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Abstract

Background: Species tree estimation is challenged by gene tree heterogeneity resulting from biological
processes such as duplication and loss, hybridization, incomplete lineage sorting (ILS), and horizontal gene
transfer (HGT). Mathematical theory about reconstructing species trees in the presence of HGT alone or ILS
alone suggests that quartet-based species tree methods (known to be statistically consistent under ILS, or under
bounded amounts of HGT) might be effective techniques for estimating species trees when both HGT and ILS
are present.

Results: We evaluated several publicly available coalescent-based methods and concatenation under maximum
likelihood on simulated datasets with moderate ILS and varying levels of HGT. Our study shows that two quartet-
based species tree estimation methods (ASTRAL-2 and weighted Quartets MaxCut) are both highly accurate, even
on datasets with high rates of HGT. In contrast, although NJst and concatenation using maximum likelihood are
highly accurate under low HGT, they are less robust to high HGT rates.

Conclusion: Our study shows that quartet-based species-tree estimation methods can be highly accurate under
the presence of both HGT and ILS. The study suggests the possibility that some quartet-based methods might
be statistically consistent under phylogenomic models of gene tree heterogeneity with both HGT and ILS.

Background
A species phylogeny is a graphical model of the common
evolutionary history of a group of species, and is most
often represented as a phylogenetic tree or phylogenetic
network [1]. A species phylogeny gives valuable informa-
tion about protein functions [2-4], host-parasite relation-
ships [5], etc.
However, species tree estimation is difficult, due to mul-

tiple biological processes, including recombination [6],
duplication and loss [7], hybridization [8], incomplete line-
age sorting (ILS) [9], and horizontal gene transfer (HGT)
[10], that can cause a given genomic locus to have a tree

that is different from the species tree. As a result, multiple
loci are needed to estimate a species phylogeny with high
accuracy.
Of the many sources of gene tree discord, the one that

has received the greatest attention is ILS, which is mod-
eled by the multi-species coalescent (MSC) model [11].
An MSC model tree has a rooted tree T , leaf-labelled
by a set of species, and is given with branch lengths in
coalescent units. Gene trees evolve within the species
tree, in a backwards process described by the MSC;
thus, lineages “coalesce” on the branches of the tree, as
they move from the leaves of the species tree towards
the root. When two lineages fail to coalesce on the ear-
liest branch in which they can coalesce, this can result
in a gene tree having a different topology than the spe-
cies tree.
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Under the MSC model, each species tree defines a prob-
ability distribution on gene trees, and the species tree can
be identified uniquely from this distribution. Hence, one
type of technique (called a “summary method”) for esti-
mating species trees under the MSC operates by first esti-
mating gene trees for a set of different loci, and then uses
this estimated distribution on gene trees to estimate the
species tree. A summary method is said to be statistically
consistent under the MSC model if, as the number of loci
and sites per locus go to infinity, the estimated species
tree returned by the method will converge in probability
to the true species tree [12]. Many statistically consistent
summary methods have been developed for estimating
species trees when gene discordance is due to ILS [13-19].
Despite advances in developing statistically consistent

methods for species tree estimation that are robust to ILS,
by far the most common technique for estimating a species
tree is concatenation analysis, in which the sequence align-
ments for the different loci are combined into one large
supermatrix, and then a phylogeny is estimated on the
alignment using maximum likelihood [20,21]. This type of
approach, however, is sometimes not statistically consistent
under the multi-species coalescent model [22,12] in the
presence of ILS. Hence, even though concatenation often
has good accuracy (even under conditions with moderately
high ILS levels) [23-25], a large effort has been made to
develop alternative methods that are provably robust to
ILS and have good accuracy on realistic conditions.
For very small datasets, Bayesian methods such as BEST

[26], *BEAST [27] or BUCKy-pop [28] (the population
tree from BUCKy) can provide excellent accuracy; how-
ever, these methods are too computationally intensive to
use on even moderate sized datasets with hundreds to
thousands of loci and 30 or more species [29,30].
Of the currently available coalescent-based methods,

ASTRAL-2 [19], MP-EST [13], and NJst [17] have
emerged as the most accurate of the methods that can
run on datasets with 50 or more species and hundreds
to thousands of loci. However, the comparison among
these methods shows that MP-EST is typically not as
accurate as NJst and ASTRAL-2 and is also much
slower than both [19]. Some newer statistically consis-
tent methods have also been developed (e.g., SVDquar-
tets [31]), but have not yet been sufficiently evaluated in
terms of their accuracy and scalability in comparison to
other coalescent-based methods.
Some of the most commonly used coalescent-based

methods estimate species trees by encoding each gene
tree as a set of quartet trees (i.e., unrooted 4-leaf trees),
and then estimate the species tree from the quartet tree
frequencies. The mathematical basis of this approach is
the following theorem, originally proved in [32]:
Theorem 1 Under the multi-species coalescent model,

for every model species tree (T, θ) (where θ denotes the

branch lengths of T in coalescent units) and for every set
X of four leaves from T, the most probable unrooted gene
tree topology on X is identical to the species tree T
restricted to the leafset X.
Interestingly, nearly the same theorem was proven under

two phylogenomic models that addressed horizontal gene
transfer (HGT)! When HGT is present, the evolutionary
history of the species is not really treelike, but rather
requires a phylogenetic network [1]. Under HGT models,
a phylogenetic network consists of an underlying species
tree T with horizontal gene transfer edges (represented by
directed edges) between branches in the tree, and each
locus evolves down a tree (though not necessarily the spe-
cies tree) within this network. Hence, while the species
evolution is not purely treelike, the gene tree evolution is
treelike. Furthermore, for this type of reticulate phylogeny,
it is reasonable to ask whether the underlying species tree
T can be reconstructed from gene trees estimated on the
different loci.
This question has been partially answered for two

models of HGT. The first models HGT events between
lineages using a continuous-time Poisson process [33],
and is called the stochastic HGT model. In a stochastic
HGT model, the HGT events happen between contem-
poraneous lineages, either uniformly at random or with
probability that depends on the distance between the
lineages (so that events are less likely if the lineages are
more distantly related). The second type of model
assumes that there are HGT edges between specific
pairs of branches in a species tree, commonly referred
to as highways, along which HGT events are far more
likely to occur than elsewhere in the tree; this is called
the highways HGT model [34].
The theoretical framework for estimating the underlying

species tree under these two HGT models was established
in [35] (for estimating rooted species trees from rooted
gene trees) and in [36] (for estimating unrooted species
trees from unrooted gene trees). Specifically, [36] proved
theorems that under both the stochastic HGT model and
highways model, but with bounded amounts of HGT per
gene, the most probable quartet tree would be topologi-
cally identical to the species tree. Note that these theorems
are the equivalents of Theorem 1 under the two bounded
HGT models.
Some species tree estimation methods operate by com-

puting gene trees, encoding each computed gene tree as a
set of quartet trees, and determining the dominant quartet
tree for every four species (i.e., the quartet tree that
appears the most frequently of the three possible unrooted
quartet trees). Then, these dominant quartet trees are
combined using a quartet amalgamation method (e.g.,
Quartets Max Cut [37] or QFM [38]). This type of species
tree estimation method can be statistically consistent
under the MSC model, and also under these bounded
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HGT models - depending on the quartet amalgamation
method, as we now show.
Theorem 2 Let M be a summary method (i.e., a method

that constructs a species tree from an input set of gene
trees). Suppose that M has the property that it is guaran-
teed to return the unique tree compatible with the domi-
nant quartet trees defined by its input set of gene trees,
whenever the dominant quartet trees are compatible. Then
M is statistically consistent under the MSC model, and
also under the bounded HGT models given in [36].
Proof To establish statistical consistency, we only need

to prove that as the number of sites per locus and the
number of loci both increase, the tree returned by the
method converges in probability to the species tree. As the
number of sites per locus and the number of loci both
increase, the dominant quartet tree converges to the most
probable quartet tree on every set X of four species. Under
the MSC model and also under the bounded HGT models
in [36], the most probable quartet tree on any set X is
topologically identical to the species tree. Hence, for a
large enough number of loci and large enough number of
sites per locus, with probability converging to 1, the input
to the quartet-based methods will be a set of gene trees
such that the dominant quartet trees are all compatible
with the species tree. Furthermore, the species tree will be
the unique such compatibility tree, and so the method will
return the true species tree.
Similarly, we can prove the following:
Theorem 3 ASTRAL and ASTRAL-2 are statistically

consistent under the bounded HGT models of [36].
This proof uses Theorem 1, but is essentially identical

to the proofs of statistical consistency for ASTRAL and
ASTRAL-2 under the MSC model [19]; see Methods for
the proof of this theorem.
Very little is known about the theoretical guarantees of

any species tree estimation methods under models in
which both HGT and ILS can occur. In fact, to the best of
our knowledge, no methods have yet been proven statisti-
cally consistent under these conditions. We also do not
know much about the empirical performance of any spe-
cies tree estimation methods under these conditions. As
far as we know, the only simulation study to date of the
impact of both ILS and HGT on the performance of spe-
cies tree estimation methods is [39], which explored the
performance of two coalescent-based methods, BUCKy
and BEST, on data that evolved under both processes.
However, both of these methods are computationally
intensive, and cannot run on even moderately large data-
sets (e.g., BEST is slower than *BEAST, and *BEAST is too
computationally intensive to use on datasets with more
than about 100 loci) [30,29].
We report on a study evaluating the accuracy of

ASTRAL-2, NJst, and weighted Quartets Max Cut
(wQMC) [40], as well as unpartitioned maximum likelihood

concatenation analysis (CA-ML), on simulated datasets in
which gene tree discord is due to both HGT and ILS. The
simulation protocol evolved gene trees down 50-taxon spe-
cies trees under the MSC model with a moderately high
level of ILS, and allowed gene trees to then evolve with six
different HGT rates (see Figure 1). HGT rate (1) has no
HGT events, and HGT rates (2)-(6) have 0.08, 0.2, 0.8, 8.0,
and expected HGT events per gene, respectively. Finally,
sequences evolved down each gene tree under the GTR
+Gamma model.
We estimated gene trees on each locus using the

FastTree-2 maximum likelihood software [41], and then
used the summary methods on these estimated gene
trees to estimate the species tree. We also concatenated
the sequence alignments and ran unpartitioned Fas-
tTree-2 maximum likelihood on the concatenated
super-alignment. Finally, we analyzed a Cyanobacteria
dataset with 11 species and 1128 genes [42], which is
believed to have evolved under high levels of HGT and
has been used to evaluate methods for inferring species
trees in the presence of HGT [43,40]. See Methods for
additional details.

Results
We ran 28 experiments using ASTRAL-2, NJst, wQMC,
and an unpartitioned concatenated maximum likelihood
analysis (CA-ML) using FastTree-2 on 51-taxon datasets
that evolved under a moderate amount of ILS but with
varying rates of HGT under the stochastic HGT model. In
our analyses, all methods produced binary trees; hence, we
report the normalized bipartition distance (also called the
Robinson-Foulds [44] distance) between estimated species
trees and true species trees. We report results for both
true and estimated gene trees, with 10 to 1000 genes. To
evaluate the relationship between topological accuracy and
performance with respect to the optimization problem
that ASTRAL-2 and wQMC attempt to solve, we com-
pared the quartet support scores and topological accuracy
of trees computed by ASTRAL-2 and wQMC.

Results on estimated gene trees
For datasets with 10 genes (Figure 2), all the methods are
very similar when there is no HGT (i.e., HGT rate (1)),
with error rates varying from 13.0% (ASTRAL-2 and
wQMC) to 14.5% (NJst). Error rates increase with increas-
ing HGT rates, but the increases are generally small until
HGT rate (4), where all methods have error between
14.9% (ASTRAL-2) and 16.8% (CA-ML). Furthermore, the
differences between methods remain small (no more than
1.9% between the methods) through HGT rate (4). How-
ever, there are substantial differences between methods
under the two highest HGT rates (5) and (6), with CA-ML
having the highest error (26.6% and 40.2%, respectively)
and ASTRAL-2 having the least error (18.4% and 28.1%,
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Figure 1 Properties of the simulated datasets. (Top) The histogram of the number of transfer events per gene across all 50,000 gene trees
(50 replicates, each with 1000 genes) for all six model conditions. Note that the tree has only 51 species (50 ingroup species and one outgroup
species), and therefore, model conditions (5) and (6) constitute high numbers of transfers per gene. (Bottom) The normalized Robinson-Foulds
(bipartition) distance between the true gene trees and the species tree for all six model conditions. Note that the gene tree discordance
generally increases as the transfer rate increases, but also that model condition (3) has less discordance than model condition (2) despite having
a slightly higher number of transfers.
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respectively). While the differences between wQMC and
NJst were often small, typically wQMC was more accurate
than NJst.
The same trends hold on datasets with larger numbers

of genes (Figure 3); in particular, ASTRAL-2 remains
typically the most accurate method (or close to the
most accurate method) and CA-ML is typically the least
accurate. However, as the number of genes increase, the
species tree estimation error drops for all methods, and
the differences between methods become even smaller.
For example, on 50 genes the maximum error for HGT
rates (1)-(4) is 7.8% (CA-ML) and the smallest error is
7.3% (ASTRAL-2 and NJst). By 200 genes, the maximum
error of all methods on HGT rates (1)-(4)) is 5.1% (NJst)
and the smallest is 4.5% (ASTRAL-2). With 1000 genes,
the maximum error on HGT rates (1)-(4) is only 3.1%
(wQMC and NJst) and the lowest is 2.5% (CA-ML).
However, under the two higher HGT rates (HGT rates
(5) and (6)), the differences between methods can be
noteworthy, even with large numbers of genes. More
importantly, under these higher HGT rates, CA-ML is
substantially less accurate than all of the summary
methods. As an example, under HGT rate (6), CA-ML
has 16.8% error on 50 genes, while ASTRAL-2 has
10.3% error. One interesting trend that is hard to
explain is that error rates do not always increase with
increases in HGT rates; for example, results on 1000

estimated trees show some small decrease in error for
ASTRAL-2 and NJst between HGT rates (4) and (6).
Finally, while ASTRAL-2 is the most accurate of the sum-
mary methods, the difference between ASTRAL-2 and the
other summary methods is small (ranging from 0.3% to
1.9%). Indeed, the differences between the summary meth-
ods given 400 or more genes are very small - at most 0.9%.

Results on true gene trees
We show results on true gene trees in Figures 4 and 5.
Unsurprisingly, error rates of species trees estimated on
true gene trees are lower than those estimated on esti-
mated gene trees; while the reduction depended on the
model condition, for the ASTRAL-2 datasets with 1000
genes and HGT rate (1), we see a reduction of more than
50%. Differences between methods were reduced on the
true gene trees, but otherwise, all the trends are the same
as for estimated gene trees.

Comparing quartet scores of trees produced by ASTRAL-2
and wQMC
While the differences between ASTRAL-2 and wQMC
are often small, ASTRAL-2 nearly always matches or
improves on wQMC with respect to tree topology. Both
ASTRAL-2 and wQMC attempt to solve the Maximum
Quartet Support Species Tree problem (MQSST, see
Methods), but use very different techniques. In particular,

Figure 2 Mean Robinson-Foulds error rate on datasets with 10 genes. We show mean RF error rates for summary methods applied to
estimated gene trees as well as for an unpartitioned maximum likelihood concatenation analysis. Error bars indicate standard error; 50 replicates
per dataset.

Figure 3 Mean Robinson-Foulds error rates on datasets with 50, 200, and 1000 estimated gene trees. We show results for summary
methods applied to estimated gene trees as well as for an unpartitioned maximum likelihood concatenation analysis. Error bars indicate
standard error; 50 replicates per dataset.
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ASTRAL-2 constrains the search space based on the
input gene trees, and then finds an optimal solution
within that constrained space, but wQMC uses a greedy
heuristic and does not constrain the search. One hypoth-
esis for the improved topological accuracy of ASTRAL-2
compared to wQMC is that ASTRAL-2 finds better solu-
tions to the MQSST optimization problem, and a com-
peting hypothesis is that the higher topological accuracy
achieved by ASTRAL-2 is due in part to the constraint it
imposes on the solution space.
We examined the quartet scores for wQMC and

ASTRAL-2 across the different model conditions. For
57.2% of all cases involving estimated gene trees, the spe-
cies trees returned by the two methods had the same
quartet support. ASTRAL-2 returned a tree with a better
quartet score than wQMC 29.8% of the time while wQMC
returned a tree with a better quartet score 13.0% of the
time. Thus, in general ASTRAL-2 does a better job than
wQMC of finding good solutions to MQSST. However,
there are cases in which wQMC produces trees with better
scores, and the cases are typically cases with high HGT
levels (i.e., there are no cases with HGT rate (1), and more
than half of the cases occurred for HGT rate (6)).
We investigated the 29 replicates for which wQMC

has a better quartet support score, and therefore does a
better job of solving the MQSST problem (Figure 6).
ASTRAL-2 and wQMC had the same topological accu-
racy on 8 datasets, ASTRAL-2 was more topologically

accurate on 12, and wQMC was more topologically accu-
rate on 9. Thus, even for those cases where wQMC finds
trees with better quartet support scores, ASTRAL-2 tends
to match wQMC with respect to accuracy, or produce
topologically more accurate trees. Since wQMC does not
constrain the search space, this means that wQMC can
find trees with better quartet scores but which are outside
the constrained search space, and that constraining the
search space seems to be beneficial with respect to topolo-
gical accuracy. In other words, although ASTRAL-2 gener-
ally is a better heuristic for the MQSST problem, part of
the reason it is more topologically accurate is due to the
constraint it imposes on the search space.

Cyanobacterial data
We analyzed a cyanobacterial data set from [42] using
ASTRAL-2 with multi-locus bootstrapping (see Meth-
ods) to estimate a species tree. Two estimated species
trees were reported in [42]: one is the “plurality tree”,
which has served as the reference tree for this dataset.
The plurality tree is a supertree (computed using MRP
[45]) on a set of quartet trees represented in a plurality
of the gene trees that have high support. The other tree
is a PhyML [46] maximum likelihood tree. The
ASTRAL-2 majority consensus tree (see Methods) has
100% bootstrap support on all its branches, and is iden-
tical to the plurality tree that has served as the reference
tree for this dataset. The wQMC tree was previously

Figure 4 Mean Robinson-Foulds error rates on 10 true gene trees. We show mean RF error rates of summary methods applied to true
gene trees; error bars indicate standard error. 50 replicates per model condition.

Figure 5 Mean Robinson-Foulds error rates on 50, 200, and 1000 true gene trees. We show mean RF error rates of summary methods
applied to true gene trees; error bars indicate standard error. 50 replicates per model condition.
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reported for this dataset in [40], and is also topologically
identical to the plurality tree.

Discussion
While all methods had very good accuracy on the simu-
lated datasets under the lowest HGT rates, they were
clearly differentiated on the higher HGT rates, especially
when the number of genes was not too large. Specifically,
on the higher HGT rates, concatenation using maximum
likelihood and NJst were both less accurate than
ASTRAL-2 and wQMC. However, all summary methods
we explored were impacted by gene tree estimation error.
Furthermore, there are no proofs of convergence to the
true species tree if the gene trees have estimation error for
these or other standard summary methods [47,12]. Since
many of the lower HGT model conditions had substantial

gene tree heterogeneity resulting from ILS, this study
shows that many methods - and even unpartitioned con-
catenation using maximum likelihood can be highly accu-
rate under these highly heterogeneous model conditions.
Results on the biological dataset showed that ASTRAL-2

and wQMC both matched the reference “plurality tree”,
and hence may be correct. But this analysis is perhaps less
helpful, since the reference tree is based on the MRP ana-
lysis of a set of quartet trees, and MRP on quartet trees is
a heuristic for the unweighted version of the optimization
problem addressed by wQMC and ASTRAL-2. Thus, the
three methods are closely related in terms of their optim-
ality criteria, and this may explain why they produce the
same tree on this input.
This experimental study evaluated the performance of

these methods when HGT is also present, and demon-
strated that wQMC and ASTRAL-2 maintained good
accuracy even in the presence of HGT, while NJst
tended to be more impacted by high levels of HGT. The
explanation as to why NJst is not as robust to high
HGT levels as ASTRAL-2 and wQMC is likely to be
that the theoretical justification for NJst only applies to
the MSC model, and not to the bounded HGT models.
On the other hand, both ASTRAL-2 and wQMC
attempt to solve the MQSST problem, for which opti-
mal solutions are statistically consistent under the MSC
model, and also under the bounded HGT models dis-
cussed in [36].
Finally, the slight advantage ASTRAL-2 had over

wQMC in terms of topological accuracy is largely due to
its better ability to find good solutions to the MQSST
problem, but constraining the search space is also part of
the reason that ASTRAL-2 has good topological accuracy,
even under conditions with very high rates of HGT.

Conclusions
This study evaluated ASTRAL-2, NJst, wQMC, and con-
catenated analysis using unpartitioned maximum likeli-
hood (CA-ML) on one biological and several simulated
datasets in which ILS and HGT were both present. We
observed that the quartet-based methods (ASTRAL-2 and
wQMC) generally had better accuracy than NJst, and that
CA-ML could be more accurate than all methods under
conditions with low HGT rates. In particular, ASTRAL-2,
a species tree estimation method that was initially
designed to estimate species trees in the presence of ILS,
had excellent accuracy and generally gave somewhat
more accurate results than the other methods we
explored. However, all methods were highly accurate
under the low to moderate HGT levels, and were only
differentiated under the two highest HGT levels. The
methods based on quartets (i.e., wQMC and ASTRAL-2)
had the highest robustness to HGT. While the study is
limited in scope, the results suggest that highly accurate

Figure 6 Scatterplot of differences in quartet support scores
and topological error of wQMC and ASTRAL-2 trees. Each point
(x, y) represents a dataset in which wQMC produced a tree with
quartet support score x points higher than produced by ASTRAL-2, and
with tree topological error y points lower. All values of x are strictly
positive (we are only showing cases where wQMC produces a better
quartet support score than ASTRAL-2), but values of y can be arbitrary.
Points with y < 0 indicate datasets where ASTRAL-2 produces a
topologically more accurate tree than wQMC, points with y = 0
indicate datasets where ASTRAL-2 and wQMC produce trees of equal
accuracy, and points with y >0 indicate datasets where ASTRAL-2
produces a tree that is topologically less accurate than wQMC. Of the
points that are not on the y = 0 line, more are below the y = 0 line
than above (i.e., 12 below compared to 9 above), indicating that
ASTRAL-2 tends to produce more accurate tree topologies than
wQMC on these datasets. Also, when wQMC is more accurate, the
improvement is lower than when ASTRAL-2 is more accurate. Thus,
even when wQMC finds trees with better quartet scores, ASTRAL-2
tends to produce more topologically accurate trees. Plots in the
margins are histograms of the x− and y−axes.
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species trees can be constructed, even in the presence of
both HGT and ILS, using quartet-based methods.
As noted, ASTRAL-2 and NJst are statistically consistent

under the MSC model (in which only ILS occurs), and
ASTRAL-2 is also statistically consistent under the
bounded HGT models addressed by [36]. However, NJst
has not been shown to be statistically consistent under the
bounded HGT models, and wQMC may not be statisti-
cally consistent under either model (because it is not guar-
anteed to solve its optimization problem exactly, even
when all the dominant quartet trees are compatible).
Because the proof of statistical consistency for ASTRAL-2
depends only on the requirement that for all sets of four
taxa, the most probable quartet tree is topologically identi-
cal to the induced species tree on the four taxa, we conjec-
ture that ASTRAL-2 will be statistically consistent under
models in which both ILS and HGT occur but at bounded
rates (where the bounds on one process will depend on
the other’s bounds).
Although the results in this study are encouraging,

future work needs to evaluate the performance of species
tree estimation methods under a broader set of conditions.
In particular, we only evaluated performance under the
stochastic HGT model; future work should evaluate meth-
ods under the highways model as well. Our datasets had
only one level of ILS, and it is possible that under condi-
tions with higher or lower levels of ILS, the effect of HGT
would be different. This study was limited to gene trees in
which heterogeneity was due only to ILS and HGT; future
studies should examine other sources of discord, including
gene duplication and loss, and/or orthology detection
errors. Larger numbers of taxa, and/or gene trees with
missing taxa, are also likely to present significant analytical
challenges, and accurate estimation may not be as easily
obtained. Hence, future studies should also evaluate accu-
racy on larger and more challenging datasets, in order to
determine whether the good accuracy we saw for the
quartet-based methods is maintained under more difficult
conditions. Similarly, it is possible that some methods
might provide highly accurate results on smaller numbers
of species, and that the relative performance of methods
could change on those conditions. Thus, performance on
small datasets (with perhaps only 10 species) should also
be explored.
This study was limited in terms of the methods that

were explored, in that we restricted the analysis to reason-
ably fast methods, and of these fast methods we only
explored those methods that had been shown to perform
well under ILS-only scenarios. However, it is possible that
some coalescent-based species tree estimation methods,
such as MP-EST, STAR, etc., might perform well under
HGT+ILS scenarios. It is also likely some computationally
intensive methods, such as BUCKy-pop, *BEAST, and
BEST, might provide better accuracy than ASTRAL-2 on

datasets with HGT+ILS. There are also methods designed
to infer species trees in the presence of gene tree discor-
dance resulting from duplication and loss, and it is possi-
ble that some of these methods (e.g., PhylDog [48] and
MixTreEM [49]) might have good accuracy under the
MSC. Future work should also explore CA-ML using dif-
ferent ML heuristics (e.g., PhyML [46], nhPhyML [50],
IQTree [51]) and under more complex sequence evolution
models. In addition, it would be very interesting to explore
fully partitioned ML analyses, since these have very differ-
ent statistical properties than unpartitioned analyses [12].

Methods
Species tree estimation methods
Maximum Quartet Support Species Tree Problem
ASTRAL, ASTRAL-2, and wQMC all address the same
optimization problem, which we now explain. Given an
input set G of gene trees on a species set S and a quartet
tree q on four species from S, we let n(G, q) denote the
number of gene trees in G that induce the quartet tree
q. Then, the quartet support of T given G, denoted
wG(T), is ∑

q∈Q(T)n
(G, q), where Q(T ) denotes the set

of all quartet trees in T . Hence, we can define the Max-
imum Quartet Support Species Tree Problem (MQSST),
as follows.

• Input: a set of gene trees G on a species set S.
• Output: a tree T on the species set S maximizing
wG(T), the quartet support of T given G.

MQSST is NP -hard when the input set of gene trees
induce only one tree for each set of four taxa in S [52],
and is of unknown computational complexity when all the
gene trees are complete (i.e., have all the species in S).
Weighted Quartets MaxCut
The quartet amalgamation method wQMC [40] is a
greedy heuristic for a weighted version of the MQSST pro-
blem, in which the input can have weights on each quartet
tree. The wQMC heuristic uses a greedy strategy to find
good solutions to its optimization problems, but is not
guaranteed to solve its optimization problem (weighted
MQSST) exactly. To use wQMC as a summary method,
we define the weight of a quartet tree q to be the quartet
support n(G, q) of q in the input set of gene trees G.
We wrote scripts (available in our supporting online

material) that use a previously published code [53] to com-
pute the weights of each quartet tree. After we calculate
these weights (saving them in a file called <quartetscores>),
we run wQMC version 3.1 using the following command:
./max-cut-tree qrtt=<quartetscores> weights=on

otre=<speciestree>
ASTRAL and ASTRAL-2
ASTRAL [18] and its improved version, ASTRAL-2 [19],
also attempt to solve the MQSST problem. Both have
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exact versions that provably solve the MQSST problem
but run in exponential time, and faster versions that con-
strain the search space (using the input set of gene trees),
and then provably solve the constrained problem exactly.
ASTRAL and ASTRAL-2 differ in how they constrain the
search space (ASTRAL-2 searches a larger part of tree
space than ASTRAL) and how they are implemented
(ASTRAL-2 is faster). Here we focus on ASTRAL-2, since
it is faster and more accurate than ASTRAL.
Given the input set of gene trees, ASTRAL-2 defines a

set X of bipartitions on the taxon set S; when all the
gene trees are complete (i.e., have no missing taxa), then
X will contain all the bipartitions from the input gene
trees as well as potentially other bipartitions. ASTRAL-2
runs in O(nk|X|2) time, where n is the number of spe-
cies and k is the number of genes, and thus can be fast
whenever |X| is not too large. While |X| is not theoreti-
cally bounded by a polynomial in n and k, for many
datasets |X| is not very large, so that ASTRAL-2 is able
to complete analyses within 24 hours on 1000 species
and 1000 genes [19].
ASTRAL-2 finds a globally optimal solution to the con-

strained optimization problem where we restrict the output
species tree to draw its bipartitions from X. ASTRAL and
ASTRAL-2, run in their default versions (which use the
constrained search), are both statistically consistent under
the multispecies coalescent model when all the gene trees
are complete (i.e., this restriction to the set X of biparti-
tions does not change their statistical guarantees) [19].
We now provide a proof for Theorem 3, establishing

that ASTRAL and ASTRAL-2, run in default mode, are
statistically consistent under the MSC model and also
under the bounded HGT models.
Proof for Theorem 3. As proved in [18,19], ASTRAL

and ASTRAL-2 are guaranteed to find globally optimal
solutions to the constrained MQSST problem. The
default settings for the constraint set X of bipartitions
allowed in the output species tree always includes all
bipartitions from the input gene trees; hence, as the
number of genes increases, with probability converging
to 1, every bipartition from the species tree will be in
the set X. Therefore, with probability converging to 1,
the true species tree will be a feasible solution (i.e.,
within the constrained search space) as the number of
loci and number of sites per locus both increase (as
established in [18,19]). Recall that the quartet support
score of a tree T is the total, over all quartet trees in T,
of the number of gene trees that contain that quartet
tree. As shown in [36], under the bounded HGT models
in [36], the most probable quartet tree on any four
taxon set A is topologically identical to the quartet tree
on X induced by the true species tree. Hence, with
probability converging to 1, under these bounded HGT

models, the most frequent quartet tree on any set A of
four leaves will be the true species tree on A. Given any
set of gene trees in which for all four-leaf sets A the most
frequent quartet tree on A is the true species tree on A,
the quartet support score of the true species tree T* will
be the maximum possible quartet support score (since any
other species tree T cannot have larger quartet support for
any quartet tree). Furthermore, given any set of gene trees
in which the most frequent quartet tree is unique for all
four taxa and equal to the species tree on the four taxa,
the true species tree T* will have the unique maximum
quartet support score. Hence, as the number of loci and
number of sites per locus both increase, the tree returned
by an exact solution to the constrained MQSST problem,
using default settings for X, will converge in probability to
the true species tree T*. Therefore, ASTRAL and
ASTRAL-2 are statistically consistent under the bounded
HGT models of [36].
We ran ASTRAL-2 version 4.7.6 on the simulated

data using the following command:
java -jar astral.4.7.6.jar -i <gene-

trees> -o <speciestree>
where <genetrees> is a file containing the gene trees

in newick format, and
<speciestree> is the output.
For the biological data, we used ASTRAL-2 with

multi-locus bootstrapping (MLBS), using the following
commands:
java -jar astral.4.7.6.jar -i < bootstrap

replicates >
-o <species replicate>
where <bootstrap replicates> is the collection

of 1128 gene trees generated by taking the nth line of
the gene tree file n = {1, ... , 100}, and <species
replicate> is the nth bootstrap replicate species tree
Tn. To calculate the final species tree T with bootstrap
support values, we computed the majority consensus
tree using Dendropy version 3.12.2 [54].
NJst
NJst is a summary method that has two steps. In the first
step, it computes a distance matrix on the species set,
where D[x, y] is the average leaf-to-leaf topological dis-
tance between x and y among all the gene trees. In the
second step, it runs neighbor joining [55], a popular dis-
tance-based phylogeny estimation method. NJst is statisti-
cally consistent under the MSC model because the
distance matrix it computes converges in probability to an
additive matrix defining the true species tree, and neighbor
joining will return the true species tree once the computed
distance matrix is sufficiently close to the additive matrix
for the species tree; see [17] for this proof.
To run NJst, we used phybase version 1.4 [56] and

custom scripts, available in our supplementary material.
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Gene tree estimation
To compute gene trees, we ran FastTree-2 version 2.1.4,
using the following command:
fasttree -nt -gtr -quiet -nopr -gamma -n

1000 [input] > [output]
where [input] is a file that includes all the alignments

of all 1000 genes and [output] will be one file with all
1000 estimated gene trees.

CA-ML
To perform the concatenated analyses under maximum
likelihood, we ran FastTree-2 version 2.1.4, with the
following command:
fasttree -nt -gtr -nopr [input] > [output]

Computing Error Rates
The coalescent-based methods ASTRAL-2, wQMC, and
NJst used in this study all return binary species trees. We
also verified that all trees returned in our CA-ML analysis
were binary, and all simulated data used in this study con-
tained only binary model species trees. The Robinson-
Foulds (RF) distance [44] between two trees T1 and T2 on
the same set of n taxa measures the number of bipartitions
that appear in only one of T1 or T2. Therefore, if T1 and
T2 are identical, the RF distance is 0, and the maximum
RF distance between T1 and T2 is 2n−6. The RF distance
can be converted to an error rate by dividing by 2n − 6.
When comparing only binary trees, false negative rates,
false positive rates, and normalized Robinson-Foulds dis-
tances are all equivalent. Therefore, we computed missing
branch rates to establish error rates, but we report RF
rates. Error rates were computed by finding the missing
branch rate using custom scripts available in our support-
ing online materials.

Measuring Quartet Support Scores of ASTRAL-2 and
wQMC
The command used to measure the quartet support
score was
java -jar astral.4.7.6.jar -q <species-

treefile> -I <genetreesfile>

Data
HGT+ILS Simulated Data The simulated dataset was
simulated using SimPhy [57] version 1.0 (downloaded
January 20, 2015). There are 6 data sets containing
50 replicates apiece: each replicate has its own 51-taxon
species tree. For every model species tree, one taxon is an
outgroup, and so is actually a 50-taxon rooted species tree.
These model trees were simulated under a Yule process,
with birth rates set to 0.000001 (per generation) and the
maximum tree length set to 2 million generations.
Then, on each species tree, 1000 locus trees are simu-

lated, where each can differ from the species tree due to

HGT events, and we used HGT rates (1)-(6) given by 0,
2 × 10−9, 5 × 10−9, 2 × 10−8, 2 × 10−7, and 5 × 10−7. These
values correspond to expected numbers of HGT events
per gene of 0, 0.08, 0.2, 0.8, 8, and 20. Thus, HGT rate (1)
is no HGT events, HGT rate (2) is 0.08 HGT events per
gene, up to HGT rate (6) of 20 HGT events per gene.
Note that in our simulations, for each HGT event, the
probability of a branch being chosen as the receptor of the
transfer is proportional to its distance from the donor.
Once locus trees are simulated, a gene tree is simu-

lated for each locus tree according to the MSC model,
with population size parameter set to 200,000. Thus, at
the end, we have 1000 true genes that differ from the
species tree due to both ILS and also potentially HGT
(when the HGT rate is positive).
The SimPhy command used to generate a model replicate

in the data sets is simphy -rs 50 -rl U:1000,1000
-rg 1 -st U:2000000,2000000 -si U:1,1 -sl
U:50,50 -sb U:0.000001,0.000001 -cp
U:200000,2000000 -hs L:1.5,1 -hl L:1.2,1 -hg
l:1.4,1 -cu E:10000000 -so U:1,1 -od 1 -or 0 -v
3 -cs 293745 -o model.50.2000000.0.000001.
<transferrate> -lt U:<transferrate>,<trans-
ferrate> -lk 1
On each simulated true gene tree, we used INDELible

[58] v. 1.03 to simulate sequence alignments according to
the GTR+Gamma model, with model parameters esti-
mated from three different real datasets (these parameters
are identical to those used in [19]). This simulation pro-
duces GTR parameters that vary from one gene to
another, where the parameters are drawn for each gene
from a distribution at random. See [19] for details about
the simulation process. The alignment length is set to
1000 bp for all genes. After simulating gene alignments,
we used FastTree-2 [41] to estimate gene trees under the
GTR model. Thus for each replicate, we have both true
and estimated gene trees.
For HGT rate (1) (where all the discordance is due to

ILS), the average RF [44] distance between true gene
trees and the species tree is 30.4%. Therefore, the
amount of ILS in these data sets is moderately high.
Cyanobacterial Data The cyanobacterial data set has

1128 genes on 11 taxa, and was first analyzed in [42],
which suggested that the 11 genome sequences may
have acquired between 9.5% and 16.6% of their genes
through HGT. We obtained 100 bootstrap replicate
gene trees for each of the 1128 genes from the first
author of [43], and computed an ASTRAL-2 tree on
these data using multi-locus bootstrapping.

Availability of supporting data
All data used in this study, and commands needed to
regenerate the data, are available online at goo.gl/
0p4IGD.
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