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Abstract

Background: Previously a variety of environmental toxicants were found to promote the epigenetic
transgenerational inheritance of disease through differential DNA methylation regions (DMRs), termed epimutations,
present in sperm. The transgenerational epimutations in sperm and somatic cells identified in a number of previous
studies were further investigated.

Results: The epimutations from six different environmental exposures were found to be predominantly exposure
specific with negligible overlap. The current report describes a major genomic feature of all the unique
epimutations identified (535) as a very low (<10 CpG/100 bp) CpG density in sperm and somatic cells associated
with transgenerational disease. The genomic locations of these epimutations were found to contain DMRs with
small clusters of CpG within a general region of very low density CpG. The potential role of these epimutations on
gene expression is suggested to be important.

Conclusions: Observations suggest a potential regulatory role for lower density CpG regions termed “CpG deserts”.
The potential evolutionary origins of these regions is also discussed.
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Background
The identification of DNA methylation at cytosines adja-
cent to guanine (CpG) sites was the first epigenetic mech-
anism and mark established [1,2]. The initial restriction
enzyme based DNA methylation analysis was biased to
high density CpG regions that were subsequently referred
to as CpG islands [3]. Functional studies of the role of
these CpG islands has lead to the dogma that they are the
regulatory regions for DNA methylation. More recent
marks such as 5 hydroxymethyl-cytosine [4] have ex-
panded our understanding of the DNA methylation. The
technology to investigate DNA methylation has advanced
such that genome-wide DNA methylation profiling and
mapping is now feasible [5]. Although CpG islands have
been thought to be the primary regions to regulate gene
expression [3], more recent data suggests that the lower
density CpG shores of islands may be important [6].
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Genome-wide epigenetic studies have also suggested that
low density CpG regions of the genome appear more
regulatory than previously considered [7]. CpG-rich and
CpG-poor promoters appear regulated differentially, not
only by DNA methylation but also by the polycomb sys-
tem [8]. Recent literature suggests that lower density re-
gions may be more important for distal regulation of gene
expression [9] through regulatory elements such as en-
hancers [10]. High density CpG regions such as CpG
islands appear to regulate genome activity in house keep-
ing and tissue specific genes [8]. Although the low and
high CpG density regions are critical for the regulation of
genome activity, both appear to have distinct functions.
Our laboratory has demonstrated that a variety of en-

vironmental toxicants can promote the epigenetic trans-
generational inheritance of disease and phenotypic
variation [11,12]. The molecular mechanism involved is
that exposure of a gestating female during the period of
fetal gonadal sex determination promotes the altered
epigenetic programming of the germline which appear
to become permanently programmed and transmit this
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altered epigenome to subsequent generations [12]. The
epigenetic transgenerational inheritance phenomena is
defined as “germline mediated transmission of epigen-
etic information between generations in the absence of
direct exposures or genetic manipulations” [12]. All the
environmental toxicants studied have been shown to
promote altered differential DNA methylation regions
(DMR) in the sperm, termed epimutations [13]. In-
terestingly, the epimutation signatures observed in the
sperm are exposure specific with negligible overlap be-
tween the specific epimutations [13]. Characterization
of these DMR and epimutation signatures has identified
a major genomic feature associated with these DMR is a
very low (<10 CpG/100 bp) CpG density [13,14]. The
current report examined the epimutations previously
identified in ten different studies to provide a novel per-
spective on the lower density CpG regions in the gen-
ome. We refer to these regions as “CpG deserts”.

Results
The previously identified DMR for the transgenerational
sperm epimutations involved a number of different stud-
ies [13] and data sets including the F3 generation sperm
epimutations from vinclozolin [14], plastics compounds
(bisphenol A (BPA) and phthalates) [15], hydrocarbons
(JP8 jet fuel) [16], pesticides (permethrin and DEET [N,
N-diethyl-meta-toluamide]) [17], dioxin [18] and DDT
Figure 1 Transgenerational F3 generation sperm epimutations specif
exposure lineages including: vinclozolin, plastics (BPA and phthalates), pest
number of DMR per exposure lineage in brackets is presented and unique
listed had overlapping DMR considered, so n = 535 unique epimutations (p
(dichlorodiphenyltrichloroethane) [19] exposure lineages.
The total number of unique transgenerational sperm epi-
mutations examined is 535 DMR. Each individual DMR
was identified with a methylated DNA immunopreci-
pitation (MeDIP) procedure followed by a genome wide
promoter tiling array (MeDIP-Chip) protocol [13-19]. A
statistical difference in DNA methylation between the F3
generation control lineage versus the F3 generation expos-
ure lineage sperm used a p-value of p < 10-5 [13-19]. The
average size of the DMR was 500-1,500 bp for the sperm
DMR identified [13,14]. The number of DMR (i.e. epimu-
tations) associated with each specific exposure in the F3
generation sperm is shown in Figure 1. Interestingly, none
of the DMR were found to overlap between all exposures
[13,19] and the majority were exposure specific, Figure 1.
The CpG density of each of the DMR for all the treat-

ments was identified using the number of CpG/100 bp to
determine the density. Analysis of the CpG density for
these sperm DMR is shown in Figure 2a and indicates a
density <13 CpG/100 bp with the majority of DMR having
1 to 8 CpG/100 bp density. Greater than 97% of the DMR
had a <10% CpG density. These CpG deserts of <15 CpG/
100 bp, termed CpG deserts, are present in all the sperm
DMR examined [13-19], Figure 2a. Therefore, the CpG
density of the epimutations was very low.
In addition to the analysis of sperm epimutations, the

somatic cell transgenerational DMR for testicular Sertoli
icity and overlap. A Venn diagram of DMR from various F3 generation
icides (permethrin and DEET), hydrocarbons (JP8) and DDT. The total
and overlapping DMR identified. The total number of epimutations
< 10-5) were investigated in the current study. Modified from [13].



Figure 2 Transgenerational differential DNA methylation regions (DMR) CpG density and association with CpG deserts. (a) CpG density
distribution in n = 535 distinct sperm DMR with the number of DMR correlated with variable CpG density (CpG/100 bp). (b) CpG density
distribution in n = 142 distinct somatic cell (Sertoli and granulosa cells) DMR with the number of DMR correlated with variable CpG density
(CpG/100 bp).
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cells associated with testis disease [20] and ovarian gran-
ulosa cells associated with ovarian disease [21] from F3
generation vinclozolin lineage animals were identified.
The epimutations were also selected based on a statisti-
cally significant difference of p < 10-5 [20,21]. The CpG
density for these somatic cell DMR was also <10 CpG/
100 bp, Figure 2b. These somatic cell transgenerational
DMR had negligible overlap with sperm DMR and with
each other, such that they were cell specific [20,21].
Therefore, both the transgenerational sperm and somatic
cell epimutations had DMR that were “CpG deserts”.
The detailed CpG density maps for selected sperm

epimutations are shown in Figure 3. The F3 generation
vinclozolin lineage sperm DMR are presented for the
promoters of Gpr33, Olr1624, Kcme2, Parp9 and Eef1d.
The blue box represents the DMR region with statistically
significant (p < 10-5) altered CpG methylation and the
black hatch marks represent individual CpG sites within
the DMR that are identified as 500 to 1500 bp in length,
Figure 3. The low density CpG within these CpG deserts
can be observed and the presence of small clusters of
CpG within the DMR are indicated. No CpG islands
were observed within these 500 to 1500 bp regions.
Additional examples of transgenerational sperm DMR
and CpG deserts are presented in Figure 4 for a variety
of different gene promoters with varying size (500 to
2000 bp). The low density CpG and small CpG clusters
containing a few CpG sites can be seen in all the sperm
epimutations for these CpG deserts. In addition to this
low density genomic feature (i.e. CpG desert), unique
DNA sequence motifs have also recently been observed
within these DMR [14].



Figure 3 Genomic mapping of selected gene F3 generation vinclozolin lineage sperm promoter DMR with blue box indicating the
region with differential DNA methylation and specific CpG residues (black hatch marks) for variable base pair length regions.
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Discussion
Consideration of the genomic features of the transgenera-
tional sperm and somatic cell epimutations identified the
existence of CpG deserts containing small clusters of CpG
within the DMR. These epimutations are potential regula-
tors of genome activity and are involved in the epigenetic
transgenerational inheritance phenomenon. Germline epi-
mutations are critical in mediating the transmission of al-
tered epigenetic information between generations [12]. All
tissues and cells derived from this altered germline epige-
nome will have an altered epigenome and transcriptome
[20-22]. A previous study demonstrated that all examined
Figure 4 Genomic mapping of selected F3 generation vinclozolin line
region with differential DNA methylation and specific CpG residues (b
tissues have a dramatic tissue specific transgenerational
transcriptome change in the F3 generation [22]. In
addition, several specific cell types examined (i.e. Sertoli
cell and granulosa cell) have cell specific transgenerational
transcriptome alterations in the F3 generation vinclozolin
lineage animals [20,21]. In considering the role of the
DMR and sperm epimutations the observation was made
that these transgenerational differentially expressed genes
clustered in regions of 2-5 megabases with many having
the DMR present, and these regions were termed epigen-
etic control regions [22]. Similar observations were made
with somatic cell transgenerational transcriptome changes
age sperm gene promoter DMR with blue box indicating the
lack hatch marks) for variable length base pair regions.
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[20,21]. In considering the epigenetic transgenerational in-
heritance of germline epimutations, the embryonic stem
cells derived from these germ cells will have an abnormal
epigenome. This suggests all cell types and tissues derived
from the embryonic stem cells will have an altered epige-
nome and transcriptome [22]. Any tissue sensitive to this
altered transgenerational transcriptome will have a suscep-
tibility to develop disease [23].
Observations suggest these epimutations have a gen-

omic feature of CpG deserts that are speculated to have
significant roles in regulating genome activity [22]. Som-
atic cells have also been shown to contain epimutations
and these DMR were generally distinct from the germ-
line epimutations [20,21]. Interestingly, these somatic
epimutations also were present in CpG desert regions
with small CpG clusters [20,21]. Combined observations
indicate the transgenerational epimutations primarily ap-
pear to be present in CpG deserts with small clusters of
CpG in the DMR.
These DMR were previously shown to be exposure spe-

cific and had negligible overlap [13,20,21], Figure 1. The
DMR ranged from 500 to 2000 bp with a density of <10
CpG/100 bp and no CpG islands were observed, only small
clusters of CpG, Figures 3 and 4. Therefore, these CpG de-
serts do not appear to be CpG island shores, [6] but are
distinct. The CpG genomic maps of specific CpG deserts
that had the DMR confirmed with bisulfite mass spectrom-
etry suggested the small clusters of CpG may be an im-
portant functional part of the CpG desert. The “CpG”
desert is defined as a 500 bp to 2000 bp differential DNA
methylation region with <15 CpG/100 bp and the presence
of small CpG clusters, and the absence of CpG islands.
In considering the regulatory role and origins of these

CpG deserts several previous observations were used. The
first is that C to T conversions are the most frequent gen-
etic point mutation, small nucleotide polymorphism (SNP),
known to occur in a nearly order of magnitude greater fre-
quency than any other SNP [24]. Therefore, evolutionarily
this will lead to low density CpG regions developing in the
genome. These low density CpG regions of the genome
have been previously observed. In the event a cluster of
CpG had a critical regulatory role for genome activity,
these sites would be evolutionarily maintained as clusters
of CpG within a CpG desert. Therefore, CpG deserts may
have important roles in regulating gene expression [22].
This speculation of the regulatory role of these DMR now
needs to be further investigated.

Conclusions
In addition to the existing knowledge on the role of high
density CpG islands and shores on the regulation of gen-
ome activity, the characterization of the transgenerational
sperm and somatic epimutations suggests the importance
of low density CpG regions, termed CpG deserts.
Attention should be placed in the future on CpG deserts,
in particular when studies address epigenetic transgenera-
tional inheritance phenomenon. The advantage of next
generation sequencing, bisulfite conversion of CpG sites,
and new bioinformatics tools will likely advance this area
quickly. Previous studies have also suggested low density
CpG regions appear to be regulatory for genome activity
[7,9]. The speculation is made that these CpG deserts with
small clusters of CpG in DMR will have a critical role in
the epigenetic regulation of genome activity.
These CpG deserts are initially identified through

characterization of the sperm epimutations that mediate
the environmentally induced epigenetic transgenerational
inheritance of disease and phenotypic variation [13,14].
The transgenerational somatic epimutations also have a
similar genomic feature [20,21]. The similarities or differ-
ences in epimutations and genomic features such as the
CpG desert between the F1, F2 and F3 generations re-
mains to be investigated. However, the F3 generation data
presented reflects the transgenerational germline epimuta-
tions [25]. Although these sites appear to be critical to the
molecular mechanisms of epigenetic transgenerational in-
heritance, these CpG deserts are anticipated to have a
much wider role in regulating genome activity associated
with a large number of other biological phenomena and
mechanisms.

Methods
The environmentally induced epigenetic transgenera-
tional inheritance of disease used an outbred Sprague
Dawley rat model and the exposure of gestating females
during fetal gonadal development as previously de-
scribed [11-13]. The transgenerational F3 generation an-
imals were used to isolate sperm or somatic cells as
previously described [11,13,20,21]. The procedure used
to identify the DMR was a methylated DNA immuno-
precipitation (MeDIP) followed by a genome wide pro-
moter tiling array (MeDIP-Chip) as previously described
[12,13]. An individual DMR required a statistically sig-
nificant difference between the F3 generation control
lineage versus F3 generation exposure lineage sperm
(p < 10-5) [13-19]. A minimum of three adjacent probes
on the tiling array had to have the same statistical differ-
ence to identify the DMR. All the DMR used in the
current report were previously published [12-21]. The
specific DMR mapped in the current study were con-
firmed with a bisulfite mass spectrometry protocol previ-
ously described [12]. The statistical analysis for the
identification involved R-code and significance (p < 10-5)
being assigned to probe differences between treatment
generation and exposure by calculating the median
value of the intensity differences as compared to a nor-
mal distribution scaled to the experimental mean and
standard deviation [13-19].
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