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Abstract

Background: Recent advances in DNA sequencing techniques resulted in more than forty sequenced plant
genomes representing a diverse set of taxa of agricultural, energy, medicinal and ecological importance. However,
gene family curation is often only inferred from DNA sequence homology and lacks insights into evolutionary
processes contributing to gene family dynamics. In a comparative genomics framework, we integrated multiple
lines of evidence provided by gene synteny, sequence homology and protein-based Hidden Markov Modelling

to extract homologous super-clusters composed of multi-domain resistance (R)-proteins of the NB-LRR type

(for NUCLEOTIDE BINDING/LEUCINE-RICH REPEATY), that are involved in plant innate immunity.

Results: To assess the diversity of R-proteins within and between species, we screened twelve eudicot plant

genomes including six major crops and found a total of 2,363 NB-LRR genes. Our curated R-proteins set shows a 50%
average for tandem duplicates and a 22% fraction of gene copies retained from ancient polyploidy events (ohnologs).
We provide evidence for strong positive selection and show significant differences in molecular evolution rates
(Ka/Ks-ratio) among tandem- (mean = 1.59), ohnolog (mean = 1.36) and singleton (mean = 1.22) R-gene duplicates. To
foster the process of gene-edited plant breeding, we report species-specific presence/absence of all 140 NB-LRR genes
present in the model plant Arabidopsis and describe four distinct clusters of NB-LRR "gatekeeper” loci sharing syntenic

orthologs across all analyzed genomes.

functional NB-LRR genes from any plant species.

Conclusion: By curating a near-complete set of multi-domain R-protein clusters in an eudicot-wide scale, our
analysis offers significant insight into evolutionary dynamics underlying diversification of the plant innate immune
system. Furthermore, our methods provide a blueprint for future efforts to identify and more rapidly clone
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Background

Plants have evolved a two-layered innate immune sys-
tem against microbial and other pathogens [1]. In a first
layer of defense, transmembrane pattern recognition
receptors (PRRs), usually with extracellular LRR-type
domains, recognize pathogen associated molecular pat-
terns (PAMPs) and initiate downstream signaling events

* Correspondence: eric.schranz@wur.nl

'Wageningen University & Research Center, Droevendaalsesteeg 1, 6708 PB
Wageningen, Gelderland, The Netherlands

Full list of author information is available at the end of the article

( ) BiolVled Central

including defense gene induction [2], and lead also to cell
wall reinforcement by callose deposition and SNARE-
mediated secretion of anti-microbial compounds [3,4].
This is referred to as PAMP- or pattern-triggered immun-
ity (PTI).

Successful pathogens have evolved virulence factors
(effectors) that act in the apoplast or inside the host cell
to overcome PTI [5]. As a second layer of the innate im-
mune response, many host plant lineages evolved intra-
cellular R-proteins of the NB-LRR type that respond to
virulence factors, either directly or through their effects
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on host targets [6]. Plants producing a specific R-gene
product are resistant towards a pathogen that produces
the corresponding effector gene product (avirulence factors
encoded by Avr genes), leading to gene-for-gene resistance
[7]. This is referred to as effector-triggered immunity
(ETI). Rounds of ETI and effector-triggered susceptibility
(ETS) due to novel Avr genes on the pathogen side can re-
sult in an evolutionary arms-race, generating a “zigzagzig”
amplitude of host resistance and susceptibility [1].

R-genes play a major role in defending crops against
microbial infection and thus are of great interest in plant
breeding programs and efforts to meet increased global
food production. In potato, for example, R-proteins of
the NB-LRR type confer resistance to the oomycete
Phytophthora infestans, a hemibiotrophic pathogen that
causes late blight [8,9]. In Arabidopsis, R-proteins of the
NB-LRR type have been studied extensively in terms of
molecular function, structural organization, sequence evo-
lution and chromosomal distribution [10-13]. This super-
family is encoded by scores of diverse genes per genome
and subdivides into TIR-domain-containing (for TOLL/
INTERLEUKIN LIKE RECEPTOR/RESISTANCE PROTEIN)
(TIR-NB-LRR or TNL) and non-TIR-domain-containing
(NB-LRR or NL), including coiled-coil domain-containing
(CC-NB-LRR or CNL) R-protein subfamilies [14,15]. For
example, the TNL type R-protein RPP1 confers resistance
to Hyaloperonospora arabidopsidis (downy mildew) in
Arabidopsis [16]. Similarly, the RPS5 CNL type R-protein
interacts in a gene-for-gene relationship with the avrPphB
effector from Pseudomonas syringae to activate innate im-
mune responses [17]. The TNL type R-protein RRS1, in
concert with the TNL protein RPS4, confers resistance to
the soil microbe Ralstonia solanacearum in Arabidopsis
[18,19]. The latter also contains a C-terminal WRKY tran-
scription factor-like domain for DNA binding (Bernoux
et al. 2008), increasing the number of domains common
to NB-LRR clusters to five. This number is further ex-
tended by cases with presence of additional, C-terminal
domains mediating extended gene function. For ex-
ample, the Arabidopsis NB-LRR locus CHILLING-
SENSITIVE3 (CHS3 or DAR4) encodes a mutated allele
of a C-terminal LIM-type domain-containing TNL
protein, leading to constitutive activation of defense
responses and increased chilling susceptibility [20]. The
NB-LRR ADRI-L1 encodes an N-terminal RPWS-
domain whose functional importance has previously
been reported [21]. However, many RPWS8-like genes en-
code transmembrane proteins without NB-ARC-domain
but impact on resistance to powdery mildew in Arabidopsis
[22-24].

TIR- and non-TIR NB-LRR protein clusters share a
conserved central NB-ARC-domain including three sub-
domains (NB, ARC1, and ARC2). Together, these confer
ATPase function [25]. The C-terminal part of NB-LRR
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proteins harbors a leucine-rich repeat (LRR)-domain for
recognition of intracellular effector molecules upon infec-
tion, leading to a conformational shift within the NB-
ARC-domain [26] upon recognition of the corresponding
effector or a change in the surveyed plant protein. In the
case of the soybean (Glycine max) CNL-class R-protein
RPSk-1, defense genes are induced upon Phytophthora
sojae effector recognition. This includes differential regu-
lation of transcription factor activity as previously pro-
posed [27-29].

A genome-wide comparison of multi-gene families in
A. thaliana Col-0 revealed a high frequency of gene du-
plication among the NB-LRR gene cluster and impact on
genomic distribution [30]. For example, 63% of all re-
ported NB-LRR genes are members of tandem arrays in
both A. thaliana (101/159) and A. lyrata (118/185) [11].
Notably, NB-LRR loci are subject to positive selection
[31]. In this context, [11] re-assessed rates of molecular
evolution for both sets of tandem and non-tandem (single-
ton hereafter) genes and found significant differences in
selection rates. In this study, we went a step further by dis-
tinguishing the frequency of tandem and ohnolog dupli-
cates to NB-LRR cluster expansion and diversity within a
wider phylogenomics perspective, thereby covering an
evolutionary timeframe of approximately 100 MA that
corresponds to the radiation of core eudicots [32,33].
We compared the average rates of molecular evolution
for singleton, tandem and ohnolog duplicate R-genes.
We further provide evidence for strong positive, but sig-
nificantly different, selection rates acting on all copy
classes of NB-LRR duplicates, illustrating the impact of
gene and genome duplication to the diversification of
plant key traits across approximately 100 MA of gen-
ome evolution.

To elucidate the dynamics underlying pathway and trait
evolution across multiple lineages, it is of paramount im-
portance to identify and distinguish the complete set of
orthologous and paralogous loci present within multiple
genome annotations in a phylogenetic framework [34].
Two homologous genes are referred to as orthologs if they
descend from one locus present in the common ancestor
lineage and diverged due to speciation [35]. By definition,
orthologous genes are embedded in chromosomal seg-
ments derived from the same ancestral genomic region,
thus sharing high inter-species synteny between closely re-
lated lineages [36]. In contrast, paralogous loci refer to ho-
mologs within one lineage and are due to, for example,
tandem, transpositional- or whole genome duplications
(WGDs) [37,38]. Large-scale synteny is not observed for
paralogs derived from small-scale events like tandem and
transpositional duplication. In contrast, paralogs derived
from WGDs are located within intra-species syntenic
genomic blocks, and can be referred to as ohnologs or
syntelogs [39,40].
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Recent analysis of genome-wide ohnolog distribution
have revealed a common history of ancient, successive
polyploidy events that are a common feature of genome
evolution shared by all flowering plant linages [36]. For
example, the Arabidopsis lineage underwent at least five
polyploidy events that we know of, two preceding and
three following angiosperm radiation [41]. The most recent
WGD event for the Arabidopsis lineage is termed At-a and
shared by all Brassicaceae including the extant sister clade
Aethionemeae [42,43]. The older At-f WGD is shared by
most species in the order Brassicales, but occurred after
the papaya lineage split [44,45]. The more ancient At-y
event is a whole genome triplication (WGT) that is shared
by most eudicots including all Rosids, all Asterids (includ-
ing tomato), Grape (Vitales) and more distant and basal
clades such as Gunnera manicata (Gunnerales) and Pachy-
sandra terminalis (Buxales) [46,47]. In addition to ancient
polyploidy events, more recent, species-specific WGDs/
WGTs occurred in various lineages, such as genome tripli-
cations in B. rapa [48) (Br-a WGT), T. hasslerania (Th-«
WGT) [44,49] and the Solanaceae Tomato Genome [50].
Hence, the “syntenic depth” (defined as the level of genome
multiplicity expected from the multiplication of successive
WGDs/WGTs) of the Brassica rapa genome is 36x com-
pared to the putative 1x eudicot ancestor (3x due to At-y,
2x more due to At-f, 2x more due to At-a and finally 3x
due to Br- a). Under consideration of two polyploidy
rounds at or near the origin of angiosperms as well as 2x at
or near the origin of seed plants [41], the syntenic depth of
the B. rapa genome would be expected to be increased to
144x (“rho-mu-delta-ploidy” genome).

Polyploidy events also influence other kinds of dupli-
cation, thereby creating a network of factors with mutual
influence. In Brassica rapa (that underwent an additional
species-specific genome triplication event, see above), ar-
rays of tandem duplicate (TD) genes (TAR genes) frac-
tionated dramatically after the Br- a« WGT event when
compared either to non-tandem genes in the B. rapa or to
tandem arrays in closely related species that have not ex-
perienced a recent polyploidy event [51]. Errors in DNA
replication due to template slippage or unequal crossing-
over can result in tandem duplication (TD), producing
tandem arrays (TAR) of paralog genes in close genomic
proximity [52]. It is known that TAR genes are enriched
for genes functioning in biotic and abiotic stress [53]. For
disease resistance, there are multiple taxa with an evident
impact of TD to trait evolution, including members of
Brassicaceae [54], Solanaceae [55] and Fabaceae [56].

Evidence is accumulating for the connection of ancient
WGD events to birth and diversification of key biological
traits. It was made evident that WGD is often followed by
a genome-wide process of biased fractionation that prefer-
entially targets one sub-genome to retain clusters of dose-
sensitive genes often organized in functional modules
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[57-59]. In Brassicaceae, WGD shaped the genetic versatil-
ity of the glucosinolate pathway [60], a key trait mediating
herbivore resistance and thus highly connected to repro-
ductive fitness of the population. Similarly, starch biosyn-
thesis in grasses, origin and diversification of seed and
flowering plants as well as increased species survival rates
on the Cretaceous—Tertiary (KT)-boundary are hypothe-
sized to be linked to ancient polyploidy events [33,61-64].

In this study, we utilized an iterative approach by com-
bining blast, HMM modeling and genomic contextual
information provided by synteny to determine the fraction
of tandem- and whole genome duplicate copies among all
(re)annotated full-length NB-LRR genes across twelve spe-
cies in the context of a phylogenomics perspective, based
on uniform standards facilitating comparisons. After
utilization of duplicate classes, we assessed and compared
rates of molecular evolution to describe a complex inter-
play of TD and WGD events driving R-protein super-
family extension, both of which expanded the evolutionary
playground for functional diversification and thus poten-
tial novelty and success.

Results

Determination of protein domain-specific sub-clusters
Encoded architecture of NB-LRR loci in plants is variable
and can comprise up to seven different domains in Ara-
bidopsis (Figure 1). In contrast to previous studies [13],
we defined functional NB-LRR proteins as composite
units sharing both NB-ARC-domain and a LRR-domain
signal due to at least one repeat. Hence, TIR-NB-, LRR-
only, NB-only or TIR-only proteins are not assigned as
NB-LRR proteins by definition. To determine the number
of NB-LRR loci within a given genome annotation, we
combined layers of information provided by sequence
homology, protein identity as well as genomic context of
target genes in a custom, iterative approach using batch
programming (Figure 2).

In the first step, we identified putative orthologous
(defined as size-filtered reciprocal best blast hits for both
protein and DNA sequences, see Methods) and/or syn-
tenic (based on conserved genomic context, see Methods)
“anchor” genes (a) present in the most up-to-date genome
annotations of (1) A. lyrata, (2) B. rapa, (3) E. parvulum,
(4) Ae. arabicum, (5) T. hasslerania, (6) C. papaya, (7) C.
sinensis, (8) V. vinifera, (9) N. benthamiana, (10), S. lyco-
persicum and (11) S. tuberosum as well as (b) aligning to
any gene present in the (12) A. thaliana Col-0 TAIR10
genome annotation. This step resulted in a cluster dataset
anchoring every gene family present in Arabidopsis to all
of the aforementioned lineages, hence providing valuable
means for gene identification with any kind of target trait
known in core-eudicot plants. Subsequently, we screened
for genes encoding (i) a LRR-domain, (ii) a NB-ARC-
domain or (iii) a TIR-domain (extended set of target genes
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Figure 1 Domain composition overview for NB-LRR proteins (adapted from [14]). The NB-LRR multi-gene family comprises five common
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Frequent domain combinations. Middle: Well-characterized class representative in Arabidopsis thaliana Col-0. Right: relative abundance of target
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defined in this study, see Methods) (Additional file 1). In a
second step, we screened for anchor gene paralogs present
in every aforementioned genome annotation to form an
extended cluster of homologous genes containing at least
one of the aforementioned domains (Figure 2). In a third
step, we applied multiple machine learning methods (see
Methods) to filter false-positives to obtain three highly
accurate, functional domain cluster (NB-ARC/LRR/TIR)
(Additional file 2). We performed the third (filtering) step
three times (once for every aforementioned domain).

We identified 8,292 genes encoding a LRR-domain in
total (Figure 3). Among those, the lowest number of
genes containing a LRR-domain is 302 for the C. papaya
genome annotation v0.5. In contrast, the highest number
of genes encoding a LRR-domain is 1,344 for the C. sinen-
sis genome annotation v1. Interestingly, both annotations
share a syntenic depth of 1x representing the lowest-copy
genomes subjected to our analysis (i.e. no major evidence
for WGD since At-y). We identified 2,571 genes encoding
a NB-ARC-domain in total (Figure 3). Likewise, the lowest
number was found within the C. papaya genome annota-
tion v0.5 (48 loci). Again, the highest number of genes en-
coding a NB-ARC-domain was found in the C. sinensis
genome annotation v1 (459 loci). We identified a pool of
1,075 genes encoding at least one TIR-domain (Figure 3).
Similar to the aforementioned domains, the C. papaya
genome annotation v0.5 encodes the lowest number of
TIR-like loci (16 genes). In contrast to the aforementioned

cases, the A. lyrata annotation v1.07 (but not C. sinensis)
contains the highest number of encoded TIR-domains
(170 loci). Notably, the syntenic depth of A. lyrata is
double that of papaya or orange.

Determination of NB-LRR multi-gene family size by
overlapping domain-specific sub-clusters

For every analyzed plant species, we determined the
multi-gene family size of all annotated NB-LRR candi-
date genes by overlaying each filtered domain clusters.
Note that statements about target loci missing or flawed
within the gene annotations are beyond the scope of this
section, but can likewise be considered in silico by apply-
ing sequence scaffolds/contigs instead of gene models to
our customized pipeline (see Discussion).

For the A. thaliana Col-0 TAIR10 genome annotation,
we have found 140 non-redundant NB-LRR loci (Figure 4A).
Previous studies found 166 [65], 178 [13], 174 [66,67] and
138 [11] NB-LRR loci present in the model plant. In
contrast, TAIR10 domain annotation efforts reported 127
target loci [68]. The differences in our study resulted from
usage of the updated TAIR10.02 annotation and more
stringent criteria; namely the exclusive combination of ma-
chine learning with sequence identity and consideration of
the genomic context (e.g. synteny). For example, we focus
on protein-coding genes only and ignore non-functional
(i.e. pseudogenized) loci due to the scope of this study
to provide information relevant for breeding of gene-
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edited crops. Moreover, we defined NB-LRR proteins as
sharing both NB-ARC- and LRR-domains, whereas many
previous studies score anything as a NB-LRR gene that
partially aligns to any one domain common to the cluster
(i.e. TIR-only, NB-only, LRR-only genes).

For the A. lyrata genome annotation v0.2, we identi-
fied 166 non-redundant NB-LRR loci (Figure 4B). Previ-
ous studies reported evidence for 182 [67] and 138 [11]
NB-LRR loci present in the A. lyrata genome assembly.
Chen et al. score pseudogenes as well as loci that do not
contain both NB- and LRR-domains, leading to the higher
number of target genes than reported in this study [67].
The difference between our results and those of Guo et al.
is likely due to false-negative target genes with a diver-
gence level that cannot be recognized by their applied

HMM-generated NB-ARC consensus sequence [11]. We
were able to score these more divergent loci using synteny
data anchoring locus determination and subsequent de
novo domain prediction using a combination of 14 HMM
algorithms (see Methods). For example, the A. lyrata locus
fgenesh1_pg.C_scaffold_8000651 displays only moderate
homology (e-value: le-34) to the closest related sequence
in A. thaliana, a P-loop-containing nucleoside triphospha-
tase that is not defined as NB-LRR locus. However, we
found both NB-ARC- and LRR-domain within that gene
in A. lyrata.

For the crop plant B. rapa (genome annotation v1.1),
we found 167 non-redundant NB-LRR candidate genes
(Figure 4D), while previous studies reported a sum of 92
[69] and 206 [70] target loci. The latter number includes
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proteins without LRR-domain (for example TIR-NB or
CC-NB). Removing those, Yu and coworkers identified
139 genes encoding both NB-ARC- and LRR-domains, 28
less than we proposed. This differences may be due to our
consideration of synteny and application of 14 different
HMM algorithms, whereas Yu and coworkers employed
HMMER V3.0 only [70]. Note that Mun and coworkers
[69] did not have the whole genome assembly available,
and hence identified R-proteins based on 1,199 partially
redundant BAC clones mostly from a single chromosome.
The authors acknowledge a significant degree of sequence
redundancy within the available dataset that covers 19-
28% of the B. rapa genome only. Likewise, [69] performed
ab-initio gene annotation based on the fgenesh algorithm
only [71], and solely use protein sequence homology
(based on blastp) for R-protein homolog identification. In
contrast, we used the whole gene-space assembly (includ-
ing every to-date annotated protein-coding gene) as well
as three layers of information for homolog identification
(see Methods).

To our knowledge, we performed the first analyses of
R-proteins for E. parvulum, Ae. arabicum, T. hasslerania
and N. benthamiana. For the extremophile saltwater cress
E. parvulum (previously known as Thelungiella parvula,

genome annotation v2), we found 72 non-redundant NB-
LRR loci (Figure 4C). For Ae. arabicum, the extant sister
lineage to all other mustard family members (genome an-
notation v0.2), we identified 112 non-redundant NB-LRR
loci (Figure 4E). For the T. hasslerania genome annotation
v4 (previously known as Cleome spinosa), we identified 59
non-redundant NB-LRR loci for this species (Figure 4F),
that underwent a lineage-specific genome triplication
event (Figure 3) and has been established as the mustard
family outgroup [44,49,72]. For the Solanaceae and to-
bacco relative N. benthamiana, we identified 233 non-
redundant NB-LRR proteins (Figure 4]). Notably, N.
benthamiana is widely used as system for transient
over-expression and silencing of various genes involved
in plant innate immunity to elucidate downstream sig-
naling events after PAMP-mediated priming. In this
context, our results provide accurate mapping of all NB-
LRR -like sequences encoding functions characterized
in A. thaliana down to the Nicotiana gene-space assembly
(Additional file 2), thereby facilitating adjusted planning of
aforementioned experiments and better understanding of
results in the Solanaceae.

For the crop plant C. papaya (genome annotation
v0.5), we identified 44 non-redundant R-proteins of the
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NB-LRR type (Figure 4G). Among all species we have
analyzed so far, the papaya gene-space assembly encodes
the lowest number of R-gene candidates. We again ac-
knowledge the possibility of incomplete gene annota-
tions in this context (see Discussion). However, the low
gene count of the NB-LRR locus family was previously
revealed for the available papaya genes set [73]. The au-
thors found 54 target loci using a combination of tblastx
[74] and the pfam HMM algorithm to search for the
pfam NB (NB-ARC) family PF00931 domain [75]. The
difference in gene-family size estimates is due to an up-
dated genome annotation we have used, as well as more
stringent criteria for target gene scoring (i.e. NB-LRR
proteins are defined as sharing both NB-ARC- and LRR-
domains, see above).

Our analysis revealed 455 non-redundant loci of the
NB-LRR type for the crop plant C. sinensis (orange)
(Figure 4H). Evidence for the high R-gene count in

orange has been noted previously. For example, the
plant resistance gene database (prgdb) lists 3,230 R-
genes (including LRR-domain-containing receptor-like
kinases/proteins) for this crop plant [76], many of which
are redundant. To our knowledge, our study comprises
the first efforts to cross-reference both NB-ARC- and
LRR-domains among R-genes in orange.

For grape (V. vinifera), we found 294 non-redundant
R-proteins sharing both NB-ARC- and LRR-domains
(Figure 4I). Previous efforts identified 300 target genes
[66]. The differences are due to an updated genome as-
sembly as well as more stringent criteria for NB-LRR
locus definition.

In addition, we subjected the potato crop (S. tubero-
sum Group Phureja DM1-3) genome annotation v3.2.10
to our customized pipeline for identification of homologous
gene clusters. We identified 402 encoded non-redundant
NB-LRR proteins within the potato genome (Figure 4 K).
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Previous efforts identified 438 target genes [77] from the
annotated proteins set using the MEME and MAST algo-
rithms [78] as well as 755 target genes for the NB-LRR gene
repertoire [79] based on reduced representation analysis of
DNA enriched (referred to as “Renseq” hereafter [80-82]).
Referring to Jupe et al. [79], we acknowledge the inability of
our pipeline to identify genes present in the crop but flawed
or missing from the annotation or the assembly. The differ-
ence between our value and [77] results from more strin-
gent criteria in NB-LRR locus identification. For example,
at least 34 of the 438 genes from [77] do not contain both
NB-ARC- and LRR-domains, whereas at least two do not
contain any of the required domains.

For tomato (Solanum lycopersicumm Heinz 1706), we
have found 219 non-redundant R-proteins of the NB-
LRR type (Figure 4L). Previous studies identified 221
target genes sharing both NB-ARC- and LRR-domains in a
very conclusive approach [83]. The minor difference in
numbers is due to a different build of the annotation based
on the genome version 2.4 (fusion of loci/locus fragments)
and illustrates the thoroughness of the corresponding au-
thors work. In contrast, application of Renseq to tomato
genomic and cDNA recently identified 355 NB-LRR genes,
thereby highlighting further potential of improvement for
de novo genome assembly and annotation. Again, we
stress that the error rate of our pipeline depends on the
quality of the input data (i.e. genes missing in the assem-
bly or annotation can’t be detected).

In total, we identified 2,363 R-proteins of the NB-LRR
type. CDS sequences are appended including translation
to protein sequences. (Additional files 3 and 4).

Localization of genes with both NB-ARC- and LRR-domains
and determination of tandem duplicate fractions

We localized all reported NB-LRR loci onto the corre-
sponding chromosomes/scaffolds/contigs present in all
analyzed genome assemblies except N. benthamiana (ex-
cluded from Circos plot due to insufficient assembly qual-
ity, see Methods). Application of a number of n=10
allowed gene spacers (see Methods) allowed determination
of a global rate of 53% tandem duplicates (Figure 5). Not-
ably, we have found significant differences in tandem array
fractions between the analyzed species (up to a factor of
2.8). For example, 70 NB-LRR genes present in the V.
vinifera genome annotation v2 are members of tandem ar-
rays (Table 1). In contrast, the N. benthamiana genome
annotation v0.4.4 contains only one fourth of tandem du-
plicates among all present NB-LRR loci. The latter repre-
sents a fragmented gene-space rather than a genome
assembly, leading to a likely under-estimation of tandem
duplicates fraction. Hence, the global tandem duplicates
fraction drops after inclusion of N. benthamiana loci
(Table 1). For the mean gene count per NB-LRR tandem
array, Aethionema scores highest. Likewise, the extant
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mustard family sister clade contains the largest tandem
array we found so far. In contrast, the largest orange (C.
sinensis) NB-LRR tandem array comprises less than half
the number of target genes, leading to a very low genome-
wide average of NB-LRR genes per tandem array for that
species (Table 1). Please note that we required presence of
both NB-ARC- and LRR-domains for NB-LRR-type R-
gene curation. Therefore, some of the aforementioned tan-
dem arrays may be further extended due to the presence
of partial sequences in close proximity. We do not exclude
a biological significance of such fragments per se, but set
the scope to full-length candidate genes exclusively to ob-
tain a uniform dataset to facilitate comparisons of molecu-
lar evolution rates (see below).

However, our data indicate that both aforementioned
outlier situations with high (Aethionema) and low (Citrus)
maximums for gene counts per NB-LRR tandem array are
outliers beyond the average degree of NB-LRR gene tan-
dem array extension. The majority of all 1,191 tandem du-
plicates (60%) are organized in arrays with two genes only.
Three gene members per array occur in less than one fifth
of all cases, whereas four, five and more than five genes
per array occur with a cumulative frequency below 10%
(Figure 6).

Genome-wide determination of retained ohnolog

duplicate fractions and cross-referencing of NB-LRR genes
We determined the genome-wide fraction of retained
duplicate groups due to ancient polyploidy events (ohno-
logs), including all NB-LRR loci. Screening of pairwise
synteny blocks within the analyzed genome assemblies
was accomplished using an integer programming ap-
proach implemented by the CoGe system for comparative
genomics (see Methods) [84]. Due to technical restric-
tions, this was possible for seven genomes (i.e. minimum
requirements in the N50 index, requiring a minimum of
approximately 50 kb, see Methods). The high degree of
tandem duplicates among R-proteins in all species results
in a low degree of retained ohnolog duplicates by defin-
ition, because ohnologs mainly comprise groups of two or
three duplicates, whereas tandem arrays can have up to
eleven members (Figure 6). Notably, the B. rapa genome
possesses the highest syntenic depth value among all ana-
lyzed genome assemblies with 12x in total (Figure 3). Con-
sistently we found the highest fraction of retained ohnolog
duplicates both genome-wide and among NB-LRR genes
present in this crop with in total (Table 2). In contrast, the
potato crop (S. tuberosum) contains the lowest fractions of
retained ohnolog duplicates for both genome-wide aver-
age and the set of NB-LRR genes (Table 2). On average,
about one third of all genes present in the seven ana-
lyzed genome assemblies comprise retained ohnolog du-
plicate groups. This fraction drops among all NB-LRR
loci. This apparent under-representation of ohnologs
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Figure 5 Circos ideogram with 2,363 NB-LRR loci localized on eleven genome annotations. Latin numbers refer to chromosome pseudo-
molecules. Loose scaffolds and contigs not anchored to the genome assembly are shown shifted in radius but not in length scale. For genomes
without assembly to the chromosome level, the 20 largest scaffolds are displayed and named in in ascending order with Arabic numbers.
Beginning at the bottom block in counter-clockwise orientation, shown are (1) Arabidopsis thaliana Col-0, (2) Arabidopsis lyrata, (3) Brassica rapa,
(4) Eutrema parvulum, (5) Aethionema arabicum, (6) Tarenaya hasslerania, (7) Carica papaya, (8) Citrus sinensis, (9) Vitis vinifera, (10) Solanum lycopersicum
and (11) Solanum tuberosum. Tandem duplicate gene copies are highlighted in red. Singleton genes are highlighted in dark blue. “Conserved Cluster
A-D" refers to four distinct A. thaliana NB-LRR loci that have been coded in distant colors for easy visual distinction (A: AT3G14470; B: AT3G50950; C:
AT4G33300; D: AT5G17860) including ohnologs in all other ten genomes. For genome assembly versions used in this analysis, see Figure 3. Please note

that due to the fragmented assembly status of Nicotiana benthamiana, all scaffolds of this annotation are below visible length threshold.

among R-proteins highlights the high relative contribu-
tion of tandem duplication in R-protein cluster exten-
sion for the group of genome assemblies subjected to
this analysis (Table 2).

Uncovering differential patterns of selection acting on

subsets of NB-LRR loci pooled according to duplicate origin
We performed a genome-wide analysis of molecular evo-
lution acting on all encoded NB-LRR proteins based on

both the NB-ARC- and LRR-domain. In a first step, we
grouped (a) members of tandem arrays, (b) retained
ohnolog duplicates as well as (c) singleton genes (defined
as non-tandem array genes without retained ohnolog
duplicate). By analyzing non-synonymous substitutions
per non-synonymous sites, compared to synonymous
substitutions per synonymous site (Ka/Ks ratio or o,
dN/dS), patterns of strong positive selection were uncov-
ered among all three groups. Strikingly, we also found
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Table 1 Array of tandem duplicate copies among NB-LRR loci
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Number of NB-LRR Number of tandem Fraction of tandem Number of Average number of Number of genes
genes duplicates duplicates tandem arrays genes per array in largest array

B. rapa 167 92 55% 31 29 8
E. parvulum 72 37 51% 13 28 9
A. thaliana Col-0 140 94 67% 32 29 8
A lyrata 166 71 43% 23 3.1 9
Aet. arabicum 112 71 63% 21 34 11
T. hasslerania 59 26 44% 10 26 6
C. papaya 44 32 72% 10 32 5
C. sinensis 455 136 30% 61 22 5
V. vinifera 294 206 70% 62 33 10
N. benthamiana 233 58 25% 26 22 5
S. tuberosum 402 238 59% 77 3.1 8
S. lycopersicum 219 125 57% 40 3.1 7

) 2,363 1,186 50%* 406 29 76

*Difference of value compared to Figure 5 us due to presence on N. benthamiana.
Comparison of NB-LRR locus-containing tandem arrays* among twelve species.

differences in molecular evolution rates among all three
groups. Members of tandem arrays evolved fastest with
a o mean of 1.59. In contrast, all analyzed retained
ohnolog duplicates evolved with an intermediate rate (o
mean =1.36). We reported the slowest rate of molecular
evolution for singleton NB-LRR genes with a w mean of
1.22 (Figure 7). Values for w above one indicate positive
or Darwinian selection, less than one implies purifying
(or stabilizing) selection whereas ratios of one are indi-
cative for neutral (i.e. absence of) selection [85].

Assessing structural dynamics of genomic regions with
conserved NB-LRR loci

Utilizing the wealth of NB-LRR functional and molecular
data available in Arabidopsis as a reference, we composed
a species-wide matrix of R-protein presence/absence based
on sequence homology (i.e. filtered/non-filtered reciprocal
best blast hits, referred to as “RBH” hereafter) and synteny
(Additional files 1 and 2). Among the extended set of 140
distinct NB-LRR loci present in the model plant (see
above), we found four conserved clusters of “gatekeeper”

Three (18%) Four (8%)

N Five (7%)

Two (60%)

genomes. 60% of all tandem arrays comprise two duplicate gene copies.

NB-LRR gene count per Tandem Array
(12 genomes, 1,186 genes, 406 Tandem Arrays)

Figure 6 Gene count listing of full-length NB-LRR candidate gene-containing tandem arrays observed within all twelve analyzed

Ten (one array)
. Eleven (one array)
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Table 2 Retained ohnolog duplicate copies among
NB-LRR loci*

Among Ohnolog

Systenic Genome-wide
NB-LRR loci enrichement

depth# average

B. rapa 12x 53% 42% No
E. parvulum 4x 32% 29% No
A. thaliana Col- 4x 22% 17% No
0
A. lyrata 4% 33% 23% No
T. hasslerania 6% 44% 27% No
S. tuberosum 2-3x 10% 5% No
S. lycopersicum 2-3% 19% 16% No

> 30.3% 22.7% No

*Genomes with low assembly quality are excluded from this analysis due to
technical reason (see Methods).

#Post-y ploidy level.

Species-wise comparison of retained ohnolog duplicates gene pairs among
NB-LRR loci, shown for seven species*. Genomes with below-threshold mean
and median scaffold size (N50 ~ 50 kb) are excluded from this analysis due to

technical reasons.
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genes sharing syntenic orthologs across all twelve analyzed
genomes (Additional file 1 and Figure 5). Please note that
genomic regions displaying conserved synteny across line-
ages define evolutionary immobile parts of plant genomes
[36]. For two among those, functional data are available in
Arabidopsis, whereas members of the other two gene clus-
ters have not yet been characterized in any of the analyzed
plant lineages.

The non-TIR non-CC NB-LRR (NL) class R-protein
AT3G14460 is a “gatekeeper” because it forms one of four
conserved clusters together with all of its aforementioned
ohnologs (Additional file 1 and “Conserved Cluster A” in
Figure 5). Interestingly, there are yet no functional data
available concerning this gene, neither in Arabidopsis nor
in any of the other eleven analyzed genome/gene-space
assemblies.

For example, this NL-class “gatekeeper” AT3G14460.1
[13,86] forms syntenic RBH pairs with fgenesh2_
kg.3__1571 (A. lyrata), Bra027333 (B. rapa), Tp3gl12770
(E. parvulum), AA_scaffold578_71 (Ae. arabicum),
Th16129 (T. hasslerania), supercontig_77.89 (C. papaya),
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Figure 7 Selection in action between gene pairs of three major duplicates categories - singletons, tandem duplicates and WGD
duplicates (ohnologs). Strong positive selection following gene and genome duplication of NB-LRR loci, as indicated by higher Ka/Ks values.
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GSVIVT01013307001 (V. vinifera), Solyc03g078300.1
(S. Iycopersicum) as well as PGSC0003DMG400005046
(S. tuberosum). For C. sinensis, the RBH partner oran-
gel.1g000782m is harbored by a very small scaffold
(~12.6 kb) with three genes only, making the scoring of
gene synteny impossible. However, the locus oran-
2el.1g000782m in turn forms RBH pairs with the afore-
mentioned genes supercontig_77.89 (C. papaya) as well as
GSVIVTO01013307001 (V. vinifera), thereby closing the
gap in a phylogenetic framework (data not shown). Like-
wise, the N. benthamiana gene NB00009911g0001.1 forms
RBH pairs with the aforementioned syntenic orthologs in
tomato and grape-vine, overcoming the lack of synteny
data for this early-stage draft genome assembly (data not
shown). Notably, the underlying locus underwent tandem
duplication after grape-vine lineage split, leading to pres-
ence of a tandem array in all Brassicales including orange,
but an evident singleton gene in Solanaceae and V. vinif-
era (Figure 8).

The TIR-NB-LRR (TNL)-class “gatekeeper” locus
AT5G17680 is anchoring another group of syntenic
orthologs shared by all lineages (Additional file 1, “Con-
served Cluster D” in Figure 5). Similarly, this locus lacks
evidence on gene function in any of the analyzed plant
lineages.

In contrast, conserved clusters B and C are anchored
by ZAR1 (HOPZ-ACTIVATED RESISTANCE 1 or
AT3G50950) and the NB-LRR gene ADRI-LI (ACTI
VATED DISEASE RESISTANCE 1 or AT4G33300), that
confers pleiotropic effects in Arabidopsis innate im-
munity (Additional file 1, “Conserved Cluster B and C”
in Figure 5). ZARI encodes a CC-NB-LRR (CNL) class
R-protein of the FLARE group (Flagellin Rapidly Elic-
ited, due to rapid up-regulation following exposure to
the PAMP flg22) [87]. ZAR1 confers allele-specific rec-
ognition of the Pseudomonas syringae HopZla type III
effector in Arabidopsis and acts independent of several
gene products required by other R-protein signaling
pathways [88]. In contrast, ADRI-LI overexpression re-
sults in a dwarf phenotype and activation of defense-
related gene expression in Arabidopsis [21,87]. Note
that ADRI-L1 encodes an R-protein conferring pleio-
tropic roles due to function as “helper” NB-LRR that
can transduce signals subsequent to specific pattern
recognition receptor activation during effector-triggered
immunity [89]. Furthermore, ADRI-LI encodes the N-
terminal RPW8-like domain, whose functional importance
in plant innate immunity has been previously reported
[23,90]. Interestingly, the Arabidopsis RPW8-like “gate-
keeper” was found to be necessary and sufficient to confer
induced resistance to powdery mildew in the distant
lineage of Solanaceae (Nicotiana tabacum) [22]. This case
excludes restricted taxonomic functionality and provides
additional evidence for functional conservation of syntenic

Page 12 of 20

orthologs as defined by “gatekeepers” on a broad phyloge-
nomics range.

In summary, we found four NB-LRR genes conserved
in sequence as well as linked to structurally immobile
parts of the core-eudicot pan-genome. At least one of
those confers pleiotropic effects and extended functions
in Arabidopsis as a “helper-NB-LRR” [91,92]. Although
both synteny and sequence conservation across lineages
during a timeframe of approximately 250 MA provides
strong indications for conservation in function, this may
not always be the case. However, we hypothesize that
structural stability of the harboring genomic region sup-
ports evolution of pleiotropic effects conferred by “gate-
keeper” R-proteins (see below).

Discussion

The proliferation of high-throughput DNA sequencing
and genome informatics approaches enables an acceler-
ated production rate of draft genomes from a wide
phylogenetic sampling of plant taxa, highlighting a need
for robust methods and a comparative framework for
gene and genomic comparisons. We therefore have de-
veloped a custom approach to identify functional groups
of plant proteins applying a novel and highly comple-
mentary combination of available algorithms and data-
sets. We have applied this to R-proteins and annotated
2,363 loci of the NB-LRR type in total. This set contains
genes that previously remained un-identified for all spe-
cies except tomato and potato. For Solanaceae, we stress
that re-sequencing approaches based on complexity re-
duction such as target gene capture have been successfully
applied for a similar purpose (referred to as Renseq)
[79,93]. However, it is not unreasonable to assume that
the onset of next generation sequencing and genome in-
formatics will continue with acceleration beyond Moore’s
law and hence lead to more and better algorithms for de-
novo generation of gene annotations. Therefore, the added
value of the computational pipeline shown in this study
will rise with the same rate. For future references, we are
working on customization of our approach to make it
suitable for application to whole sequence scaffolds/con-
tigs rather than sets of annotated genes/proteins. We
intend to generate a computational pipeline for in-silico
target gene capture based on scoring of combined hits
outside the annotated gene-space within a size-window
common to protein-coding genes, thereby overcoming the
evident limitations of currently available algorithms for
de-novo gene annotation (Jupe F, personal communica-
tion). The pipeline shown in this study represents the first
step towards this goal.

Since tandem duplicates represent the majority of the
R-gene duplicates that typically have a higher turnover
rate, and additionally most of the R-genes have experi-
enced high birth-and-death rate due to the persistent
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Figure 8 (B)LastZ eleven-way multiple alignment of conserved cluster A from Figure 5. Shown left is the phylogenetic relationship among
all eleven species (Nicotiana benthamiana is excluded from this analysis due to technical reasons). Shown right is the genomic context of the
syntenic regions (marked in black). The regions in focus include one NB-LRR gene that expanded to a tandem array in the Arabidopsis lineage
after split of Solanaceae. Diamond indicates a tandem duplication event. Genes not overlapped by HSPs are shown in green. In case of C. sinensis,
12.6 kb), therefore scaled differently from other panels in GEVO.

arms-race with the evolution of pathogen target effectors,
most R-genes should have a fairly limited cross-taxonomic
coverage [94,95]. However, a limited set of R-gene clusters
are more stable, such as the four gene clusters that we
have shown here to be conserved over 100 MA in most (if
not all) core eudicot genomes. Could these gene clusters
represent shared immunity responses to common patho-
gens? In addition, the genes in these clusters could also
act as “helper NB-LRRs”, mediating signal transduction
downstream of various different NB-LRR receptors for
activation during effector-triggered immunity, thereby

leveraging functional constraints as previously made evi-
dent for ADRI family in A. thaliana [91,92]. Please note
that members of the RPWS8-domain-containing ADRI-
like family have been identified across all angiosperms,
providing hints towards relevance of “gatekeepers” in a
broad phylogenomics range across the whole angiosperm
clade [96] (Zhao and Schranz, unpublished results). More
studies need to be done in order to unravel gene function
underlying the retention of these unusually “stable” R-
gene loci. This is stressed by the fact that (some degree
of) functional evidence accumulated for two of our four
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NB-LRR “gatekeeper” functions in Arabidopsis; in at least
one case “gatekeeper” R-proteins confer pleiotropic effects
as “helper” NB-LRRs. In contrast, such data lacks for the
other two “gatekeepers”, notably including one TNL
class R-protein. We hypothesize significant potential for
extension of gene functional data regarding all four
“gatekeeper” loci, either by gene-for-gene resistance to-
wards yet-undiscovered pathogen effectors or by facili-
tating pleiotropic effects and effector-triggered signaling
downstream of other NB-LRR genes similar to “helper
NB-LRRs”. Notably, a combination of both scenarios is
evident in Arabidopsis and hence not unreasonable to
occur in other cases (see above).

We highlight the need for “uniform” standards for com-
parative studies, such as the method we used in this study
that is applicable but by no means limited to R-gene fam-
ilies. In contrast to most past computational pipelines of
gene identification that only employ DNA sequence simi-
larity, our approach consolidates multiple tiers of evidence,
including the basic protein sequence identity, domain com-
positions, and genomic context (synteny). Uniform stan-
dards also ensure that our gene family member counts are
directly comparable with one another, making in-depth
studies of the expansion-contraction dynamics of gene
families possible. Furthermore, our method allows efficient
screening of genome assemblies for near-complete cur-
ation of multi-domain and multi-gene family clusters. In
the case of NB-LRR type R-genes, the resulting raw data
provide a detailed overview of nucleotide diversity among
all target genes within and between twelve lineages cover-
ing the whole core-eudicot clade. Utilizing the wealth of
genomics and gene functional data in A. thaliana, this
leads to species-wise mapping (presence/absence) of every
NB-LRR sequence present in the model plant. Notably,
these data can be used by breeders to identify both target
loci as well as small RNA sequence requirements for fast
and efficient migration of resistance locus A to organism B
using the emerging techniques of genome editing in case
restricted taxonomic R-gene functionality doesn’t apply.
For example, the particular NB-LRR gene conferring the
desired resistance can be selected from our curated dataset
followed by calculation of the smallest nucleotide distance
(or closest related) target gene in the desired organism.
The sequence of the small RNA(s) necessary for engin-
eering of nucleases in context of genome editing can be
inferred accordingly in order to design a minimum set
of experiments necessary and sufficient for gene-editing
and thus generating an extended spectrum of resistance
in any of the crop subjected to our analysis. However,
note that taxonomic restrictions may apply for at least
some encoded R-gene functions. Going beyond plant in-
nate immunity, we provide data on a network of anchor
genes present in all analyzed genome assemblies, thereby
referencing orthologs and paralogs of every gene family
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present in the model plant Arabidopsis. We thereby excel
future efforts to extract plant gene function, ultimately ne-
cessary for crop improvement and increased rates of glo-
bal food production.

Conclusion

We highlight three major findings in this study: (a)
higher frequency of tandem gene expansion in R-genes,
(b) higher selection ratio in tandem duplicates compared
to ohnologs and singletons and (c) evolutionary stable,
orthologous R-gene clusters established within structur-
ally immobile parts of plant genomes. Those are likely to
indicate a common functional constraint (“gatekeepers”).
R-genes typically show an unusually high turnover rate
due to strong selection to keep up in a biological arms
race with plant pathogens [31,67]. We suggest such R-
genes follow a different evolutionary trajectory than genes
with regulatory roles [38]. In this context, the added value
of our study lies within the wide phylogenomics scope of
the underlying approach. Although similar findings are
available in Arabidopsis, monitoring dynamics underlying
target gene evolution for approximately 100 MA (corre-
sponding to radiation time of the core eudicots) results in
higher confidence in the validity of our inferences.

Methods

Hardware resources and software prerequisites

All analysis were performed on a commercial Lenovo
ultrabook, model Thinkpad X1 Carbon with 8GB RAM
and Intel Core i7 3667U CPU (two physical / four virtual
cores). The in-house developed perl and python scripts re-
quired perl (strawberry v5.18) and python (v2.7) libraries
including bioperl (v1.6.910) and biopython (v1.63) mod-
ules. The iprscan_urllib.py-script for HMM-based domain
annotation (see below) required SOAPy, NumPy and
urllib python modules. For blast screens, we employed
the stand-alone command line version of NCBI blast
2227+  (ftp://ftp.ncbinlm.nih.gov/blast/executables/blast
+/LATEST/, last accessed on November 11th, 2014) [74].
For platform-independent coupling and parallelization
of all employed scripts and programs, we wrote batch
wrappers using the notepad++ editor (www.notepad-
plus-plus.org, last accessed on November 11th, 2014).

Genome annotations

The Complete sets of representative genes and proteins
for twelve genome annotations were downloaded using
www.phytozome.net (last accessed on October 15th,
2014) [97]. We included Arabidopsis thaliana TAIR10.02
[68], Arabidopsis lyrata v107 [98], Eutrema parvulum v2
[99], Brassica rapa v1.1 [100], Carica papaya v0.5 [45], Cit-
rus sinensis v1 [101], Vitis vinifera v2 [47], Solanum tubero-
sum v3.2.10 [102] and Solanum lycopersicum v2.40 (Potato
Genome Consortium 2012). Aethionema arabicum v0.2
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[43] Tarenaya hasslerania v4 [49] and Nicotiana benthami-
ana v042 [103] genome annotations were made available
by the authors.

Confirmation and extension of the NB-LRR multi-gene
family in Arabidopsis thaliana

We obtained 138 NB-LRR genes from [11] and queried
them against the TAIR10 A. thaliana genome annotation
in a blast screen without e-value threshold (forward run).
We extracted all target sequences and queried them back
against the A. thaliana TAIR10 genome annotation with
an applied target sequence maximum threshold of two
(reverse run). After removal of self-hits, we scored loci
as NB-LRR genes if they were part of the target
sequence pool in the forward run, and aligned to a NB-
LRR gene as defined by Guo et al. in the reverse run.
We thereby created an extended set of A. thaliana NB-
LRR loci.

Determination of orthologous gene anchors

In a first step for large-scale NB-LRR gene identification,
we determined reciprocal best blast hits (RBH) for both
(a) protein and (b) coding DNA sequences between A.
thaliana Col-0 and all other eleven genome annotations
in a blast screen without e-value thresholds. Since NB-
LRR loci can comprise up to seven different domain
types connected by partially conserved linkers, the RBH
approach can result in false positives due to short but
highly conserved alignments of highest-scoring sequence
pairs (HSPs) in functionally non-relevant (i.e. structural)
parts of the protein. Therefore, we developed a python
script to discard RBH pairs with a query/target sequence
length ratio below 0.5 and above 2.0. We determined (c)
additional, length-filtered RBH pairs for these loci within
the aforementioned length ratio scope to form a third
line of evidence for orthologous gene detection.

Syntelog/ohnolog determination

Calculation of pairwise syntenic blocks within and between
genomes is based on integer programming [84] but imple-
mented to an easy-to-use web interface termed CoGe plat-
form for comparative genomics (www.genomevolution.org,
last accessed on November 11th, 2014) [36]. Within all
genome assemblies, we determined genes sharing the same
genomic context to counterparts in the A. thaliana Col-0
genome annotation (defined as ohnologs or syntelogs)
using the DAGchainer [104] and Quota-Align [84] algo-
rithms implemented to the “SynMap” function within
CoGe. To mask noise generated by successive duplica-
tion(s) of ohnolog blocks, we applied Quota-Align ratios
for coverage depth consistent with the syntenic depth
calculated for each genome annotation. For merging of
adjacent syntenic blocks, we applied a threshold of n = 350
gene spacers. For ohnolog gene pairs, we calculated rates
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of synonymous substitutions (Ks-values) using CodeML of
the PAML package [105] implemented to SynMap and ap-
plied Ks-value thresholds for ancient WGD events as pre-
viously described [39]. For determination of within-species
ohnologs (comprising ohnolog blocks due to autopoly-
ploidy events), we proceeded similar with the difference
that we queried the target genomes against themselves
instead of against Arabidopsis, using the “SynMap”
function within the CoGe platform for comparative gen-
omics (parameters: gene order = relative/minimum clus-
ter size = 5 genes/maximum chaining distance =20
genes/scoring function = collinear). The latter param-
eter enforces, together with the maximum chaining dis-
tance, scoring dense arrangement of collinear gene pairs
as previously described [36,106] and provides a de facto
density cutoff. Note that gene density cutoffs per Kb/
Mb would not be consistent between different synteny
runs since values vary greatly across genomes, or even
across different regions within the same genome as previ-
ously described [36,106]. For the lineage-specific WGD
events known for B. rapa, T. hasslerania, S. tuberosum
and S. lycopersicum, we set maximum thresholds for Ks
value averages of ohnolog blocks (1.5) to eliminate noise
of recent duplication events. Due to minimum require-
ments on assembly quality that apply for usage of Syn-
Map, it was not possible to determine the fraction of
ohnolog duplicates for the current gene-space assemblies
of Aethionema, Carica, Citrus, Vitis and Nicotiana with
the available algorithms. Synteny of genes within and be-
tween lineages was visualized using the GEVO function
implemented to the CoGe platform for comparative gen-
omics (see above).

Determination of anchor paralogs and generation of
extended multi-gene family cluster pool

We defined the orthologous gene sets as sum of three
groups of RBH pairs (first group: based on length-filtered
protein pairs; second group: based on non-length-
filtered protein pairs; third group: based on non-length-
filtered CDS pairs; see above for length filter criteria).
We merged the orthologous gene sets with the ohnolog
genes set to create a set of putative homologous loci an-
choring all A. thaliana gene families in all other analyzed
genome annotations (“anchor pool”). In a next step, we
performed a blast search without e-value threshold to
query all homologous anchor genes against all twelve ge-
nomes to determine putative paralogs of the anchor genes
set (forward run). We extracted all target sequences and
queried them against the A. thaliana Col-0 TAIR10 gen-
ome annotation with a target sequence maximum thresh-
old of two (reverse run). After removal of self-hits, we
scored loci as NB-LRR if they aligned to any member of
the extended NB-LRR locus cluster in A. thaliana (see
above). We defined all members of this pool as anchor


http://www.genomevolution.org

Hofberger et al. BVIC Genomics 2014, 15:966
http://www.biomedcentral.com/1471-2164/15/966

paralogs if they are not present within the set of hom-
ologous anchor genes (see above), thereby creating a
highly accurate super-cluster of NB-LRR genes across
twelve genomes.

Hidden Markov modeling and prediction of protein
domains

The above-mentioned extended multi-gene family clus-
ter of NB-LRR genes is based on both sequence hom-
ology and genomic location of its members. However,
we observed an erosion of synteny across lineages rela-
tive to their phylogenetic distance. Furthermore, DNA
sequence homology decreases with phylogenetic distance
due to wobble rules for the third codon position. Like-
wise, the protein sequence homology between distant
multi-gene family members can decrease due to syn-
onymous substitutions of amino acids belonging to the
same chemical class (i.e. aliphatic, aromatic or indolic).
Therefore, we applied a final filtering step to remove
false-positives from the extended NB-LRR gene cluster
pool across all genomes. Using the iprscan_urllib.py script
provided by the European Molecular Biology Laboratory
(EMBL, Heidelberg, Germany) (https://www.ebi.ac.uk/
Tools/webservices/services/archive/pfa/iprscan_rest, last
accessed on November 11th, 2014), we queried every
member of the extended NB-LRR cluster pool to 14
algorithms that apply Hidden Markov Models for (protein
domain) signature recognition (BlastProDom, FPrintScan,
HMMPIR, HMMPfam, HMMSmart, HMMTigr, ProfileScan,
HAMARP, PatternScan, SuperFamily, SignalPHMM, TMHMM,
HMMPanther and Gene3D) [107]. We overcame the one-
sequence-at-a-time limitation of the EMBL server by writ-
ing batch wrappers for 25x-fold parallelization. To form
a second layer of control we additionally tested all target
genes for an encoded LRR-domain using the “LRRfinder”
-algorithm version 2.0 available at http://www.lrrfinder.
com/ (last accessed on November 11th, 2014) [108]. As a
result, we mapped all protein domains present in the
putative multi-gene family cluster onto their genes in less
than a day, and discarded all false positive genes (i.e. genes
not coding for at least one cluster-common domain). Final
referencing of proteins with both NB-ARC- and LRR-
domains was performed using a multi-vlookup array
function in MS excel 2013.

Determination of tandem duplicate gene copies

To determine the fraction of tandem duplicate gene cop-
ies, we queried the complete protein annotation of every
genome assembly against itself in a blast screen without
any e-value threshold and filtered our final set of target
sequences from above outside a window of n = 10 allowed
gene spacers in both directions from the query sequence
as previously described [53]. Likewise, we have filtered hits
with genomic location on distant chromosomes/scaffolds/
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contigs to avoid false-positive scoring of transpositional
duplicates.

Multiple protein alignments

To generate multiple alignments of protein sequences,
the stand-alone 64-bit version of MAFFT v7 was employed
(http://mafft.cbrc.jp/alignment/software/, last accessed on
November 11th, 2014) [109]. First, all NB-LRR proteins were
aligned species-wise together with the HMM-generated
consensus sequence of the NB-ARC-domain (available
at http://niblrrs.ucdavis.edu/At_RGenes/, last accessed
on November 11th, 2014) as well as the LRR-domain
(available at http://smart.embl.de/smart/do_annotation.
pI?DOMAIN=SM00370, last accessed on October 15th,
2014) using the command line mafft.bat —anysymbol
—thread 4 —threadit 0 —reorder —auto input > output.
Mesquite v2.75 (http://mesquiteproject.org, last accessed
on November 11th, 2014) was used with multi-core pref-
erences to trim MAFFT multiple alignments down to the
NB-ARC- and LRR-domain blocks. Trimmed blocks were
re-aligned using MAFFT with the command line mafft.bat
—anysymbol —thread 4 —threadit 0 —reorder —maxiterate
1000 —retree 1 —localpair input > output.

Codon alignments and determination of substitution
rates

Re-aligned NB-ARC- and LRR-domain blocks were trans-
ferred to codon alignments using the CDS sequence
counterparts and the pal2nal.pl script v14 [110] (http://
www.bork.embl.de/pal2nal/distribution/pal2nal.v14.tar.gz,
last accessed on November 11th, 2014). Gaps were allowed
but manually edited wherever necessary. We allowed un-
usual symbols and manually edited mismatches between
CDS and protein sequences wherever necessary. Syn-
onymous and non-synonymous substitution rates were
determined using the “KaKs_Calculator” software (https://
code.google.com/p/kaks-calculator/wiki/KaKs_Calculator,
last accessed on November 11th, 2014) [111] including
ten substitution rate estimation methods (model averaging
was applied). Divergence rates are generally determined
between pairwise alignments of homologous sequences.
For determination of average divergence rates among sin-
gletons (i.e. non-TD non-ohnolog loci), we aligned single-
ton NB-LRR loci with the best non-self blast hit among all
target genes within one species. For determination of aver-
age divergence rates among retained ohnolog duplicates,
we aligned all ohnolog NB-LRR loci with the best non-self
blast hit among all ohnologs within one species. In case of
ohnolog triplets, we only considered the highest-scoring
sequence pair (HSP). For determination of average diver-
gence rates among arrays of tandem duplicate NB-LRR
genes, we aligned the first with the last member of every
array, thereby covering the majority of all tandem arrays
(see Results). In a control step, we determined average
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divergence rates for all pairwise combinations within the
largest tandem array in every species and did not find sig-
nificant deviations (data not shown).

Generation and graphical editing of figures

Ideograms of plant chromosomes/scaffolds/contigs were
generated using the circos package (http://circos.ca/, last
accessed on November 11th, 2014) [112]. Histograms and
Venn-diagrams were generated using the matplotlib package
(http://matplotlib.org/, last accessed on November 11th,
2014). Other figures were generated with MS office and
graphically edited using the GIMP package (http://www.
gimp.org/, last accessed on November 11th, 2014).

Availability of supporting data
The data sets supporting the results of this article are in-

cluded within the article and its additional files.
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Additional file 1: Syntelogs and orthologs of all Arabidopsis NB-LRR
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Additional file 3: CDS sequences of identified genes encoding both
NB-ARC- and LRR-domains.

Additional file 4: Translated protein sequences of identified genes
encoding both NB-ARC- and LRR-domains.
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