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Abstract
Background: A yeast strain lacking the two genes SSA1 and SSA2, which encode cytosolic
molecular chaperones, acquires thermotolerance as well as the mild heat-shocked wild-type yeast
strain. We investigated the genomic response at the level of mRNA expression to the deletion of
SSA1/2 in comparison with the mild heat-shocked wild-type using cDNA microarray.

Results: Yeast cDNA microarray analysis revealed that genes involved in the stress response,
including molecular chaperones, were up-regulated in a similar manner in both the ssa1/2 deletion
mutant and the mild heat-shocked wild-type. Genes involved in protein synthesis were up-
regulated in the ssa1/2 deletion mutant, but were markedly suppressed in the mild heat-shocked
wild-type. The genes involved in ubiquitin-proteasome protein degradation were also up-regulated
in the ssa1/2 deletion mutant, whereas the unfolded protein response (UPR) genes were highly
expressed in the mild heat-shocked wild-type. RT-PCR confirmed that the genes regulating protein
synthesis and cytosolic protein degradation were up-regulated in the ssa1/2 deletion mutant. At the
translational level, more ubiquitinated proteins and proteasomes were detected in the ssa1/2
deletion mutant, than in the wild-type, confirming that ubiquitin-proteasome protein degradation
was up-regulated by the deletion of SSA1/2.

Conclusion: These results suggest that the mechanism for rescue of denatured proteins in the
ssa1/2 deletion mutant is different from that in the mild heat-shocked wild-type: Activated protein
synthesis in the ssa1/2 deletion mutant supplies a deficiency of proteins by their degradation,
whereas mild heat-shock induces UPR.

Background
Exposure to certain kinds of environmental stress factors,
such as chemical, heat, osmotic, etc., induces living organ-

isms to express stress proteins, thereby enabling the
organism to acquire stress tolerance. This phenomenon is
called the "stress response". Especially, the heat-inducible
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proteins termed "heat-shock proteins (Hsps)" constitute
an important part of the stress-responsive proteins [1].
HSP70s (70 kDa HSPs) were discovered in Drosophila mel-
anogaster, and their homologs have been found in various
organisms including yeast [2,3]. HSP70s also function as
molecular chaperones [2,3]. In the Saccharomyces cerevisiae
genome, there are ca. 14 HSP70-like genes. The SSA, SSB
and SSE families are cytosolic HSP70 [4-6], whereas the
SSC1 is localized to the mitochondria [7,8]. In addition,
KAR2 (BiP) is localized to the endoplasmic reticulum [9-
12]. The SSA family contains 4 genes, SSA1, SSA2, SSA3
and SSA4 [13]. Not only are the SSA1 and SSA2 genes con-
stitutively expressed, they are also 96% identical at the
nucleotide level [2]. Moreover, there is no change in the
phenotype of deletion in either of the SSA1 and SSA2
genes compared with the wild-type. In addition, they do
not show thermotolerance without pre-heat treatment at
37°C [14]. However, the ssa1/2 double deletion mutant
acquires thermotolerance even at 23°C, and shows a slow
growth rate [14]. A suppressor, EXA3-1 which is an allele
of HSF1 encoding a heat shock factor [15,16] recovers its
growth rate. This phenomenon in the ssa1/2 deletion
mutant is speculated to result from the overexpression of
certain Hsps [17]. HSP104 and SSA4 are found to be
highly expressed in the ssa1/2 deletion mutant [4,18].

SSA1 is involved in protein transport and the rescue of
denatured proteins [19-22], and possesses ATPase activity
[23]. Sti1p activates ATPase activity of Ssa1p [24]. In addi-
tion, Hsp70 is a co-chaperone with Hsp104 and Hsp40 in
both S. cerevisiae and E.coli [25,26]. The relationship
between these chaperones and human misfolding disease
has been shown [27,28]. On the other hand, SSA2 is
involved in protein transport into the vacuole [29,30].
Thus, SSA1 is multi-functional, and the ssa1/2 double
deletion mutant shows drastic changes needed to acquire
thermotolerance, which is similar to the mild heat-
shocked wild-type. As Ssa1p and Ssa2p are cytosolic
molecular chaperones, it is hypothesized that unfolded
proteins appear by the double deletion of SSA1/2.

However, genome-wide expression analysis of the ssa1/2
deletion mutant using cDNA microarray has not been car-
ried out. We believe that gene expression profiling of the
ssa1/2 deletion mutant is necessary not only to describe
the genomic response developed by yeast to the deletions,
but also to reveal the mechanism of the response to dena-
tured proteins. To support the cDNA microarray data, we
also performed RT-PCR, and immunoblot analysis of sev-
eral yeast proteins separated by two-dimensional gel elec-
trophoresis (2-DGE). We demonstrate that the deletion of
SSA1/2 genes induces up-regulation of the genes involved
in both protein degradation and synthesis, whereas mild
heat shock induces UPR.

Results
Comparison of the mRNA expression profiles between the 
ssa1/2 deletion mutant and the mild heat-shocked wild-
type
To investigate the mechanism of the response to dena-
tured proteins comprehensively, the mRNA expression
profiling of the ssa1/2 deletion mutant was carried out
using yeast cDNA microarray, in comparison with the
mild heat-shocked wild-type. The number of up-regulated
genes in the ssa1/2 deletion mutant was 144, while that in
the mild heat-shocked wild-type by exposure for 30 and
60 min at 43°C was 274 and 400, respectively. The func-
tionally categorized up-regulated genes are shown in Figs.
1A and 2A. The most highly up-regulated genes were cate-
gorized into "Cell rescue, defense, and virulence (stress-
inducible proteins)" in both ssa1/2 and mild heat-
shocked wild-type, of which the rates were 8% and 10%,
respectively. On the other hand, the number of down-reg-
ulated genes in ssa1/2 was 94, while that in the mild heat-
shocked wild-type by exposure for 30 and 60 min at 43°C
was 610 and 643, respectively. The functionally catego-
rized down-regulated genes are shown in Figs. 1B and 2B.

In the ssa1/2 deletion mutant, the percentages of up-regu-
lated genes categorized in "Cell rescue defense and viru-
lence", "Transport facilitation" and "Protein fate" was
approximately 2–6 times larger than those of the down-
regulated genes (Fig. 3A), and the opposite results were
found in "Cellular communication/signal transduction
mechanism" category (Fig. 3B). In the mild heat-shocked
wild-type, there were no categories in which the percent-
ages of up-regulated genes were over 2-times larger than
those of the down-regulated genes (Fig. 4A). However, the
percentage of down-regulated genes in "Protein synthesis"
was particularly larger (ca. 170-times) than that of the up-
regulated genes (Fig. 4B). Thus, the number of up-regu-
lated genes in "Protein synthesis" was remarkably smaller
than that of the down-regulated genes in the heat-shocked
wild type. Conversely, in the ssa1/2 deletion mutant, the
number of up-regulated genes in "Protein synthesis" was
larger than that of the down-regulated genes. Therefore,
we focused on protein synthesis and correlated protein
fate as well as "Cell rescue, defense and virulence" in the
ssa1/2 deletion mutant.

Figure 5 shows a detailed comparison of these categorized
genes up-regulated in the ssa1/2 deletion mutant and in
the mild heat-shocked wild-type. Figure 5A shows the
comparison of all the genes up-regulated in the ssa1/2
deletion mutant and the mild heat-shocked wild-type. In
the categories of "Cell rescue, defense and virulence", sev-
eral Hsps, including molecular chaperones, were com-
monly up-regulated in the ssa1/2 deletion mutant and the
mild heat-shocked wild-type (Fig. 5B). Although genes
related to protein synthesis were greatly suppressed in the
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The overview of expressed genes in the ssa1/2 deletion mutantFigure 1
The overview of expressed genes in the ssa1/2 deletion mutant. S. cerevisiae JN14 (ssa1/2) and JN54 (wild-type) cells 
were incubated at 30°C to a logarithmic phase (OD660 = 1). The up-regulated genes (over 2- fold expressed) and down-regu-
lated genes (over 2-fold suppressed) in the ssa1/2 deletion mutant were determined by twice induction of three individual 
experiments. These genes were functionally categorized using Comprehensive Yeast Genome Database (CYGD) in Munich 
International Center of Protein Sequence (MIPS) [52]. A, up-regulated genes; B, down-regulated genes.
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The overview of expressed genes in the mild heat-shocked wild-typeFigure 2
The overview of expressed genes in the mild heat-shocked wild-type. S. cerevisiae JN54 (wild-type) cells were incu-
bated at 30°C to a logarithmic phase (OD660 = 1), and were then treated with mild heat-shock at 43°C for 30 or 60 min. The 
up-regulated genes (over 2- fold expressed) and down-regulated genes (over 2-fold suppressed) in mild heat-shocked wild-type 
were determined by twice induction of three individual experiments. These genes were functionally categorized as in Figure 1. 
A, up-regulated genes. B, down-regulated genes.
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The comparison between up-regulated genes and down-regulated genes in the ssa1/2 deletion mutantFigure 3
The comparison between up-regulated genes and down-regulated genes in the ssa1/2 deletion mutant. Func-
tional categories were the same as in Figure 1. The ratios of up/down-regulated genes or down/up-regulated genes were calcu-
lated using the percentages of each category in Fig. 1. A, up/down-regulated genes; B, down/up-regulated genes.
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The comparison between up-regulated genes and down-regulated genes in the mild heat-shocked wild-typeFigure 4
The comparison between up-regulated genes and down-regulated genes in the mild heat-shocked wild-type. 
Functional categories are as given in Figure 1. The ratios of up/down-regulated genes or down/up-regulated genes were calcu-
lated using the percentages of each category in Fig. 2. A, up/down-regulated genes; B, down/up-regulated genes.
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mild heat-shocked wild-type, ribosomal protein genes
were found to be up-regulated only in the ssa1/2 deletion
mutant (Fig. 5C). Table 1 shows the expression level of
these genes: RPL37A, RPL25, MRP8, RPS15, MRPL10,
RSM18, RPL8B and RSM10.

On the other hand, in the category of "Protein fate", the
PRE1, RPN4, RPN12 and SCL1 genes that encode for
cytosolic proteasome subunits, were found to be up-regu-
lated in ssa1/2 deletion mutant (Fig. 5D). In addition, the
UBC4 (ubiquitin conjugating enzyme) gene was also up-
regulated. Table 2 shows the expression level of the genes
involved in protein degradation. These results suggest that
the ubiquitin-proteasome protein degradation pathway is

activated in the ssa1/2 deletion mutant. Although a few
ubiquitin-proteasome genes (UBI4, UBC5 and UBP9)
were up-regulated in the mild heat-shocked wild-type,
they were not in common with those up-regulated in the
ssa1/2 deletion mutant (Fig. 5D). The proteasome genes
up-regulated in the mild heat-shocked wild-type included
vacuolar protein genes (AUT7, LAD4 and APG17), and
unfolded protein response (UPR) genes (DER1, PDI1 and
ERO1) (Fig. 5D).

Confirmatory RT-PCR for proteolytic degradation- and 
ribosomal biogenesis-related genes
To verify that both protein synthesis and degradation are
activated in the ssa1/2 deletion mutant, RT-PCR analysis

The comparison of up-regulated genes in the ssa1/2 deletion mutant with those in mild heat-shocked wild-typeFigure 5
The comparison of up-regulated genes in the ssa1/2 deletion mutant with those in mild heat-shocked wild-type. 
Venn Diagrams were constructed by the "GeneSpring" software (Silicon Genetics). Functional subcategories are according to 
Figure 1.
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of several proteolytic degradation genes and cytosolic
ribosomal protein genes was carried out. Proteasome
subunit genes (PRE1, RPN4, RPN12, and SCL1), an ubiq-
uitin conjugating enzyme gene (UBC4), and cytosolic
ribosomal protein genes were found to be up-regulated in
the ssa1/2 deletion mutant compared with the wild-type
(Fig. 6A and Fig. 6B). This result supports the cDNA
microarray data showing that both ubiquitin-proteasome
protein degradation and protein synthesis were activated
by deletion of the SSA1/2 genes. Only KAR2 was highly
expressed among the UPR genes (Fig. 6A).

Immunoblot analysis of proteolytic degradation-related 
gene products
To confirm that ubiquitin-proteasome protein degrada-
tion is activated at the translational level in the ssa1/2
deletion mutant, immunoblot analysis was performed.
Pre1p (20 S proteasome subunit) and Rpn4p (Ubiquitin-
mediated 26 S proteasome subunit) increased in the ssa1/
2 deletion mutant compared with the wild-type (Fig. 7).
An anti-multi ubiquitin mouse monoclonal antibody
(FK2) [31,32] detects only ubiquitin that is covalently
bound to substrate proteins, i.e. ubiquitinated proteins,
and not free ubiquitin [31,32]. Ubiquitinated proteins
especially with molecular weights less than 30 kDa

Table 1: The genes involved in ribosomal proteins up-regulated in the ssa1/2 deletion mutant.

Gene name Expression level* Description

RPL37A 3.2 60S ribosomal protein L37A (YL35)
RPL25 2.8 Ribosomal protein L25 (rpl6L)
MRP8 2.4 Mitochondrial ribosomal protein
RPS15 2.2 40S ribosomal protein S15 (S21) (rp52) (RIG protein)

MRPL10 2.0 Mitochondrial ribosomal protein MRPL10 (YmL10)
RSM18 1.9 Protein of the small subunit of the mitochondrial ribosome
RPL8B 1.8 Ribosomal protein L8B (L4B) (YL5)
RSM10 1.7 Protein of the small subunit of the mitochondrial ribosome

*The expression levels are the average value of three independent experiments.

Table 2: The genes involved in proteolytic degradation up-regulated in the ssa1/2 deletion mutant.

Gene name Expression level* Description

CDC23 3.7 Cell division cycle protein
PRE1 3.0 22.6 kDa proteasome subunit (20S proteasome subunit C11 (beta4))
UBC4 2.8 Ubiquitin-conjugating enzyme
RPN4 2.6 Ubiquitin-mediated 26S proteasome subunit

MET30 2.5 Met30p contains 5 copies of WD40 motif and interacts with and regulates 
Met4p

SCL1 2.4 20S proteasome subunit YC7alpha/Y8 (protease yscE subunit 7)
PBI2 2.3 Proteinase inhibitor that inhibits protease Prb1p (yscB)

RPN12 2.0 26S proteasome regulatory subunit

*The expression levels are the average value of three independent experiments.

RT-PCR analysis of ribosomal protein and proteolytic degra-dation genes in the ssa1/2 deletion mutant and wild-typeFigure 6
RT-PCR analysis of ribosomal protein and proteolytic 
degradation genes in the ssa1/2 deletion mutant and 
wild-type. RT-PCR was carried out as described in "Materi-
als and Methods", and primers, product size and numbers of 
PCR cycle are described on Table 3. The RT-PCR products 
were run on a 4% Nu-Sieve 3:1 Plus agarose gel. A, genes for 
proteolytic degradation. B, ribosomal protein genes.
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increased in the ssa1/2 deletion mutant in comparison
with the wild-type (Fig. 8).

Discussion
In the present study, we reveal global differences in gene
expression between yeast cells lacking two cytosolic
HSP70s, SSA1 and SSA2, and the mild-heat-shocked wild-
type using cDNA microarray technologoly.

Results from cDNA microarray analysis reveal that the
stress-inducible protein genes, including molecular chap-
erones, were up-regulated in the ssa1/2 deletion mutant in
a similar fashion as seen in the mild heat-shocked wild-
type (Figs. 1A, 2A, and 5B). It is clear that thermotolerance
is due to expression of these stress-inducible proteins. In
the ssa1/2 deletion mutant, HSF1 suppressing growth rate
of the ssa1/2 [15,16] was expressed normally and its
expression level was unchanged (data not shown). Several
genes involved in the ubiquitin-proteasome protein deg-
radation pathway were up-regulated in the ssa1/2 deletion
mutant (Fig. 5D and Table 2). UBC4 [33,34] was also up-
regulated in the ssa1/2 deletion mutant, which is
consistent with a previous report [35]. UBC4/5 is neces-
sary for binding between the substrates and Lys48 of ubiq-
uitin that is a target of the 26 S proteasome [34], and for
binding between the substrates and Lys63 of ubiquitin,
that is not a target of the 26 S proteasome. In addition to

UBC4, we found up-regulation of several proteasome
genes (PRE1, RPN4, RPN12 and SCL1) in the ssa1/2 dele-
tion mutant. PRE1 and SCL1 encode 20 S proteasome,
and RPN4 and RPN12 encode 26 S proteasome [36].
RPN4 (SON1) is a factor involved in ERAD (endoplasmic
reticulum associated degradation) [37]. All these genes are
essential for degradation of the ubiquitinated proteins
[36,38]. RT-PCR data support the up-regulation of these
proteasome genes by the deletion of SSA1/2 (Fig. 6A).
Moreover, we confirmed that Pre1p and Rpn4p were up-
regulated in the ssa1/2 deletion mutant at the translational
level by immunoblotting (Fig. 7). This result provided fur-
ther evidence that proteolytic degradation by proteasomes
was stimulated by the deletion of SSA1/2. As shown in Fig.
8, more ubiquitinated proteins, especially with molecular
weights less than 30 kDa, were detected in the ssa1/2 dele-
tion mutant than in the wild-type. The deletion of UBP3
in ssa1/2 has been reported to lead to a significant increase
in the number of the ubiquitinated proteins, mainly with
molecular weights of more than 30 kDa [35]. The expres-
sion level of UBP3 did not change in the ssa1/2 deletion
mutant compared with the wild-type (data not shown).
Therefore, the increase of ubiquitinated proteins in ssa1/2
is not caused by the deletion of UBP3. There are two pos-

Immunoblot analysis of proteasome subunit genes in the ssa1/2 deletion mutant and wild-typeFigure 7
Immunoblot analysis of proteasome subunit genes in the ssa1/2 deletion mutant and wild-type. 2-DGE was per-
formed as described in "Material and Methods", followed by immunoblot analysis. A, Pre1p (20 S proteasome subunit). B, 
Rpn4p (Ubiquitin-mediated 26 S proteasome subunit).

anti-Pre1p (Rabbit polyclonal; 1:50,000)

ssa1/2WT
–

10.0IEF
+
3.5

S
D
S
-P
A
G
E

S
D
S
-P
A
G
E 2525

2020

1515

M
(kDa)

anti-Rpn4p (Rabbit polyclonal; 1:50,000)

50

37

WT5050

3737

WT ssa1/2
Page 9 of 15
(page number not for citation purposes)



BMC Genomics 2005, 6:141 http://www.biomedcentral.com/1471-2164/6/141
sibilities for the increase of ubiquitinated proteins in the
ssa1/2 deletion mutant. First, insufficiency of the UPR in
the ssa1/2 deletion mutant may lead to activation of the
ubiquitin-proteasome protein degradation system. Thus,
ubiquitination of the target proteins increases and the
expression of proteasome genes is induced. Second, some
defect of deubiquitination occurs in the ssa1/2 deletion
mutant, consequently leading to the accumulation of
ubiquitinated proteins in the cell followed by cell death.
Furthermore, proteolytic degradation by proteasomes is
facilitated. On the other hand, we found that several genes
encoding ribosomal proteins were up-regulated in the
ssa1/2 deletion mutant (Figs. 5C, 6A, and Table 1), imply-
ing that protein synthesis is activated by the deletion of
SSA1/2.

In case of the mild heat-shocked wild-type, genes involved
in protein synthesis were significantly suppressed (Figs.
2B and 4B), and the proteasome genes up-regulated in the
ssa1/2 deletion mutant did not show any change in their
expression levels (Fig. 5D). Instead, some UPR genes
(PDI1, DER1, ERO1 and KAR2) were up-regulated (Fig.
5D), implying that UPR occurs during mild heat-shock.
The mechanism of UPR is known to induce the up-regula-
tion of ER chaperones for refolding when unfolded pro-
teins accumulate in the ER [39]. In the ssa1/2 deletion
mutant, the expression of three UPR genes (PDI1, DER1

and ERO1) remained unchanged (data not shown), and
only KAR2 was up-regulated (Fig. 3).

Gasch et al. has reported the genome-wide expression
analysis of yeast cells exposed to environmental changes
[40]. We compared our data on the mild heat shocked
wild-type yeast cells with their data on the wild-type cells
shifted to 37°C from 25°C. The stress-inducible protein
genes up-regulated in the mild-heat shocked wild type
(SSA3, SSA4, SSE2, CTT1, HSP26, HSP78, and HSP104)
(Fig. 5B) are in common with the results obtained by
Gasch et al. [40]. In the category of "Protein fate", more
than 70% of the up-regulated genes in our experiments
are also in common with their results [40], even though
there is a time lag with their experiments. However, DER1,
one of the UPR genes, was not found to be up-regulated
in their study during the entire the heat-shock treatment
period [40]. In contrast, DER1 was up-regulated in our
experiments (Fig. 5D). This may be due to the difference
in the temperature and time of heat-shock treatment. On
the other hand, in the category of "Protein synthesis",
ribosomal protein genes are significantly suppressed in
their experiments [40], which is consistent with our data.
From these comparisons, it can be said that our data on
the mild heat-shocked wild-type is similar to that reported
by Gasch et al. [40] in the categories of "Cell rescue,

Ubiquitinated proteins in the ssa1/2 deletion mutant and wild-typeFigure 8
Ubiquitinated proteins in the ssa1/2 deletion mutant and wild-type. 2-DGE was performed followed by immunoblot 
using an anti-multi ubiquitin mouse monoclonal antibody (FK2).
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defense, and virulence", "Protein fate" and "Protein
synthesis".

It is reasonable that UPR is activated and protein synthesis
is suppressed in the mild heat-shocked wild-type. We
speculate on the reasons as to why the genes involved in
both protein degradation and protein synthesis are up-
regulated in ssa1/2 deletion mutant. In the normal state,
proteins are synthesized on the ribosome, followed by
post-translational modifications in the ER or the Golgi
apparatus to finally become mature and functional enti-
tles. Schubert et al [41] showed that 30% of the de novo
synthesized proteins are degraded before coming to matu-
rity. Therefore, it can be reasoned that post-translational
protein denaturation occurs moderately even under
normal conditions. However, organisms have developed
several mechanisms in their response to the denatured
proteins. UPR is one of the ER quality control mecha-
nisms [39]. In addition, the refolding of denatured pro-
teins is carried out by cytosolic chaperones [25,42,43],
including SSA1/2 [20,21]. It can be hypothesized that the
deletion of SSA1/2 leads to the suppression of refolding,
which is then followed by an accumulation of the dena-
tured proteins in cells. The genes involved in proteolytic
degradation may be up-regulated to remove such dena-
tured proteins. However, if the ubiquitin-proteasome sys-
tem keeps on degrading proteins, the depletion of the
proteins essential for growth and development will occur.
It is suggested that protein synthesis is activated to supply
the proteins deleted by proteolytic degradation in the
ssa1/2 deletion mutant. In the ssa1/2 deletion mutant, sev-
eral hexose transporter genes (HXT2, HXT4, HXT6,
HXT7), and the genes that belong to early part of glycoly-
sis (GLK1, HXK1) were up-regulated (data not shown).
The expression of these genes, involved in energy
generation, may be required for sustaining the increased
protein synthesis in the ssa1/2 deletion mutant. HXT
genes up-regulated in the ssa1/2 deletion mutant are low-
glucose dependent [44-46]. It is possible that the uptake
of glucose is activated to generate energy, because energy
is consumed by protein synthesis that is induced by the
deletion of SSA1/2.

These results indicate that different mechanisms of the
response to denatured proteins are employed between the
ssa1/2 deletion mutant and the mild heat-shocked wild-
type even though several up-regulated Hsps (molecular
chaperones) are common between the ssa1/2 deletion
mutant and the mild heat-shocked wild-type (Fig. 5B).
When Hsp104p, Ydj1p (yeast Hsp40p), and Ssa1p exist
together, their chaperone activities increase significantly
[25]. From this, it is suggested that the deletion of SSA1/2
induces the suppression of their chaperone activities.
Recently, the cooperation of Hsp26p wih Hsp104p/
Hsp70p/Hsp40p chaperone system on protein disaggre-

gation in yeast was reported [47,48]. Hsp26p co-aggre-
gated with substrate is suggested to be a target of the
Hsp104p/Hsp70p/Hsp40p chaperone system [47,48].
Although Ssa1p is able to disaggregate the early Hsp26p-
substrate complex (small soluble aggregates), Hsp104p is
essential in refolding the late Hsp26p-substrate complex
(big insoluble aggregates) [47,48]. Moreover, excess or
stoichiometric Hsp26p against denatured substrates is
essential for effective refolding [47]. In the ssa1/2 deletion
mutant, an increase in the mRNA expression levels of
HSP104 and HSP26 was seen (Fig. 5B). Although the
refolding of denatured proteins is sure to succeed if
HSP104/Hsp104p and HSP26/Hsp26p are highly
expressed, it is a fact that the ubiquitin-proteasome degra-
dation system is facilitated in the ssa1/2 deletion mutant.
It can be speculated that as constitutive protein denatura-
tion occurs, the ubiquitin-proteasome degradation system
is required in addition to the chaperone refolding system
in the ssa1/2 deletion mutant. Furthermore, there is a pos-
sibility that protein refolding by molecular chaperones
and ubiquitin-proteasome protein degradation are
related. In mammalian cells, the following model has
been reported; denatured proteins are refolded by Hsp70-
HSP40 chaperone-mediated maturation pathway under
the treatment of Hsp90 inhibitor, and then denatured
proteins are degraded by ubiquitin-proteasome [49]. It is
interesting to note that the ubiquitin-proteasome protein
degradation system in yeast is induced when the chaper-
one function is inhibited by the deletion of SSA1/2.
However, at present, our data are not sufficient to propose
a similar model in yeast, and this remains a topic for
future study.

Conclusion
The protein synthesis and ubiquitin-proteasome degrada-
tion system were up-regulated in the ssa1/2 deletion
mutant, whereas UPR genes were up-regulated but protein
synthesis was strongly suppressed in the mild heat-
shocked wild-type. These results suggest that the mecha-
nism for rescue of denatured proteins in the ssa1/2 dele-
tion mutant differs from that in the mild heat-shocked
wild-type, although the phenomena on acquisition of
thermotolerance are similar.

Methods
Strains and growth condition
S. cerevisiae JN14 is the ssa1/2 deletion mutant strain
(MATa his3-11, 3-15 leu2-3, 2-112 ura3-52 trp1-?1 lys2?
Ssa1-3::HIS3 ssa2-2::URA3) [15]. S. cerevisiae JN54 (MATa
his3-11, 3-15 leu2-3, 2-112 ura3-52 trp1-?1 lys2?) is the
parent strain (wild-type) of the ssa1/2 double mutant [15].
Yeast cells were incubated in 100 ml of YPD (1% yeast
extract, 2% polypeptone and 2% glucose) medium at
30°C to a logarithmic phase (OD660 = 1) using 500 ml
Erlenmeyer flasks, and collected by centrifugation (2,800
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× g). Cells were washed with distilled water three times,
and stocked in a -80°C deep freezer until used for total
RNA extraction.

Heat-shock treatment
S. cerevisiae JN54 (wild-type) cells were incubated in YPD
medium at 30°C to a logarithmic phase (OD660 = 1), fol-
lowed by treatment with mild heat-shock at 43°C for 30
or 60 min in pre-warmed (43°C) 100 ml of YPD medium
using 500 ml Erlenmeyer flasks. Heat-shocked cells were
collected by centrifugation. Cells were washed with dis-
tilled water three times, and stocked in a -80°C deep
freezer until used for total RNA extraction.

RNA extraction and hybridization to a cDNA microarray
Total RNA was extracted by the hot-phenol method [50].
The extraction of mRNA and reverse-transcription to
cDNA was done according to Momose and Iwahashi [51].
Poly (A) +RNA was purified from total RNA with an
Oligotex-dT30 mRNA purification kit (TaKaRa, Otsu,
Shiga, Japan). Fluorescence-labeled cDNA was synthe-
sized with a Cyscribe cDNA Labeling Kit (Amersham Bio-
sciences, Little Chalfont, Buckinghamshire, UK) and 0.5
mM Cy3-UTP (Amersham Biosciences) or 0.5 mM Cy5-
UTP. Cy3-UTP was used for the wild-type (as control),
and Cy5-UTP was used for the ssa1/2 deletion mutant (as
sample). For the heat-shock experiment, Cy3-UTP was
used for control cells (30°C), and Cy5-UTP was used for
mild heat-shocked cells (43°C). Synthesized cDNA were
hybridized to a Kuhara DNA chip (DNA Chip Research,
Yokohama, Kanagawa, Japan) at 65°C for 48 h.

cDNA microarray analysis
Hybridized cDNA microarray were washed, dried, and
scanned using Scanarray 4000 (GSI Lumonics, Billerica,
MA, USA). Quantification of gene expression was done
using the Genepix ver. 4.0 quantitative microarray analy-
sis application program (Axon Instruments, Union City,

CA, USA). The ratio of intensity Cy5/Cy3 was calculated
and normalized with negative control spots. All the calcu-
lations and normalizations were done using "Chip
Cleanser" program [52]. The functional categorization of
genes was performed using GeneSpring (Silicon Genetics,
Redwood City, CA, USA), and Comprehensive Yeast
Genome Database (CYGD) at the Munich International
Center of Protein Sequence (MIPS) database [52]. The
over 2- fold expressed genes by the deletion of SSA1/2 or
the mild heat-shocked treatment in the wild-type were
selected as up-regulated genes and determined by at least
twice- induced, out of three individual experiments. Sim-
ilarly, the over 2- fold suppressed genes by the deletion of
SSA1/2 or the mild heat-shocked treatment in the wild-
type were selected as down-regulated genes, and deter-
mined by twice suppressed, out of three individual exper-
iments [51,53]. The values for up- or down-regulated
genes were the average ratio from three independent
experiments. The data obtained in this experiment are
available with the accession numbers GSE3315 (ssa1/2
deletion mutant) and GSE3316 (mild heat-shocked wild-
type) in the Gene Expression Omnibus Database (GEO)
[54].

RT-PCR analysis
Total RNA extraction was carried out as described above.
RT-PCR was performed using the One Step RNA PCR Kit
(AMV) (TaKaRa), according to the instructions provided
by the manufacturer. The primers used for RT-PCR are
described in Table 3, and 0.1 µg of total RNA were used for
RT-PCR. After reverse transcription, samples were sub-
jected to a cycling regime of 20–25 cycles (details are men-
tioned in Table 3). Five µl of RT-PCR products were
loaded into the wells of a 4% Nu-Sieve 3:1 Plus agarose
(Cambrex Bio Science Rockland, Inc. Rockland, ME, USA)
gel, and electrophoresis was carried out for 50 min at 100
V. The gels were stained using 10 µg/ml ethidium bromide

Table 3: List of primers for RT-PCR

Gene name Forward primer (5'-3') Reverse primer (5'-3') Product size (bp) No. of cycles

PRE1 TGACTTCCAGGCACAGTGAA TCTCACTCTGCCAACAAAAA 187 25
RPN4 CGAAGCATGAAGATTTGTCG AAGAACATTCCTGAATGCAGAT 202 25
RPN12 CCAATCAAAGGAGAAAGCTGA CTCCGGGAGAGAAAAAGTTG 178 22
SCL1 AGTCGGTGTCGCTACAAAGG CGACAAAAGGGCTTGAAAAG 229 20
UBC4 CAGCCAGAGAATGGACAAAGA AGGTTCCCCTGTACTGTTGC 220 20
KAR2 GTTCTGGTGCCGCTGATTAT CGAAAATTGTATGAAGCTCGAA 205 20
RPS15 AGAGCCGGTGCTACTACTTCC CGTGTACAACCCCCATTCAC 200 22
RPL25 CGTTACCAAGAAGGCTTACG CGTGCACTCTGCCACTACAC 203 22
RPL37A CAAACCGGCTCTGCTTCTAA TTCCCGTAAGCACTCAAAGG 194 25
ACT1 CCTTCCAACAAATGTGGATCT CAGTGCTTAAACACGTCTTTTC

C
200 25
Page 12 of 15
(page number not for citation purposes)



BMC Genomics 2005, 6:141 http://www.biomedcentral.com/1471-2164/6/141
followed by visualization of the stained bands with an
UV-transilluminator (ATTO, Tokyo, Japan).

Antibodies
Anti-Pre1p peptide (Res. No., 17-38) and anti-Rpn4p pep-
tide (Res. No., 499-509) rabbit polyclonal antibodies
were ordered to Sigma Genosys (Tokyo, Japan). The anti-
multi ubiquitin mouse monoclonal antibody (FK2, Cat.
No. SPA-205) was purchased from Stressgen Bioreagents
Ltd. Partnership (Victoria, B.C., Canada) [31,32].

Two-dimensional gel electrophoresis (2-DGE) and 
Immunoblot analysis
Yeast cells were washed with distilled water three times.
Total protein was extracted from cells homogenized with
lysis buffer [(7 M urea (ICN Biomedicals, Aurora, OH,
USA), 2 M thiourea (Sigma, St. Louis, MO, USA), 4%
CHAPS (Sigma), 1% carrier ampholyte (pH 3.5-10,
Amersham Biosciences), 18 mM Tris-HCl, pH 7.5, 14 mM
Trizma base (Sigma), EDTA-free Proteinase Inhibitor
(Roche Diagnostics, Manheim, Germany), 0.2 % Triton X-
100, reduced (Sigma), 14.4 mM DTT (Sigma)]. Resus-
pended cells were broken with glass beads at 4°C for 10
min, and centrifuged at 20,000 × g for 10 min. Cell lysate
was centrifuged again at 20,000 × g for 7 min. Equal
amounts (350 µg) of protein were subjected to 2-DGE,
following O'Farrell's method [55]. Electrophoresis [IEF,
carried out in a glass capillary tube of 13 cm length and 3
mm diameter (Nihon Eido, Tokyo, Japan) and SDS-PAGE
(12.5% or 15% polyacrylamide gel, 5% stacking and
12.5% or 15% separation gel; using standard glass gels
plates obtained from Nihon Eido) in the second dimen-
sion] was carried out at a constant current of 35 mA for 2-
1/2 h or until the dye (250 µL BPB; 0.1% (w/v) in 10% (v/
v) glycerol in MQ) reached the bottom of the gel [56]. Ten
µL of the commercially available "ready-to-use" molecu-
lar mass standards (Precision Plus Protein Standards,
Dual Color, Bio-Rad, Hercules, CA, USA) were loaded
next to the acidic end of the IEF tube gel. Reproducibility
of 2-DGE protein profiles was confirmed by running at
least 3 independent protein samples extracted from the
cells of wild-type and the ssa1/2 deletion mutant.
Electrotransfer of proteins on gel to a PVDF (NT-31,
Nihon Eido) membrane was carried out at 1 mA/cm2 with
a semi-dry blotter (Nihon Eido) as described previously
[57], followed by immunostaining using antibodies
(described above). The anti-Pre1p and anti-Rpn4p rabbit
polyclonal antibodies were diluted to 1:50,000, and anti-
multi ubiquitin mouse monoclonal antibody (FK2) was
diluted to 1:60,000. The ECL plus Western Blotting Detec-
tion System protocol for blocking, primary and secondary
antibody (anti-Rabbit IgG, Horseradish peroxidase linked
whole antibody; from donkey) incubation was followed
exactly as described (Amersham Biosciences).
Immunoassayed proteins were visualized on an X-ray film

(X-OMAT AR, Kodak, Tokyo, Japan) using an enhanced
chemiluminescence protocol according to the manufac-
turer's directions (Amersham Biosciences).
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