
RESEARCH Open Access

Efficient and scalable scaffolding using optical
restriction maps
Subrata Saha, Sanguthevar Rajasekaran*

From Third IEEE International Conference on Computational Advances in Bio and Medical Sciences (ICCABS
2013)
New Orleans, LA, USA. 12-14 June 2013

Abstract

In the next generation sequencing techniques millions of short reads are produced from a genomic sequence at a
single run. The chances of low read coverage to some regions of the sequence are very high. The reads are short
and very large in number. Due to erroneous base calling, there could be errors in the reads. As a consequence,
sequence assemblers often fail to sequence an entire DNA molecule and instead output a set of overlapping
segments that together represent a consensus region of the DNA. This set of overlapping segments are collectively
called contigs in the literature. The final step of the sequencing process, called scaffolding, is to assemble the
contigs into a correct order. Scaffolding techniques typically exploit additional information such as mate-pairs, pair-
ends, or optical restriction maps. In this paper we introduce a series of novel algorithms for scaffolding that exploit
optical restriction maps (ORMs). Simulation results show that our algorithms are indeed reliable, scalable, and
efficient compared to the best known algorithms in the literature.

Introduction
To conduct basic biological research such as but not
limited to diagnostic, biotechnology, forensic biology,
biological pathways and knowledge of DNA sequences
has become inevitable. Scientists need to know the
sequence of bases to reveal genetic information that is
hidden in a particular segment of a DNA molecule. For
example, they can use sequence information to identify
which stretches of DNA molecule contain genes, as well
as analyze those genes to detect potential changes in
the sequence that may cause diseases. So, to obtain an
in-depth knowledge of a particular DNA molecule,
sequencing of that molecule is the primary step. DNA
sequencing is any process that is used to map out the
precise order of the nucleotides within a single strand of
a DNA molecule. The structure of DNA was modeled
as a double helix in 1953. The first notable method for
sequencing DNA was developed during the 1970s
known as Sanger sequencing. It is a method of DNA
sequencing based on the selective incorporation of

chain-terminating dideoxynucleotides by DNA polymer-
ase during in vitro DNA replication [6,7]. It was devel-
oped by Frederic Sanger and his colleagues in 1977 and
was the most widely used sequencing technology until
the advent of NGS technologies. An alternative to San-
ger was shotgun sequencing [8,9]. By the time the
Human Genome Project (HGP) began in 1990, only a
few scientific laboratories had the ability to sequence a
mere 100k bases, and the total cost of sequencing
remained very high. Since then, technological improve-
ments and computerized automation have increased the
sequencing speed and lowered the cost to the point
where individual genes can be sequenced routinely, and
some laboratories managed to sequence well over 100
million bases per year. Beginning in the late 1990s, the
scientific community has developed a number of new
DNA sequencing technologies including the first of the
“next-generation” sequencing methods.
High-throughput or next-generation sequencing tech-

nologies parallelizes the sequencing process and produce
thousands or millions of short reads (25-100 bp) simulta-
neously at a single run. Some of the sequencing technolo-
gies dominating the NGS market today are Massively

* Correspondence: rajasek@engr.uconn.edu
Department of Computer Science and Engineering, University of
Connecticut, Storrs, Connecticut, USA

Saha and Rajasekaran BMC Genomics 2014, 15(Suppl 5):S5
http://www.biomedcentral.com/1471-2164/15/S5/S5

© 2014 Saha and Rajasekaran; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and
reproduction in any medium, provided the original work is properly cited. The Creative Commons Public Domain Dedication waiver
(http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

mailto:rajasek@engr.uconn.edu
http://creativecommons.org/licenses/by/4.0
http://creativecommons.org/publicdomain/zero/1.0/

parallel signature sequencing (MPSS), 454 pyrosequen-
cing, Illumina (Solexa) sequencing, SOLiD sequencing,
Ion semiconductor sequencing, etc. An introductory
review of these techniques can be found in [1]. After gen-
erating NGS reads, they can either be assembled de novo
or aligned to a known reference sequence [2]. The choice
solely depends on the biological application of interest as
well as cost, effort, and time constraints. For example, if
the intended application of interest is to determine a
complete genomic sequence of a new species, we have to
follow de novo sequencing strategy. On the contrary,
identifying genetic variations in multiple strains of highly
related genomes can be accomplished by aligning NGS
reads to their reference genomes. This approach is
cheaper and faster than de novo sequencing. But there
are some limitations and challenges associated with this
alignment approach. One of the most important chal-
lenges is in placing the reads within repetitive regions in
the reference genome. Besides this, some of the regions
existing in the source genome may not even exist in the
reference genome. This could happen because of gaps in
the reference genome [3]. The problem of aligning reads
in repetitive regions can be solved by exploiting mate-
pair reads information. De novo sequencing techniques
also face challenges in repetitive regions and from low
read coverages that result in gaps in the constructed
sequence. The former can be overcome by employing
mate-pair reads [4] or optical restrictions maps [5] infor-
mation and the later can be solved increasing the read
coverage.
In sequencing DNA is first shredded randomly into

numerous smaller fragments. The resulting fragments are
sequenced using the chain termination method to obtain
reads. Multiple overlapping reads for the target DNA are
obtained by performing several rounds of this fragmenta-
tion and sequencing. The resulting reads of these frag-
ments are then reassembled into their original order based
on overlaps. Reassembly is done by a computer program
ultimately yielding the complete and continuous sequence.
A contig is a series of overlapping DNA sequences used to
make a physical map that reconstructs the original DNA
sequence of a chromosome or a region of a chromosome.
It is a set of overlapping DNA segments that together
represent a consensus region of DNA. If the coverage is
large enough and the sequenced reads are error free, there
should be only one contig containing the entire genome.
But in the next generation sequencing technologies the
coverage can be low resulting in gaps and the reads also
can be erroneous. As a consequence sequence assemblers
typically produce multiple contigs. Obtaining the exact
orientation and precise order of the contigs is the next
challenging task. This step is known as scaffolding.
In genomic mapping, a scaffold is a series of contigs that

are in the correct order but not necessarily connected in

one continuous stretch of the genomic sequence. So, a
scaffold is not only composed of contigs but also gaps.
The problem of finding the correct order of the contigs
can be posed as the problem of finding a permutation of
these contigs that optimizes an objective criterion. Scaf-
folding is known to be NP-hard. Any information about
the orderings such as the sizes of fragments of the DNA
molecule can indeed help in devising an efficient algo-
rithm for scaffolding. We can get fragment size informa-
tion by employing restriction enzymes. A restriction
enzyme (or restriction endonuclease) is an enzyme that
cuts DNA at or near some specific recognition nucleotide
sequences known as restriction sites. Restriction enzymes
are of three types and found in bacteria and archaea. A
restriction enzyme acts against invading viruses by elec-
tively cutting up a foreign DNA in a process called restric-
tion. In general, restriction enzymes recognize a specific
sequence of nucleotides and produce a double-stranded
cut in the DNA. The recognition sequences usually vary
between 4 and 8 nucleotides, and they are generally palin-
dromic sequences. The locations of these specific
sequences of nucleotides on a DNA molecule are called
restriction sites. A restriction map detects known restric-
tion sites within a sequence of DNA by cleaving it with a
specific restriction enzyme. A restriction map provides a
number of fragment sizes which collectively serve as a
unique “fingerprint” or “barcode” for that sequence [10].
An optical restriction map (ORM) [11] is also similar to a
restriction map with only one difference. It provides an
ordered list of fragment sizes and this method has been
combined with the assembly process to sequence whole
genomes. Some of the recent research on ORMs in the
context of contigs assembly can be found in [12], [13],
[14], or [5].
We have employed ORMs in the context of scaffolding

to find the relative order and correct placement of con-
tigs produced by sequence assemblers. In this paper we
propose several algorithms for scaffolding. We use a two
phase strategy for scaffolding (just like the authors of
[5]). In the first phase we compute a score for each contig
corresponding to each possible placement of the contig
in the ORM. In the second phase we utilize the scores
computed in the first phase to come up with a non-over-
lapping placement of (possibly a subset of) the contigs in
the ORM. In brief, we transform each contig into an
ordered sequence of fragment sizes (just like the ORM).
A greedy scoring scheme is then applied to find a score
for each contig for each possible placement of the contig
in the ORM. Greedy placement algorithms are then used
to place the contigs in a correct order by using the
matching scores. To validate the robustness of our pro-
posed algorithms we have introduced different types of
errors. Our simulation results on both real and synthetic
data show that our algorithms are indeed scalable and

Saha and Rajasekaran BMC Genomics 2014, 15(Suppl 5):S5
http://www.biomedcentral.com/1471-2164/15/S5/S5

Page 2 of 12

efficient in terms of both accuracy and time. The rest of
this paper is organized as follows: Section 2 contains the
algorithms we propose. Simulation results and relevant
discussions are presented in Section 3. Section 4 con-
cludes the paper.

Methods
There are two phases in our algorithm. In the first phase
we compute a score for each contig corresponding to
each possible placement of the contig in the ORM. In the
second phase we utilize the scores computed in the first
phase to come up with a non-overlapping placement of
the contigs in the ORM. These two phases are described
in Sections and, respectively.

A scoring scheme
Overview
To effectively and correctly order the contigs we need a
reliable scoring mechanism. As the genomic sequence
can be composed of millions or even billions of charac-
ters, we should also consider the time spent by the pro-
posed algorithms. There is a trade off between the time
an algorithm takes and the accuracy it gives. We achieve
a very good balance between these two. This is done by
carefully formulating the scoring algorithm. For each
contig, we generate an ordered list of fragment sizes.
Since we know the sequence of the restriction enzyme
from the ORM of the genomic sequence, we can easily
find the ordered restriction fragment sizes of any contig
by incorporating in silico digest of the restriction enzyme.
The resulting list of ordered fragment sizes can be
mapped with the ORM. Assuming that there are no
errors either in the ORM or the fragment sizes of the
contigs, for any given ordered fragment sizes of a contig,
in general, there will exist a subset of matching ordered
fragment sizes in the ORM. Exploiting this information
we can order the contigs. But in a real world scenario the
data often may not be error free. Errors could occur due
to the omission of some restriction sites or a change in
some fragment sizes (due to sequencing errors). To
quantify the effect of the errors a scoring mechanism is
introduced.
Let A = {ci1, ci2, . . . , cini } be the set of the ordered in

silico fragment sizes of a contig Ci and B = {ol, ol+1,
ol+2, . . . , om−l+1} be the set of ordered fragment sizes
of a particular region of the ORM stretching from the
lth fragment to the (m − l + 1)th fragment. The score
of the contig Ci for the region stretching from the lth
fragment to the (m − l + 1)th fragment of the ORM is
defined as follows:

Score(Ci) =

∣∣∣∣∣
ni∑
j=1

cij −
m−l+1∑
j=1

oj

∣∣∣∣∣ + P ∗ MRS (1)

where P and M RS are the penalty term and number
of missed restriction sites, respectively. Penalty term P is
user defined and should be very large. Under ideal cir-
cumstances where there are no errors in reads, there are
no errors in the ORM, the assembly is perfect, etc., we
should not tolerate any missed restriction sites. In this
case P could be even ∞. But in practice, depending on
the technology employed, we could expect to see some
errors in every process. As a result, we have to use a
finite penalty. The value of P will thus depend on the
error rates in the different technologies. If the expected
error rate is low, then P has to be large. If the expected
error rate is high, then P has to be low. In our experi-
ments a value of 999 for P seems to yield good results.
More details on our algorithms are given in the next

section.
A greedy scoring algorithm
The input to the Greedy Scoring algorithm are an ORM
of the genomic sequence of interest, an ordered list of
fragment sizes for each contig, and a penalty term. The
fragment sizes may not be known exactly. Each fragment
size in general can be thought of as a random variable for
which we know the mean and the standard deviation. For
simplicity assume that the standard deviation is the same
(say s) for all the fragment sizes. The algorithm proceeds
greedily to calculate the score of each contig. In fact, the
algorithm computes multiple scores for each contig. If m
is the number of fragment sizes in the ORM, then the
algorithm computes m scores for each contig.
Let o1, o2, . . . , om be the fragment sizes in the ORM.

Let C be any contig and let the fragment sizes of C be c1,
c2, . . . , cn. A score for C is computed by matching c1
with o1; Another score is computed by matching c1 with
o2; and so on. In other words, we compute a score for C
by matching c1 with oi for each possible value of i, 1 ≤
i ≤ m. What is the score when c1 is matched with oi (for
some specific value of i)? We correlate a prefix of C (of
minimum length) with a prefix of oi, oi+1, . . . , om such
that the two prefix sums are nearly the same (within s).
In other words, we identify the least integer u and an

integer q such that |
∑u

j=1
ci −

∑i+q−1

j=1
oi| ≤ σ . Once

we find such u and q, we match cu with oi+q−1. Now
we proceed recursively, i.e., we look for a prefix (of
least length) of cu+1, cu+1, . . . , cn and a prefix of oi+q,
oi+q+1, . . . , om whose sums are nearly the same (up to s);
and so on.
The score for the resultant mapping of the contig C is

obtained using Equation 1. For example, the partial
score corresponding to the mapping of cu with oi+q−1 is

|
∑u

j=1
ci −

∑i+q−1

j=1
oi| + [(u − 1) + (q − 1)] ∗ P . Such

partial scores are computed and added. Note that when
we map c1 with oi, the last fragment cn of the contig will

Saha and Rajasekaran BMC Genomics 2014, 15(Suppl 5):S5
http://www.biomedcentral.com/1471-2164/15/S5/S5

Page 3 of 12

be mapped with some fragment ot in the ORM. Corre-
sponding to this mapping of the contig C, we refer to oi
as the starting fragment and ot as the ending fragment.
For the base case when i = m, we match cn with om.

Also when
∑n

j=1 cj >
∑m

j=i oj we match cn with om.
More details of the algorithm can be found in Algo-

rithm 1. The run time of our greedy scoring algorithm
is O(mnr), where m is the number of fragments in the
optical map, r is the number of contigs and n is the
maximum number of fragments in any contig.

Placement schemes
The placement scheme utilizes the matching scores of
the contigs to find the correct order. We propose three
different placement algorithms that are described below.
Some notations
The list of ordered fragment sizes in the ORM is o1, o2, .
. . , om. The number of contigs is denoted as r. Let the
cotigs be C1, C2, . . . , Cr. The number of fragments in
Ci is denoted as ni, for 1 ≤ i ≤ r. The list of ordered

fragment sizes corresponding to Ci is ci1, c
i
2, . . . , c

i
ni , for

1 ≤ i ≤ r. Let k denote maxri=1 ni .
Greedy placement algorithm 1 - GPA1
GPA1 takes as input the contigs and the ORM together
with the output of Algorithm 1. If m is the number of
ordered fragments in the ORM, then the number of
scores associated with each contig will be m, as
described in the previous section. The algorithm pro-
ceeds as follows: At first the matching scores associated
with each contig are sorted individually in increasing
order. The first position of the sorted list of each contig
contains the minimum score among all the scores. As
the penalty term is very large, this matching score is the
best score for placing this contig anywhere in the ORM.
We now sort the contigs based on the indices of the

starting fragments corresponding to the best scores. As
an example, assume that there are 5 contigs
C′
1,C

′
2, . . . ,C

′
5 and consider their best scores. For each

such score there is a starting fragment and an ending
fragment. If the starting fragments of these contigs are
o5, o11, o3, o22, and o7, respectively, then the sorted
order of the fragments will be o3, o5, o7, o11, and o22. So
the corresponding contigs with respect to its starting
fragments will be C′

3,C
′
1,C

′
5,C

′
2,C

′
4 . In general, let this

sorted order be C1, C2, . . . , Cr . Followed by this, we
attempt to place the contigs in the ORM in this order
(using the mapping corresponding to the best score).
Specifically, we first try to place C1; Next we attempt to
place C2; and so on. When we try to place any contig C,
we check whether the starting and/or ending fragments
of C will overlap with any of the already placed contigs.
If there is such an overlap, we discard C and move onto
the next contig in the sorted list.

A detailed pseudocode is supplied in Algorithm 2. Let
m be the number of fragments in the optical map, and r
be the number of contigs. Intuitively the number of
matching scores of each contig Ci is at most O(m).
Since the matching score is an integer, sorting matching
scores of each contig Ci takes at most O(m) time. So,
the execution time of lines 2-7 in Algorithm 2 is O(mr).
Sorting contigs with respect to starting fragment takes
O(r) time (line 8). In the worst case lines 9-12 take
O(r2) time. Since r ≪ m, the run time of Algorithm 2 is
O(mr).
Greedy placement algorithm 2 - GPA2
GPA2 proceeds as follows: At first the matching scores
associated with each contig are sorted individually in
increasing order. Note that we consider m possible
matchings for each contig and hence each contig has a
list of m mappings and scores. Let the list of mappings
(in sorted order of the matching scores) for contig C
be LC.
The number of matching sites for a contig mapping is

defined to be the number of fragments in the contig
that are matched with fragments in the ORM. For each
contig, we know that there are m scores (with one score
per starting fragment or mapping). Corresponding to
each starting fragment (i.e., mapping) we can also com-
pute the number of matching sites. Thus for every con-
tig, we have a list of m numbers of matching sites. We
identify for each contig the mapping that has the largest
number of matching sites. Let bC be this number for
contig C. We order the contigs based their bC values in
non-increasing order. Let the sorted list be
C′
1,C

′
2, . . . ,C

′
r based on their bC values.

Place the contigs one-by-one based on the above sorted
list starting from C′

1 For any contig C, mappings for this
contig will be considered as per the list LC. In other
words, the first time when we try to place C, we will use
the mapping found in LC [1]. When we try to place C
using this specific mapping, we check whether the start-
ing and/or ending fragments of the contig will overlap
with already placed contigs. If there is no overlap, we
process the next contig. If there is an overlap while pla-
cing C (using the mapping in LC [1]), we move to the
next entry in LC, i.e., LC [2]. If successful, we process the
next contig. If not, we move on to the next entry in LC,
and so on. We make repeated attempts to place C at
most d times (where d is a user-specified parameter). If
we are not successful in these d attempts, we ignore C
and proceed to process the next contig.
Additional details of the algorithm are supplied in

Algorithm 3. Let m be the number of fragments in the
optical map, and r be the number of contigs. The run
time of lines 2-7 in Algorithm 3 is O(mr) as discussed
above. Sorting contigs with respect to the matched sites
takes O(r) time (line 8). Lines 13-20 take O(rd) time. In

Saha and Rajasekaran BMC Genomics 2014, 15(Suppl 5):S5
http://www.biomedcentral.com/1471-2164/15/S5/S5

Page 4 of 12

line 21 sorting contigs with respect to starting fragment
takes O(r) time. Since d ≪ r ≪ m, the run time of
Algorithm 3 is O(mr).
Algorithm 1: Greedy Scoring
Input: OpticalRestrictionMap[1..m],

ContigFragmentList[1..r][1..k], Penalty, P
Output: Contigs with associated scores CS[1..r][1..m]
begin

1 i ← 1
repeat

2 j ← 0
3 case ← 0

repeat
set matched_sites, contig_frag_size,
op_frag_size to 0

4 text_pos ← j + 1
5 pattern_pos, missed_res_sites to 1

repeat
6 if (case == 0){
7 contig_frag_size =

ContigFragmentList[i][pattern_pos]
8 op_frag_size =

OpticalRestrictionMap[text_pos]
9 } else if (case == 1){
10 contig_frag_size +=

ContigFragmentList[i][pattern_pos]
11 } else if (case == 2){
12 op_frag_size +=

OpticalRestrictionMap[text_pos]
13 }
14 lower_bound = op_frag_size −

std(text_pos)
15 upper_bound = op_frag_size +

std(text_pos)
16 if (con_frag_size ≥ lower_bound and

con_frag_size ≤ upper_bound){
17 Increment pattern_pos, text_pos, and

matched_sites by 1
18 case = 0
19 } else if (con_frag_size < lower_bound){
20 Increment pattern_pos, and

missed_res_sites by 1
21 case = 1
22 } else if (con_frag_size > upper_bound){
23 Increment text_pos, and

missed_res_sites by 1
24 case = 2
25 }
26 if (pattern_pos ≥ |ContigFragmentList

[i][1..k]|){
27 Calculate score using Equation 1
28 Insert the score along with the

starting and ending positions in CS
29 }

until pattern_pos ≤
|ContigFragmentList[i][1..k]|;

30 j ← j + 1
until j ≤ m;

31 i ← i + 1
until i ≤ r;

32 Return CS[1..r][1..m]
Algorithm 2: Greedy Placement Algorithm 1 (GPA1)

Input: Contigs with associated scores CS[1..r][1..m]
Output: Set of ordered contigs, C
begin

1 Create array of structure struct[1..r]
2 for (each contig, ci){
3 Sort the matching score in increasing order
4 Place struct[i].contig ← ci
5 Place struct[i].starting position ←

starting_position
6 Place struct[i].ending position ←

ending_position
7 }
8 Sort the array of struct[1..r] with respect to

starting_position in increasing order
9 for (each contig, ci in struct[1..r]){
10 if (ci is not overlapped with already placed

contigs in C){
11 Place the contig ci at the end of the list C
12 }
13 }
14 Return C

Greedy placement algorithm 3 - GPA3
GPA3 takes as input the contigs and the ORM together
with the output of Algorithm 1. If m is the number of
ordered fragments in the ORM, then the number of
scores (or mappings) associated with each contig will be
m, as described in the previous section. The algorithm
proceeds as follows: At first the matching scores asso-
ciated with each contig are sorted individually in
increasing order. The first position of the sorted list of
each contig contains the minimum score (i.e., the best
score) among all the scores.
We now sort the contigs based on their best scores.

Let this sorted order be C′′
1,C

′′
2, . . . ,C

′′
r . Followed by

this, we place the contigs in the ORM in this order.
Specifically, we first try to place C′′

1 ; Next we try to
place C′′

2 ; and so on. Note that for any given contig and
a corresponding score, we know the starting fragment as
well as ending fragment (in the ORM). While trying to
place any contig C, we check if there will be any over-
laps with any of the contigs already placed. If so, we
move on to the next entry in C’s list and check if C can
be placed based on the corresponding starting and end-
ing fragments without any overlaps. We make a total of
at most d such attempts to place C (where d is a user-
defined parameter). If C cannot be placed successfully

Saha and Rajasekaran BMC Genomics 2014, 15(Suppl 5):S5
http://www.biomedcentral.com/1471-2164/15/S5/S5

Page 5 of 12

within these attempts, we drop C from further consid-
erations and move on to the placement of the next
contig.
A pseudocode of the algorithm can be found in Algo-

rithm 4. Let m be the number of fragments in the opti-
cal map, and r be the number of contigs.
Algorithm 3: Greedy Placement Algorithm 2 (GPA2)
Input: Contigs with associated scores CS[1..r][1..m],

Depth, d
Output: Set of ordered contigs, C
begin

1 Create array of structure struct[1..r]
2 for (each contig, ci){
3 Sort the matched_sites in decreasing order
4 Place the sorted list in soretd_list variable
5 Place struct[i].contig ← ci
6 Place struct[i].matched_list ← matched_sites
7 for (each matched sites, mj in the

matched_list){
8 Place struct[i].starting_position[j] ←

starting_position[j]
9 Place struct[i].ending_position[j] ←

ending_position[j]
10 }
11 }
12 Sort the array of struct[1..r] with respect to

the greatest number of matched sites
found in the first position of the matched list

13 for (each contig, ci in struct[1..r]){
14 for (j ← 1; j ≤ d; j ← j + 1){
15 if (ci is not overlapped with already

placed contigs in C){
16 Place the contig ci at the end of the list

C
17 Break
18 }
19 }
20 }
21 Sort the array C with respect to the starting

position in increasing order
22 Return C
The run time of lines 2-7 in Algorithm 4 is O(mr) as

discussed above. Sorting contigs with respect to the
least matching score takes O(r) time (line 8). Lines 13-
20 take O(rd) time. In line 21 sorting contigs with
respect to starting fragment takes O(r) time. Since d ≪
r ≪ m, the run time of Algorithm 4 is O(mr).

Results and Discussions
To prove the effectiveness of our proposed algorithms we
have done rigorous simulations on both real and syn-
thetic datasets. The simulation results show that the algo-
rithms are indeed scalable and efficient. We have also
compared our algorithm with one of the best known

algorithms [5]. Our algorithm outperforms the aforemen-
tioned algorithm in terms of run time, by more than two
orders of magnitude, and accuracy. The run time of the
scaffolding algorithm of [5] is O(m2n2r), where m is the
number of fragments in the optical map, r is the number
of contigs and n is the maximum number of fragments in
any contig. In comparison, the run time of our algorithm
is O(mnr). In this section we present our experimental
results. All the programs have been run on an Intel Core
i5 2.3 GHz machine with 4 GB of RAM.
Algorithm 4: Greedy Placement Algorithm 2 (GPA2)
Input: Contigs with associated scores CS[1..r][1..m],

Depth, d
Output: Set of ordered contigs, C
begin

1 Create array of structure struct[1..r]
2 for (each contig, ci){
3 Sort the matching score in increasing order
4 Place the sorted list in soretd_list variable
5 Place struct[i].contig ← ci
6 Place struct[i].score_list ← sorted_list
7 for (each score, sj in the sorted_list){
8 Place struct[i].starting_position[j] ←

starting_position[j]
9 Place struct[i].ending_position[j] ←

ending_position[j]
10 }
11 }
12 Sort the array of struct[1..r] with respect to

the least score found in the first position
of the score_list

13 for (each contig, ci in struct[1..r]){
14 for (j ← 1; j ≤ d; j ← j + 1){
15 if (ci is not overlapped with already

placed contigs in C){
16 Place the contig ci at the end of the list

C
17 Break
18 }
19 }
20 }
21 Sort the array C with respect to the starting

position in increasing order
22 Return C

Real datasets
Real datasets are comprised of two strains of yersiniae
bacteria, namely, Yersinia pestis, and Yersinia enterocoli-
tica. The yersiniae are Gram-negative rods belonging to
the family Enterobacteriaceae. They consist of 11 species
of which three are pathogenic to humans. Those are
Yersinia pestis, Yersinia pseudo-tuberculosis, and Yersi-
nia enterocolitica. The genomic sequences of Yersinia
pestis and Yersinia enterocolitica contain 4,653,728 bp

Saha and Rajasekaran BMC Genomics 2014, 15(Suppl 5):S5
http://www.biomedcentral.com/1471-2164/15/S5/S5

Page 6 of 12

and 4,615,899 bp, respectively. Each of the genomic
sequences is randomly fragmented into a number of
non-overlapping substrings/contigs of different lengths.
We then permute the resulting contigs randomly to
break the relative order existing among them. As we
know the placement of the contigs when we generate
them, we can easily detect whether our algorithms
reconstruct the correct orderings from the randomly
permuted contigs. To show the robustness of our pro-
posed algorithms we introduce errors by discarding
restriction sites with some probability. We also intro-
duce errors by resizing, i.e., by increasing or decreasing
the fragment sizes of the contigs.
We have generated 50, 100, 200, and 400 contigs from

the genomic sequence of Yersinia pestis and 200, and
400 contigs from Yersinia enterocolitica. Accuracy is
defined as the fraction of the contigs placed correctly. If
a contig cannot be placed, i.e, if the placement overlaps
with other contigs, we call it a conflict. On the contrary
when the placement of a contig is out of order (i.e.
when the contig is misplaced) we call it wrong place-
ment. From Table 1 and Table 2 it is evident that if

there are no errors in the datasets, the accuracy found
by applying the different methods is in the range: [97%,
100%]. The less the number of contigs, the more accu-
rate the resulting placement of the contigs are. In this
case, the algorithms are more resilient with errors. It is
also the case that GPA3 is more robust against the
errors introduced in the datasets.
To simulate practical scenarios, we have randomly gen-

erated reads of size 100 bp each from the two Yersinia
strains. Contigs were created employing the String Graph
Assembler (SGA) [15]. These contigs were then ordered
using GPA2. After ordering we concatenated the ordered
contigs to find the scaffold. As the sequences are very
long, it is infeasible to calculate the edit distance between
the original sequence and resulting scaffold. So, the geno-
mic sequence and the corresponding scaffold are aligned
using MUMmer [16]. The acronym “MUMmer” comes
from “Maximal Unique Matches”, or MUMs. It is based
on the suffix tree data structure designed to find maximal
exact matches of two input sequences. In Figure 1 we
have aligned ordered contigs of Yersinia pestis onto the
original sequence of Yersinia pestis. We have aligned

Table 1 Results for Yersinia pestis.

Contigs Method Missed probability % Resize Conflicts Wrong placement % Accuracy Time (s)

50 GPA1 0.0 0 0 0 100.00 31.97

0.1 5 0 0 100.00 29.45

0.2 10 0 0 100.00 29.07

0.3 20 27 1 44.00 25.99

GPA2 0.0 0 0 0 100.00 34.10

0.1 5 0 0 100.00 33.42

0.2 10 0 0 100.00 30.83

0.3 20 25 1 48.00 28.21

GPA3 0.0 0 0 0 100.00 35.02

0.1 5 0 0 100.00 32.41

0.2 10 0 0 100.00 27.76

0.3 20 12 2 72.00 27.24

100 GPA1 0.0 0 1 0 99.00 34.05

0.1 5 4 0 96.00 31.23

0.2 10 7 0 93.00 27.76

0.3 20 45 6 49.00 25.92

GPA2 0.0 0 1 0 99.00 31.44

0.1 5 2 0 98.00 33.17

0.2 10 4 2 94.00 26.18

0.3 20 36 10 54.00 28.90

GPA3 0.0 0 1 0 99.00 32.41

0.1 5 0 0 100.00 30.10

0.2 10 1 0 99.00 29.64

0.3 20 27 6 67.00 29.04

200 GPA1 0.0 0 3 0 98.50 36.90

0.1 5 8 0 96.00 33.28

0.2 10 21 0 89.50 33.11

Saha and Rajasekaran BMC Genomics 2014, 15(Suppl 5):S5
http://www.biomedcentral.com/1471-2164/15/S5/S5

Page 7 of 12

Table 1 Results for Yersinia pestis. (Continued)

0.3 20 69 4 63.5 29.61

GPA2 0.0 0 3 0 98.50 33.56

0.1 5 10 1 94.50 33.73

0.2 10 19 3 89.50 34.29

0.3 20 92 7 50.50 32.40

GPA3 0.0 0 3 0 98.50 34.93

0.1 5 5 0 97.50 35.96

0.2 10 12 1 93.50 32.25

0.3 20 52 5 71.5 32.16

400 GPA1 0.0 0 8 0 98.00 40.17

0.1 5 20 2 94.50 35.00

0.2 10 56 7 84.25 32.21

0.3 20 120 15 66.25 30.47

GPA2 0.0 0 8 0 98.00 34.77

0.1 5 28 5 91.75 35.83

0.2 10 47 25 82.00 33.15

0.3 20 116 35 62.25 28.99

GPA3 0.0 0 7 0 98.25 37.64

0.1 5 18 0 95.50 31.70

0.1 5 29 8 90.75 31.50

0.3 20 162 21 76.75 31.70

Table 2 Results for Yersinia enterocolitica.

Contigs Method Missed probability % Resize Conflicts Wrong placement % Accuracy Time (s)

200 GPA1 0.0 0 0 0 100.00 43.37

0.1 5 5 0 97.50 43.97

0.2 10 18 0 91.00 38.92

0.3 20 92 4 51.00 28.32

GPA2 0.0 0 0 0 100.00 46.41

0.1 5 3 0 98.50 45.47

0.2 10 11 6 91.50 32.71

0.3 20 84 10 53.00 32.29

GPA3 0.0 0 0 0 100.00 41.10

0.1 5 6 2 96.00 43.61

0.2 10 11 0 94.50 40.41

0.3 20 57 7 68.00 31.87

400 GPA1 0.0 0 9 0 97.75 46.67

0.1 5 17 1 95.50 45.02

0.2 10 45 1 88.50 37.00

0.3 20 111 18 67.75 32.95

GPA2 0.0 0 10 1 97.25 46.66

0.1 5 26 4 92.50 49.04

0.2 10 50 22 82.00 33.21

0.3 20 135 26 59.75 31.90

GPA3 0.0 0 9 0 97.75 43.89

0.1 5 15 0 96.25 36.04

0.2 10 29 5 91.50 33.53

0.3 20 54 23 80.75 33.04

Saha and Rajasekaran BMC Genomics 2014, 15(Suppl 5):S5
http://www.biomedcentral.com/1471-2164/15/S5/S5

Page 8 of 12

ordered contigs of Yersinia enterocolitica onto the origi-
nal sequence of Yersinia enterocolitica. The plots [Please
see Figure 1 and 2] represent the set of all MUMs
between the two input sequences. Forward MUMs are
plotted as red lines/dots while reverse MUMs are plotted
as blue lines/dots (encircled). A line of dots with unit
slope represents an undisturbed segment of conservation
between the two sequences, while a line of dots with
negative unit slope represents an inverted segment of
conservation between the two sequences. As is evident,
the alignments ordered contigs (i.e. scaffold) are nicely
placed onto the original sequences. The coverage of these
two alignments is approximately 92% which proves the
effectiveness of our algorithms.

Synthetic datasets
We have generated four genomic sequences of various
sizes by choosing each character randomly from a uni-
form distribution. We generated reads of size 100 bp
from each of the datasets such that the average coverage
of the reads to a particular position of the sequence is
around 5. Reads were generated by taking substrings of

size 100 bp from randomly selected positions in the
sequence. SGA [15] was used to generate contigs from
the reads. The contigs were then ordered using our
algorithms. ORM is created in silico by choosing a 4-bp
long sequence acting as a restriction enzyme. The
ordered fragment sizes of each contig are also created
by employing the same procedure stated above. After
getting the scaffold we calculate the edit distance
between the original sequence and the resulting scaffold.
It is intuitive that if the placement of the contigs in the
scaffold is correct, then the following statement holds: |
Size(original_sequence) − Size(constructed_sequence)| ≈
edit_distance(original_sequence, constructed_sequence).
Our simulation results show that this is indeed the case
[Please see Table 3].

Comparison
We have compared our algorithms with one of the the
best known algorithms existing in the literature [5]. The
simulation results show that our proposed algorithms
are superior in terms of both run time as well as accu-
racy. As the size of the sequence is increased more and

Figure 1 Aligning ordered contigs onto the Yersinia pestis.

Saha and Rajasekaran BMC Genomics 2014, 15(Suppl 5):S5
http://www.biomedcentral.com/1471-2164/15/S5/S5

Page 9 of 12

more, our algorithms are faster and faster than [5]. We
have compared our proposed algorithms with [5] by
using synthetic datasets. The ground truth of exact
ordering of contigs is unknown in the case of real data-
sets as we do not know the placement of the contigs in
prior. As optimal ordering is NP-hard, computationally

it is impossible to find the correct placement when the
number of contigs is large. So, to compare with [5] we
have generated 4 artificial sequences of various sizes. 50
contigs were generated from each of the sequences.
Contigs generation process is described in Section.
Accuracy is calculated as the fraction of contigs placed

Figure 2 Aligning ordered contigs onto the Yersinia enterocolitica tables.

Table 3 Results for simulated data.

Length Contigs Method Placed Observed length Difference Edit dist Coverage Time (s)

1 × 105 bp 7 GPA1 6 84689 15311 15483 84.69% 0.40

GPA2 6 84689 15311 15483 84.69% 0.45

GPA3 6 84689 15311 15483 84.69% 0.37

3 × 105 bp 34 GPA1 26 259619 40381 40923 86.54% 1.95

GPA2 26 281905 18095 18917 93.97% 2.07

GPA3 32 260662 39338 86220 86.89% 2.10

5 × 105 bp 52 GPA1 39 445727 54273 55210 89.15% 4.67

GPA2 39 454376 45624 50185 90.88% 5.46

GPA3 38 431582 68418 69285 86.32% 4.67

7 × 105 bp 53 GPA1 43 571908 128092 129160 81.70% 8.62

GPA2 45 656139 45624 48593 93.73% 8.27

GPA3 50 586588 113412 143189 83.80% 8.17

Saha and Rajasekaran BMC Genomics 2014, 15(Suppl 5):S5
http://www.biomedcentral.com/1471-2164/15/S5/S5

Page 10 of 12

correctly. As is evident from the simulation results, our
algorithms are two orders of magnitude faster and our
placements are also better [Please see Table 4] than [5].
In some cases we did not calculate the accuracy as it
was taking an indefinite amount of time compared to
our algorithms. ‘-’ indicates this issue in Table 4.

Conclusions
Contig assembly is a very challenging task. In de novo
assembly it is one of the most important steps to con-
struct an entire genomic sequence from millions of
reads produced by the sequencers. A series of algo-
rithms has been proposed in this paper to order the
contigs. ORM is used to calculate matching scores
between the sequence and contigs. Contigs are then
placed so that the overall cumulative matching scores
are minimized. We have performed rigorous simulations
on both real and synthetic datasets. The results show
that our algorithms are efficient in terms of both run
time and accuracy.

Competing interests
The authors declare they have no competing interests.

Authors’ contributions
SS and SR have come up with the algorithms. SS has implemented the
algorithms. The results have been analyzed and the algorithms have been
optimized by SS and SR. SS and SR have written the paper.

Acknowledgements
This research has been supported in part by the NIH grant R01-LM010101.

Declarations
The publication charges for this article were funded by the NIH grant R01-
LM010101.

This article has been published as part of BMC Genomics Volume 15
Supplement 5, 2014: Selected articles from the Third IEEE International
Conference on Computational Advances in Bio and Medical Sciences
(ICCABS 2013): Genomics. The full contents of the supplement are available
online at http://www.biomedcentral.com/bmcgenomics/supplements/15/S5.

Published: 14 July 2014

References
1. Metzker ML: Sequencing technologies - the next generation. Nat Rev

Genet 2010, 11(1):31-46, doi: 10.1038/nrg2626, Jan.
2. Pop M, Salzberg SL: Bioinformatics challenges of new sequencing

technology. Trends Genet 2008, 24:142-149.
3. Frazer KA, Murray SS, Schork NJ, Topol EJ: Human genetic variation and its

contribution to complex traits. Nature Rev Genet 2009, 10:241-251.
4. Chaisson MJ, Brinza D, Pevzner PA: De novo fragment assembly with

short mate-paired reads: does the read length matter? Genome Res 2009,
19:336-346.

5. Nagarajan M, Read Timothy D, Pop M: Scaffolding and validation of
bacterial genome assemblies using optical restriction maps. Oxford
Bioinformatics 2008, 24(10):1229-1235.

6. Sanger F, Coulson AR: A rapid method for determining sequences in
DNA by primed synthesis with DNA polymerase. J Mol Biol 1975,
94(3):441-448.

7. Sanger F, Nicklen S, Coulson AR: DNA sequencing with chain-terminating
inhibitors. Proc Natl Acad Sci 1977, 74(12):5463-5467.

8. Staden R: A strategy of DNA sequencing employing computer programs.
Nucleic Acids Research 1979, 6(7):2601-2610.

9. Anderson S: Shotgun DNA sequencing using cloned DNase I-generated
fragments. Nucleic Acids Research 1981, 9(13):3015-3027.

10. Nathans D, Smith HO: Restriction endonucleases in the analysis and
restructuring of DNA molecules. Annu Rev Biochem 1975, 44:273-293.

11. Anderson S: Optical mapping: a novel single-molecule approach to
genomic analysis. Genome Res 1995, 5:1-4.

12. Engler FW, et al: Locating sequence on fpc maps and selecting a
minimal tiling path. Genome Res 2003, 13:2152-2163.

13. Ben-Dor A, et al: The restriction scaffold problem. J Comput Biol 2003,
10:385-398.

14. Reslewic S, et al: Whole-genome shotgun optical mapping of
rhodospirillum rubrum. Appl Environ Microbiol 2005, 71:5511-5522.

15. Simpson JT, Durbin R: Efficient de novo assembly of large genomes using
compressed data structures. Genome Res 2012, 22(3):549-556.

Table 4 Comparisons.

Length Method Correctly placed Accuracy Time (s)

5 × 105 bp GPA1 49 98.00% 5.87

GPA2 49 98.00% 4.65

GPA3 49 98.00% 4.62

Nagarajan et al. [5] 30 60.00% 1620

6 × 105 bp GPA1 50 100.00% 8.52

GPA2 50 100.00% 7.12

GPA3 50 100.00% 7.12

Nagarajan et al. [5] 32 64.00% 14400

7 × 105 bp GPA1 49 98.00% 8.79

GPA2 49 98.00% 8.19

GPA3 49 98.00% 8.48

Nagarajan et al. [5] - - -

8 × 105 bp GPA1 50 100.00% 11.77

GPA2 50 100.00% 11.70

GPA3 50 100.00% 10.64

Nagarajan et al. [5] - - -

Saha and Rajasekaran BMC Genomics 2014, 15(Suppl 5):S5
http://www.biomedcentral.com/1471-2164/15/S5/S5

Page 11 of 12

http://www.biomedcentral.com/bmcgenomics/supplements/15/S5
http://www.ncbi.nlm.nih.gov/pubmed/19997069?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18262676?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18262676?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19293820?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19293820?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19056694?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19056694?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/1100841?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/1100841?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/271968?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/271968?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/461197?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/6269069?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/6269069?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/166604?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/166604?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/8717049?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/8717049?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12915486?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12915486?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12935335?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16151144?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16151144?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/22156294?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/22156294?dopt=Abstract

16. Kurtz S, et al: Versatile and open software for comparing large genomes.
Genome Biology 2004, 5:R12.

doi:10.1186/1471-2164-15-S5-S5
Cite this article as: Saha and Rajasekaran: Efficient and scalable
scaffolding using optical restriction maps. BMC Genomics 2014
15(Suppl 5):S5.

Submit your next manuscript to BioMed Central
and take full advantage of:

• Convenient online submission

• Thorough peer review

• No space constraints or color figure charges

• Immediate publication on acceptance

• Inclusion in PubMed, CAS, Scopus and Google Scholar

• Research which is freely available for redistribution

Submit your manuscript at
www.biomedcentral.com/submit

Saha and Rajasekaran BMC Genomics 2014, 15(Suppl 5):S5
http://www.biomedcentral.com/1471-2164/15/S5/S5

Page 12 of 12

http://www.ncbi.nlm.nih.gov/pubmed/14759262?dopt=Abstract

	Abstract
	Introduction
	Methods
	A scoring scheme
	Overview
	A greedy scoring algorithm

	Placement schemes
	Some notations
	Greedy placement algorithm 1 - GPA1
	Greedy placement algorithm 2 - GPA2
	Greedy placement algorithm 3 - GPA3

	Results and Discussions
	Real datasets
	Synthetic datasets
	Comparison

	Conclusions
	Competing interests
	Authors’ contributions
	Acknowledgements
	Declarations
	References

