miRNAs in GBM cells are known onco-
miRs (miR-21, let-7a and miR-92a). A total of 31 piRNAs
were found to be expressed in GBM cells, with 7 of them



a

b

c

Figure 6 MiR-210-3p functions. Graphs showing MTT assay results of cell survival on the 3rd day in U87MG, U251MG and A172 cells in response
to either miR-210 overexpression - [miR-210 polyclonals (pBABE-miR-210) or control (pBABE)] or inhibition - [(miR-210 inhibitor) or (control)] under
(a) 0.2% hypoxia (b) or serum starvation or (c) chemo drug temozolomide treatment. The graphical data points represent mean ± S.D. of at least
three independent experiments. (*P > 0.01 and < 0.05; **P < 0.01). Error bars denote ± S. D.
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being differentially expressed under hypoxia. It would be
interesting to see whether piRNAs play any role in the
hypoxic response.
Differentially expressed miRNAs identified using deep

sequencing and/or microarray hybridization were further
verified by stem-loop qRT-PCR on two GBM cell lines.
Subsets of these miRNAs were found to bear HREs in
their promoters, similar to hypoxia-regulated protein
coding gene promoters. We validated expression and
HIF1A dependent induction of miR-210-3p, miR-1275,
miR-376c-3p, miR-23b-3p, miR-193a-3p and miR-145-5p
in U87MG using HIF1A over-expression and silencing
experiments. Since recent studies highlighted specific
miRNAs that may directly or indirectly control HIF1A
levels and hypoxia-inducible gene expression, we cannot
rule out the existence of a positive or negative feedback
loop in relation to these HRMs. For example, miR-
210-3p represses glycerol-3-phosphate dehydrogenase
1-like (GPD1L) which, in turn, stabilizes HIF-1A by
reducing hyper-hydroxylation [43]. Interestingly, our



Figure 7 MiR-210-3p targets HIF3A. Effect of transient over-expression
of miR-210-3p on HIF3A transcript levels was determined by qRT-PCR
(a). Diagram showing wild type/mutated miR-210-3p binding site in the
HIF3A 3′ UTR (b). 3′ UTR luciferase results obtained by cotransfection of
luciferase constructs bearing wild type/mutated miR-210-3p binding sites
in the HIF3A 3′ UTR, along with miR-210-3p over-expression vector
(pBABE-miR-210) or the empty pBABE-puro parent vector (c). The
graphical data points in a and c represent mean ± S.D. of at least three
independent experiments. (*P > 0.01 and < 0.05; **P < 0.01). Error bars
denote ± S. D.
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results identify HIF3A (a negative regulator of hypoxic re-
sponse) as direct target of miR-210-3p. It has been shown
before that ectopic expression of HIF3A results in down-
regulation of VEGF and results in reduced vascular dens-
ity of tumors and slower tumor growth in vivo [44]. Thus,
it is possible that miR-210-3p, through downregulation
of HIF3A, may be part of a novel mechanism of positive
feedback regulation of angiogenesis and maintenance of a
vascular phenotype in GBM. In addition, we see that miR-
210-3p over-expression also leads to induction of HIF
transcriptional activity and then also of its targets
VEGF and CA9. In contrast, miR-210-3p-inhibition
under hypoxia prevents HIF mediated induction of VEGF
and CA9. Overall, these results suggest that miR-210-3p is
involved in induction of the HIF pathway.
In contrast, some miRs, such as the miR-17-92 cluster

[45] and miR-519 [46] have been shown to down-regulate
the HIF1A transcript. The possibility of regulation of HRMs
by other transcription factors like TWIST, peroxisome
proliferator-activated receptors γ (PPARγ), or GATA1, also
exists [47-49]. Several HRMs like miR-210, −23b, −335
and -193a have been reported to be hypoxia-inducible
in other cell lines too [19,50,23]. However, whether
hypoxia-mediated regulation of miRNAs like miR-
1275,-708,-129,-455 is GBM-specific or occurs in
other cell types too needs to be investigated.
Overall, miR-210 showed the highest induction

(~25-fold - deep sequencing, ~ 3-fold - microarray, ~8-
fold - qRT-PCR) in response to hypoxia. Interestingly, we
also noticed a > 4 fold induction of miR-210 isomiR
species in the hypoxic sample (312), compared to the
normoxic one (73). Several of these isomiRs also showed
differential expression under hypoxia. The isomiR
generation has been correlated to differential processing
by miRNA processing enzymes Drosha and Dicer [51].
Whether, dicer processivity is altered under hypoxia in
GBM remains to be seen. Another possibility is that
certain nucleotide transferases become activated under
hypoxia and add nucleotides to certain miRNAs. What
effect these additions have on miRNA stability or target
binding needs further investigation.
Though miR-210-3p has been well established as a

HRM/hypoxamiR in several cancers, its role in the context
of GBM remains unclear. Our findings indicate that
miR-210-3p functions as an oncomiR in GBM. We
show that high miR-210-3p-levels in GBM promote
cell survival in the tumor microenvironment (under
hypoxia and nutrient deprivation) and provide the
cells with resistance to temozolomide mediated death.
Whether survival as measured by the MTT assay involves
miR-210-3p-mediated increased cell proliferation or de-
creased apoptosis remains to be seen. In other studies,
miR-210 has been shown to modulate mitochondrial
oxygen uptake and create a pseudo-hypoxic environment
[52], or to act as an oncomiR by repressing the Myc
antagonist Max-binding protein [53] (MNT) and as
pro-angiomir by targeting ephrin-A3 [54] in other
cancers. A recent publication also shows miR-210-3p as
a hypoxia-regulated miRNA in a GBM cell line [55];



Figure 8 Identification of novel miRNAs. (a) Secondary structure prediction of highly expressed novel miRNAs using RNA-fold. (b) Detection of
novel miRNAs through Real-time PCR in normoxic and hypoxic samples. The graphical data points in b represent mean ± S.D. of at least three
independent experiments. (*P > 0.01 and < 0.05; **P < 0.01). Error bars denote ± S. D.
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however, its function remains unexplored. Overall,
which role these HRMs play in GBM pathogenesis has
not been elucidated. Based on the current literature, some
of them act as oncomiRs and promote drug resistance in
GBM. MiR-23b is highly expressed in GBM tumors and
its up regulation is correlated with tumor survival [56].
Similarly, overexpression of miR-335 is associated with
poor prognosis in human glioma [57]. MiR-455 promotes
acquired temozolomide resistance in GBM [58]. MiR-193a
is associated with poor survival in GBM [59]. MiR-183
up-regulates HIF-1A by targeting isocitrate dehydrogenase
2 [60]. On the other hand, hypoxia-down-regulated
miR-29b inhibits invasion and proliferation of GBM
[61]. Overall, these observations are in line with the
current understanding that hypoxia promotes GBM
aggressiveness and these HRMs may play a prominent
role in it.
We compared our hypoxia-regulated miRNA list with

published lists of miRNAs that are known to be deregulated
in GBM tumor tissues. Interestingly, we found that
hypoxia-induced microRNAs such as miR-221, 222,
miR-155, miR-210, etc., are also overexpressed in GBM
tumor tissues, suggesting that hypoxia may be one of the
major factors contributing to their elevated expression.
A particularly interesting finding of our study is a posi-

tive linear correlation of the level of miR-210-3p with that
of hypoxic markers (VEGF, CA9) in GBM patient samples.
This suggests that the level of miR-210-3p in GBM tumors
depends on the in vivo O2 concentration in the tumor.
Considering the more stable nature of miRNAs compared
to the more labile mRNAs, miR-210-3p may show a better
potential as intrinsic hypoxia marker for GBM tumor
samples than VEGF and CA9 (7,8). Also, target gene
analyses of miR-210-3p in these tumor samples may hint at
pathways responsible for hypoxia-resistance in GBM.
We discovered a total of 139 novel miRNAs in U87MG

cells, using predictions of programs CID-miRNA and
miPred. We validated the expression of five novel miRNAs
and found three to be differentially expressed. The
functional role of these novel miRNAs is not yet known.
Importantly, the detection of two novel miRNAs, showing
only 1–3 reads in either sample proves that these single
reads are not mere sequencing errors, but rather very low
abundant novel miRNAs. Specific novel miRNAs, also
showed the presence of isomiRs. The isomiRs carried
mostly extra nucleotides at their 3′ends, suggesting
generation as a result of inappropriate DICER processing.

Conclusions
This study is a first effort to identify hypoxic signatures of
miRNA in GBM, using deep sequencing and microarray
technologies. We identify miR-210-3p as a HIF regulated
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miRNA that acts as critical mediator of the hypoxic
response and thus as an oncomiR in GBM. The regulatory
and functional characterization of other identified known
and novel HRMs may help with the identification of novel
hypoxia biomarkers and therapeutic targets for GBM.
Consent
Written informed consent was obtained from the patient
for the publication of this report and any accompanying
images.
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