Research article

The EHI motif in metazoan transcription factors Richard R Copley*

Address: Wellcome Trust Centre for Human Genetics, Roosevelt Drive, Oxford OX3 7BN, UK
Email: Richard R Copley* - copley@well.ox.ac.uk
* Corresponding author

Published: 27 November 2005
BMC Genomics 2005, 6:169 doi:I0.1 $186 / 1471-2164-6-169$

Received: 26 August 2005
Accepted: 27 November 2005

This article is available from: http://www.biomedcentral.com/I47I-2I64/6/I69
© 2005 Copley; licensee BioMed Central Ltd.
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

Background: The Engrailed Homology I (EHI) motif is a small region, believed to have evolved convergently in homeobox and forkhead containing proteins, that interacts with the Drosophila protein groucho (C. elegans unc-37, Human Transducin-like Enhancers of Split). The small size of the motif makes its reliable identification by computational means difficult. I have systematically searched the predicted proteomes of Drosophila, C. elegans and human for further instances of the motif. Results: Using motif identification methods and database searching techniques, I delimit which homeobox and forkhead domain containing proteins also have likely EHI motifs. I show that despite low database search scores, there is a significant association of the motif with transcription factor function. I further show that likely EHI motifs are found in combination with T-Box, Zinc Finger and Doublesex domains as well as discussing other plausible candidate associations. I identify strong candidate EHI motifs in basal metazoan phyla. Conclusion: Candidate EHI motifs exist in combination with a variety of transcription factor domains, suggesting that these proteins have repressor functions. The distribution of the EHI motif is suggestive of convergent evolution, although in many cases, the motif has been conserved throughout bilaterian orthologs. Groucho mediated repression was established prior to the evolution of bilateria.

Background

The Engrailed Homology 1 (EH1) motif is a short (<10 amino acids) region, initially found in engrailed (en) and other homeobox containing proteins, that mediates transcriptional repression via interaction with the WD40 repeat containing groucho (Gro) [1,2]. Shimeld [3] proposed that the EH1 motif of Smith and Jaynes was shared with various forkhead (FH/HNF-3) containing transcription factors. The short size of the motif, however, suggests that it may occur by chance in many different protein families. Shimeld did not demonstrate statistically significant sequence similarity between the motifs from the home-
obox- and forkhead-containing families. However, the human orthologs of groucho (the transducin-like enhancer of split proteins) have been shown to interact with FOXA2 via a region of sequence containing an EH1 motif, clearly demonstrating the biological relevance of the sequence similarity [4].

In this article I search systematically for instances of the EH1 motif in homeobox and forkhead containing genes and go on to demonstrate that the EH1 motif is also found in proteins containing T-box, Doublesex Motif (DM) and Zn finger domains. I show that within metazoan

a) Homeobox			Q99811/36	Hs \| PRRX2	KNESVSHLLDL	
			P23760/184	Hs \| PAX3	AKHSIDGILSE	
N-terminal:			Q23175/365	Celceh-32	SKLSIDEILNI	
			P09083/152	Dm\|gsb-n	KDYTINGILGG	
Q9VDA2/53	Dm\|lbl	KSFSIADILGR	P50219/5	Hs \\| HLXB9	KNERIDALLAV	
P52952/10	Hs \| NKX2-5	TPESVKDILNL		Hs \|ENSG00000109851	LKEGVNAILSS	
Q8tauo /10	Hs \| NKX2-3	TPGSVKDILNL	P26797/1	Cel ceh-19	MAFNIESLLEK	
Q9UBX0/19	Hs \| HESX1	CSESIERILGL	P41935/24	Cel ceh-10	MSEAIHEILGI	
Q 7 KS 77/132	Dm\|libe	KSESIADILGH	Q9NZR4/29	Hs \| VSX1	RGEAITDLLGL	
Q03014/30	Hs \\| HHEX	TPFYIEDILGR	Q18533/49	Ce\|mls-2	IKENISELLED	
	Hs \|ENSG00000180053	TPESVKDILRL	Q9Y2V3/31	Hs\\|RAX	RLHSIEAILGF	
P22809/22	Dm\|bap	TPESINDILTR	Q9NZ75/42	Hs \| $\mathrm{HLXX}^{\text {d }}$	PSECIADILHA	
P05527/277	Dm\|inv	LKESIDNILKA	Q8T0H1/132	Dm\| $\mathrm{Dr}^{\text {c }}$	SNESVASLLAD	
P22711/36	Dm/tin	TPESVKDILNM	Q9W1U7/58	Dm\|CG9876	HRESVDNIMEM	
Q68DJ5/29	Hs\|ENSG00000175329	LSESIEAILKR	Q9W2P8/35	Dm\|hbn	AVYSIDQILGN	
Q19937/6	Celtab-1	SSESIDDLLRG	Q04741/8	Hs \| EMX1	RGETIESLVAK	
095096/8	Hs \| NKX2-2	TGESVKDILDL	Q8IUT7/7	Hs \| NKX2-8	LSETVRSLLDL	
P78367/10	Hs \| BAPX1	TSESIQAILNK	P35548/45	Hs \| MSX2	LPESVEALMSD	
P09082/150	Dm\|gsb	TSHSIDGILGG	001962/3	Celceh-2	LKESVERLVDS	
Q9V943/45	Dm\| CG13424	HSESIEQILAK	Q04743/8	Hs\|EMX2	RCETIESLVAK	
P54366/108	Dm\|Gsc	SLETIDSILGS	P20265/193	Hs \\| POU3F2	PSETVNGMLGA	
Q5VzV8/9	Hs \| NKX2-4	TPESVSDILSP	Q09604/12	Celvab-15	GLeSVESLLET	
Q7KZF6/39	Hs\\|TITF1	TPFSVSDILSP	Q6NT76/20	Hs\|NP 078843	PRETIEQIDLL	
Q9VEA3/169	Dm\| CG18599	KSETIAAILGL	017978/26	Celcog-1	STYSISNLLLE	
Q09546/153	Celpax-3	LSYSIDSILGI	P49335/137	Hs \| POU3F4	PGETVSGMLEH	
Q9NY43/140	Hs \| BARHL2	SSELIKDILGD	P20264/226	Hs \| POU3F3	GGETVNGMLSA	
015499/18	Hs \\| GSCL	CPESIEHILSS	P28360/110	Hs \| MSX1	GHESVGGLLKL	
Q4ZG44/103	Hs\|EN1	TNEFIDNILRP	P17487/2	Ce\|ceh-12	MFSSIDSLLKI	
P19622/67	Hs\|EN2	TNEFIDNILRP	Q9UIW0/175	Hs IVAX2	EAEATSNILRL	
	Hs \|ENSG00000188909	TSEFIEDILLH	P53547/116	Celceh-1	TLFNLNQILMP	
P02836/173	Dmlen	LAESISNILSD	P20009/102	Dm\| ${ }^{\text {dl }}$	DDESISDKCED	
Q04787/40	Dm\|bsh	TPGSIEHILFQ	Q17788/45	Celc07E3.5	EIESIGESLSV	
P31314/17	Hs\\| ${ }^{\text {dex }}$	ISEGIDQILNS				
043711/16	Hs \|TLX3	ISEGIDQILNS	C-terminal:			
Q9VFK4/191	Dm\| NK7.1	TPHSIADILGM				
P56915/4	Hs \| GSC	SMESIDNILAA	Q69YW8/184	CelR03E1.4	IPETIDNILS-	
	Hs \| HMX2	SSETIQSILGG	Q9VX20/372	DmiodsH	SPESIESLLGS	
	Hs \|ENSG00000188620	SPESIKNLLNG	P29506/172	Celunc-4	FPESIDSILAV	
043763/17	Hs \| TLX2	ISEGIDQILSG	077215/416	Dm\|unc-4	NPGSIESLLFN	
Q9VDH9/2	Dm\| CG15696	SDESIEYILNR				
Q9N4L2/35	Cel ZK993.1	TSESIDTLLSN	Non-bilaterian:			
Q5JSE3/56	Hs \| NKX6-2	TPHGISDILGR				
Q5BIB4/24	Dm\|ems	IGESIESIVGN	Q6VT85/49	Sponge-hox	CSESIASILGD	
Q9W4B2/8	Dm\| CG4136	TPEAIQEILGL	Q7YZD2/11	Cnidarian-hox	TPESITDILSR	
P10035/72	Dm\| H 2.0	LSESVDRLLGS	Q70HR3/7	Ctenophore-hox	LSESIDQILGL	
P58304/30	Hs ${ }^{\text {CHX10 }}$	TGEGIQEILGL				
P34326/3	Celceh-16	LKEGIERILSS	b) PAX (no hom	eobox)		
Q960S3/25	Hs \| ARX	SSYCIDSILGR				
Q7KS $72 / 74$	Dm\| C 15	LPESISRLLSK	P23757/306	Dm\| Poxm	SSHISVSDILAH	
P78426/94*	Hs \\| NKX6-1	TP蜀GINDILSR	Q02548/177	Hs \| PAX5	SSYSISGILGI	
Q6NT51/23	Hs \| BARX2	KTEMIDEILSK	016117/401	Dm\|sv	TGYSINGILGI	
Q9VSC2/219	Dm\|exex	KSECIDALLAK	P55771/194	Hs IPAX9	SSHSVTDILGI	
P22807/445	Dm\|slou	LAESVENILDP	P15863/194	Hs \| PAX1	SAASVSNILGI	
Q24255/75	Dm\| $\mathrm{B}^{\text {- }} \mathrm{H} 1$	SREMINDILAG	Q02962/183	Hs \| PAX2	GSYSINGILGI	
Q9NLC2 / 44	Celceh-24	SKESVNSILSP	P23758/358	Dm\| Poxn	NPYSIEELLKK	
Q9VFQ3/50	Dm\|E5	LAESIDSIVGE	Q21263/289	Celpax-2	TTHSINGLLGT	
P56407/27	Celceh-9	TSHLIKDILDL	Q17627/227	Celegl-38	TAYSINGLLGT	
P23759/184	Hs \| PAX7	AKPISIDGILGD	Q06710/178	Hs \| PAX8	STYSINGLLGI	
P22808/198	Dm\| vnd	SGEHISDILNL				
	Hs \|ENSG00000185610	KSELIENLLRV	Non-bilaterian:			
P52951/20	Hs \| GBX2	TAESIDSLIGS				
Q9bze3/5	Hs \| BARHL1	NGFGIDSILSH	67527267/158	Trichoplax-pax	CHYRINDLLGI	
Q9W2Q1/114	Dm\|Rx	PRHTIDAILGL				
Q22909/102	Cel ceh-30	SSERISDILEQ				
Q9V552/29	Dm \| unpg	KPbSIESLIAN				
Q24256/57	Dm\| $\mathrm{B}_{\text {- }}$ H2	SREMITDILAG				
Q9NP08/17	Hs \| HMX1	SSELIENLLAA				
P54821/32	Hs \| PRRX1	KNESVSHLLDL				

Figure I
Alignments of putative EHI motifs in a) Homeobox and b) Paired box domain containing proteins, subdivided by domain partners and orientation, with representative non-bilaterian sequences included. Alignments were derived from meme searches, as described in text. Conserved aromatic residues (FHYW) are coloured white on a red background ('a' in the consensus). Conserved aliphatic residues (ILV), black on a yellow background. ('I' in the consensus) Conserved big residues (EFHIKLMQRWY) blue on a light yellow background (' b ' in the consensus). Conservation is calculated over the full alignment of sequences in figures I and 2. The figure was produced using the Chroma program [4I]. Gene names are standard HUGO Gene Nommenclature Committee, flybase or wormbase symbols where available, otherwise accessions for their respective databases. When available Uniprot protein accessions are also given [42], along with the starting residue of the motif.
genomes, the observed association of the motif with transcription factor function is statistically significant. The location of the motif in members of the same transcription factor family is often non-homologous, occurring both N - and C-terminal to the DNA binding domain, suggesting that the presence of the motif is, in part, due to convergent evolution, as proposed by Shimeld; the conservation within orthologs points to many of these convergences predating the last common ancestor of the bilateria.

Results and Discussion
 Significant association of EHI motif with transcription factor function

I searched for sequence motifs in homeobox containing transcription factors taken from the proteins of human, Drosophila melanogaster and Caenorhabditis elegans, by first masking known Pfam domains [5], and then using the expectation maximization algorithm implemented in the meme program [6]. The first non-subfamily specific motif identified corresponded to previously known examples and new instances of, the EH1 motif (see Figure 1a), in 100 sites, with an E-value of < 10^{-126}. I then applied the same approach to Forkhead containing transcription factors, identifying 25 sites with a combined E -value of < 10^{-} ${ }^{31}$ (Figure 2a). These motifs also appeared to conform to the consensus of the EH1 motif, as previously reported by Shimeld [3].

To further investigate the significance of this similarity, I constructed hidden Markov models (HMM) of the motif (EH1 ${ }^{\text {hox }} \& E H 1^{\text {fh }}$) which I then searched against the complete set of predicted proteins from human, D. melanogaster \&C. elegans. The highest scoring non homeobox containing domain match of EH1 ${ }^{\text {hox }}$ was a Forkhead protein (human FOXL1), and the second highest scoring non-Forkhead containing match of EH1 $1^{\text {fh }}$ was to a homeobox containing protein (D. melanogaster inv). In both cases, nearly all the high scoring hits were to proteins containing domains with transcription factor function (see Figure 3). Among the best scoring matches of the EH1 ${ }^{\text {hox }}$ searches were several T-box (TBOX), Doublesex Motif (DM), Zinc finger (ZnF_C2H2) and ETS containing proteins (domain names as per SMART, Figure 2b-e) [7,8]. Excluding hits to homeobox containing proteins, but otherwise including all scores, the overall significance of the association of transcription factor function with higher scores to the EH1 hox HMM is $\mathrm{P}<10^{-47}$, using a logistic regression model which tests association between score and transcription factor annotation (see methods and supplementary file 1 for raw data). The association remains significant when scores derived from Forkhead and PAX domain containing proteins are also excluded (P $<10^{-34}$). This indicates that, although the scores associated with any individual EH1-like motif may not be statis-
tically significant, overall, we would not see so many EH1like sequences co-occurring with DNA binding domains if their co-occurrence were governed simply by chance there is, therefore, likely to be a functional reason for these partnerships. In the following sections, I review the higher scoring associations detected here in the light of known gene functions.

EHI motifs in homeobox and forkhead containing proteins

 The presence of EH1 motifs within various homeobox, and to a lesser extent, forkhead containing proteins has been widely reported, although not systematically studied [3]. I found EH1-like motifs co-occurring with 3 major groupings of homeobox sub-types: the extended-hox class, typified by Drosophila engrailed (en); the paired class, including Drosophila goosecoid (gsc), and the NK class, including Drosophila tinman (tin) [1,9,10] (see [11] for a description of these broad classes). Related to the paired class homeobox domains, a number of genes containing PAIRED domains only (i.e. the PAX domain of SMART [7]) were also found to contain EH1-like motifs (see Figure 1b). With only a few exceptions, outlined below, the EH1-like motif occurs N -terminal to the homeobox domain and C-terminal to the PAIRED domain when present. A number of these proteins have been shown to interact with groucho or its orthologs e.g. C. elegans cog-1 [12], vertebrate Nkx proteins [13], Drosophila engrailed (en) and goosecoid (gsc) $[2,14]$, and in high throughput assays Drosophila invected (inv) and and ladybird late (Ibl) [15].A handful of EH1-like motifs are found C-terminal to homeobox domains. Of these, the best characterized is C. elegans unc-4, which has been shown to interact with the groucho ortholog unc-37 [16]; the Drosophila ortholog unc-4 also interacts with groucho in high throughput experiments [15]. The C-terminal EH1-like motif is conserved in the closely related Drosophila paralog OdsH. The gene prediction for the human ortholog of unc-4 (ensembl gene identifier ENSG00000164853) appears to be artefactually truncated, but the mouse ortholog (Uncx4.1 ENSMUSG00000029546) and corrected human gene models, contain EH1-like motifs both N \& Cterminal to the homeobox domain. Taken together with the fact that in the majority of related homeobox containing proteins the EH1-like motifs are N -terminal, this suggests that the N -terminal motif has been lost in Drosophila and C. elegans unc-4 orthologs.

EH1-like motifs also occur N - and C-terminal to Forkhead domains. The N -terminal class consists of the sloppypaired genes (slp1 and slp2) of Drosophila and orthologous or closely related sequences: human FOXG1, and Drosophila CG9571; the C. elegans ortholog fkh-2 contains an EH1-like motif although a cysteine residue causes a low

a) FH		c) ETS		
N-teriminal:			P20105/103	Dm\|Eip74EF

b) T-box

N-terminal:

017212/3	Ce\|mls-1	RNFSIDAILAR
P90971/20	Celmab-9	PRESIANILDE
	Dm\|CG6634	TDESIAAIMAR
Q9VMR3/79	Dm\| H 15	TDESIAAIMAR
Q24432/38	Dm\|bi	TDESVSSLLTA
Q9Y458/8	Hs \|TBX22	RAESVEALVGR
095935/18	Hs \|TBX18	HAESVEALIGA
	Hs \|TBX20	NAESIAALMSS
015119/26	Hs \| TBX3	PDEAMSAVLGH
Q96SF7/16	Hs 1 TBX15	HAESVEALIGS
Q13207/12	Hs \| TBX2	ADEPMSAFLAA
C-terminal:		
Q9VST0/410	Dm\| Doc3	SSESISDILGT
Q9VST2/457	Dm\| Doc2	KGFSISAILGG
Q9U8L5/381	Dm\| Doc1	NSESISAILAY
Non-bilaterian:		
Q7YTV8/10	Trichoplax-T-box	SSESVTNLLSA
Q70HR5/21	Ctenophore-T-box	ASESVNSLLAS
Q86RA8/7	Cnidarian-T-box	KPETVNDILQA

Figure 2
Alignments of putative EHI motifs in a) Forkhead b) T-box c) ETS d) Doublesex and e) Zinc finger containing proteins. Alignment 'a' was derived from a meme search, as described in text. Sub-alignments b-e were derived from HMMER searches with the EHI hox HMM. Other details as for Figure I.
score. The C-terminal class consists of an apparent clade including the human FOXA, FOXB, FOXC and FOXD genes (Figure 2a), although if the EH1 motif was present in the common ancestor of this clade, multiple losses must have later occurred (see [17] for a Forkhead domain phylogeny). The situation is complicated somewhat by an EH1-like motif at the N -terminus of C. elegans unc-130 i.e. in the FOXD like family. The EH1 motif in slp1 has been shown to interact with groucho [18], and FOXA type genes have been shown to interact with human groucho orthologs [4].

EHI motifs in novel domain contexts

Assuming a conservative per-domain cutoff score of 10.0 bits for true matches to the EH1 hox model (see Figure 3), yields hits to proteins containing T-box domains (highest score 13.1 bits); Doublesex (DM) domains (highest score 11.6 bits) and C2H2 Zinc fingers (highest score 11.2 bits). Also of note was a further match at 9.4 bits, to an ETS domain containing protein. Prompted by these similarities I further investigated the presence of EH1-like motifs in these families, looking for high scoring matches to the EH1 ${ }^{\text {hox }}$ HMM that were conserved in closely related genes.

T-box containing proteins

I identified likely EH1 motifs co-occurring with T-Box domains in two distinct contexts (Figure 2b). The motif occurs C-terminal to the T-box in the Drosophila dorsocross proteins Doc1, Doc2 and Doc3. It is found N-terminal to the T-box in 11 proteins including mls- 1 and mab9 from C. elegans; H15, mid/nmr2 and bi/omd from Drosophila; in humans there are strong matches to TBX18, TBX20 and TBX22 and more marginal matches to TBX3 and TBX2. Although, to the best of my knowledge, none of these proteins has been shown to interact with groucho or its orthologs, several are known to act as transcriptional repressors: for instance, in murine heart development, Tbx20 represses Tbx2 which in turn represses Nmyc [19,20]; the Dorsocross genes from Drosophila repress wingless and ladybird [21], and Doc itself is repressed by $\mathrm{mid} / \mathrm{nmr} 2$ [22]. The human proteins TBX1 and TBX10, and Drosophila org-1 which are closely related to those above, do not appear to contain EH1 motifs. The human T (brachyury) protein contains a motif broadly similar to the EH1 consensus: LQYRVDHLLSA in a comparable N terminal location to those found in other T-box containing proteins. Although this motif scores poorly against EH1 ${ }^{\text {hox }}$ (-0.1 bits), the homologous regions from other T orthologs (for instance, the non-bilaterian sequences discussed below) provide a more persuasive case for the presence of a functioning EH1 motif in these proteins.

Zinc finger containing proteins

The highest scoring match of EH1 hox to a C2H2 zinc finger containing protein, was ces- 1 from C. elegans (bit score
11.2); this protein interacts with the groucho ortholog unc-37 [[23], \#54] and can act as a repressor [24]. The putative EH1 motif is at the N-terminal end of ces-1. In contrast, the Drosophila proteins bowl and odd have EH1like motifs at their C-terminal ends (with bit scores of $10.9 \& 8.4$ respectively). In neither case is there direct evidence from high throughput studies of an interaction with groucho, but both can function as repressors [25]. The human protein ZNF312 (bit score 8.6) is the ortholog of zebrafish Fezl, which contains an EH1 motif essential for repressor activity [26] - this motif is conserved in the human paralog ENSG00000128610 and likely Drosophila ortholog CG31670 (bit scores of 8.4 \& 5.1) (Figure 2e).

Doublesex motif containing proteins

The Doublesex Motif (DM) was first found in proteins controlling sexual differentiation in Drosophila. Two DM containing proteins were confidently predicted to contain EH1-like motifs - human DMRT2 (bit score 11.6), and Drosophila dmrt11e (bit score 11.2) - these are likely orthologs; a C. elegans protein, C27C12.6 contained a weaker match (bit score 6.6) (Figure 2d). The molecular function of these proteins is unknown.

Other potential associations with transcription factor domains

Although scoring less highly than some non-transcription factor hits, another intriguing association is with the ETS domain. The three uncharatcerized C. elegans paralogs F19F10.5, F19F10.1 \& C50A2.4 contain C-terminal matches to the EH1 motifs (bit scores 9.4, 2.3 \& 7.4), and two other ETS proteins, C. elegans lin-1, and Drosophila Eip74EF, both have relatively high scoring matches (bit scores $6.5 \& 6.6$) (Figure 2c). A high scoring protein that is not annotated as a transcription factor (as it contains no interpro domains) is Drosophila Hairless (H) with a score of 8.3 bits. Experimental work has previously confirmed the presence of an EH1-like motif (SSYSIHSLLGG) within H that is responsible for its interaction with groucho [27]. The Drosophila protein Dorsal has been reported to interact with groucho via an EH1-like motif [28] - this region (NGPTLSNLLSF) is markedly different to those reported here, having a low score against EH1 ${ }^{\text {hox }}$ (-10.7 bits) and so may better be regarded as a, so far, unique type of groucho interaction motif.

Evolutionary considerations

Convergent evolution

The EH1 motif is found N - and C-terminal to homeobox, forkhead, T-box and Zn finger protein domains. Clearly, as the locations of the EH1 motif are non-homologous, the N - and C-terminal associations must have occurred independently. The short size of the motif makes it tempting to speculate that the motif itself may have arisen independently (i.e. in repeated cases it may have evolved within sequence that was already part of the gene, rather
a)

Figure 3
a) Distribution of HMMER bit scores for the database search of EHI hox HMM against the combined proteomes of human, D. melanogaster and C. elegans. Counts from scores from transcription factors (see methods) have been coloured red - i.e. the proportion of a bar coloured red is equal to the proportion of transcription factors. Scores from proteins containing a homeobox domain (interpro accession IPROOI 356), from which the EHI hox HMM was derived, have been excluded, b) as for ' a ', but rescaled to show region of biological relevance. High scoring hits are greatly enriched in specific transcription factor families. For scores ≥ 5.0 bits, there are 68 transcription factors and 142 non-transcription factors; for scores <5.0 bits, 3075 transcription factors and 5I5I3 non-transcription factors giving a chi-square test pvalue statistic of $P<0.000$ I - the statistical significance is discussed more fully in the text.
than via a recombination event). The strongest evidence for this is that, in general, the majority of domain combinations occur in a fixed N to C orientation, suggesting that
recombination events combining domains are relatively rare $[29,30]$. The fact that we would here have many such events suggests that the alternative hypothesis of independent invention is more appropriate.

Pre-bilaterian origins of association with different transcription

 factorsGroucho is orthologous to the C. elegans unc-37 gene, and the four human paralogs TLE1-4 (Transducin Like Enhancer of split). An ortholog is also found in the cnidarian Hydra mangipapillata (e.g. the EST with gi 47137860, data not shown), and certain cnidarian homeobox containing genes also contain an EH1-like motif, suggesting groucho/EH1 mediated repression pre-dates the split between diplobasts and triplobasts; indeed, a sponge Bar/Bsh like homeobox containing protein (i.e. protein gi: 33641772) [31] also contains an EH1-like motif, as does paxb from the non-bilaterian placozoan Trichoplax adhaerens [32] and a Tlx-like protein from a ctenophore (gi: 38602653), suggesting the repression system was in place in the earliest animals (see [33] for a discussion of early metazoan evolution). I find high scoring EH1-like motifs in Forkhead domain containing proteins from sponges, cnidarians and ctenophores, in both the Cterminal (FOXA-D clade) (region II in [34]) and N-terminal (FOXG, sloppy paired clade) varieties (reported as 'HPFSI' in [35]). The presumed ortholog of 'T' from the Trichoplax adhaerens [36] contains an EH1-like motif (8.6 bits). These results suggest that groucho mediated repression using a variety of transcription factors was widespread in the last common ancestor of the metazoa.

Conclusion

Candidate EH1 motifs exist in combination with a variety of transcription factor domains, suggesting that these proteins have roles as repressors of transcriptional activity. The distribution of the EH1 motif is suggestive of a number of instances of convergent evolution, although in many cases the motif has been conserved throughout bilaterian orthologs. Together with the existence of a cnidarian Groucho ortholog, this leads to the conclusion that EH1/Groucho mediated repression was established prior to the evolution of bilateria.

Methods

Proteomes were derived from ensembl 32 (human NCBI 35, C. elegans wormbase 140, Drosophila BDGP 4) [37]. In cases of multiple splice variants, the one with the most exons was included (or the longest in the case of ties). Transcription factor activity was taken as the presence of the gene ontology accession GO:0003700 associated with an interpro domain predicted for the protein [38]. These data were also taken from ensembl. Although C2H2 subtype Zn fingers are not annotated by Interpro as transcription factors they are DNA binding and frequently have
this role, so have been included in the transcription factor set. Bit scores reported in the text are for comparisons of the EH1 ${ }^{\text {hox }}$ HMM against the target sequence using the HMMER software package [39].

The association of transcription factor function (coded as a dichotomous variable, t, taking the values 1 [transcription factor] or 0 [non-transcription factor]) with the bit score, x, of the EH1 ${ }^{\text {hox }}$ HMM, was tested using a logistic regression model implemented in the $\operatorname{glm}()$ function of the R package [40]). I fitted the model
$\operatorname{Prob}(t=1)=\exp (a+b x) /(1+\exp (a+b x))$
The coefficients a, b were estimated from the data by max-imum-likelihood. The hypothesis of no association is equivalent to testing if $b=0$.

Where inferences of orthology are made, they are based on clear-cut separation of BLAST scores or alignmentbased phylogenies.

Authors' contributions

RRC performed the analysis and wrote the paper.

Additional material

Additional File 1

Each non-homeobox containing protein in the database is classified as either being a transcription factor or not (see methods), and its score against the EH1 ${ }^{\text {hox }} H M M$ is given.

Click here for file

[http://www.biomedcentral.com/content/supplementary/1471-2164-6-169-S1.txt]

Acknowledgements

I am grateful to an anonymous referee for comments on TBXI5 \& brachyury. I thank the Wellcome Trust for financial support, Dr. Richard Mott for statistical advice, Drs. Martin Taylor and William Valdar for helpful suggestions.

References

I. Smith ST, Jaynes JB: A conserved region of engrailed, shared among all en-, gsc-, NkI-, Nk2- and msh-class homeoproteins, mediates active transcriptional repression in vivo. Development I996, I22(I0):314I-3I50.
2. Tolkunova EN, Fujioka M, Kobayashi M, Deka D, Jaynes JB: Two distinct types of repression domain in engrailed: one interacts with the groucho corepressor and is preferentially active on integrated target genes. Mol Cell Biol I998, I8(5):2804-28I4.
3. Shimeld SM: A transcriptional modification motif encoded by homeobox and fork head genes. FEBS Lett 1997, 410(23): 124-125.
4. Wang JC, Waltner-Law M, Yamada K, Osawa H, Stifani S, Granner DK: Transducin-like enhancer of split proteins, the human homologs of Drosophila groucho, interact with hepatic nuclear factor 3beta. J Biol Chem 2000, 275(24): I84I8-I8423.
5. Bateman A, Coin L, Durbin R, Finn RD, Hollich V, Griffiths-Jones S, Khanna A, Marshall M, Moxon S, Sonnhammer EL, et al.: The Pfam protein families database. Nucleic Acids Res 2004:DI38-I4I.
6. Bailey TL, Elkan C: Fitting a mixture model by expectation maximization to discover motifs in biopolymers. Proc Int Conf Intell Syst Mol Biol I994, 2:28-36.
7. SMART - Simple Modular Architecture Research Tool [http://smart.embl.de]
8. Letunic I, Copley RR, Schmidt S, Ciccarelli FD, Doerks T, Schultz J, Ponting CP, Bork P: SMART 4.0: towards genomic data integration. Nucleic Acids Res 2004:DI42-I44.
9. Galliot B, de Vargas C, Miller D: Evolution of homeobox genes: Q50 Paired-like genes founded the Paired class. Dev Genes Evol 1999, 209(3):186-197.
10. Jagla K, Bellard M, Frasch M: A cluster of Drosophila homeobox genes involved in mesoderm differentiation programs. Bioessays 2001, 23(2):125-133.
II. Banerjee-Basu S, Baxevanis AD: Molecular evolution of the homeodomain family of transcription factors. Nucleic Acids Res 200I, 29(I5):3258-3269.
12. Chang S, Johnston RJ Jr, Hobert O: A transcriptional regulatory cascade that controls left/right asymmetry in chemosensory neurons of C. elegans. Genes Dev 2003, I7(I7):2I23-2I37.
13. Muhr J, Andersson E, Persson M, Jessell TM, Ericson J: Grouchomediated transcriptional repression establishes progenitor cell pattern and neuronal fate in the ventral neural tube. Cell 200I, I04(6):86I-873.
14. Jimenez G, Verrijzer CP, Ish-Horowicz D: A conserved motif in goosecoid mediates groucho-dependent repression in Drosophila embryos. Mol Cell Biol 1999, 19(3):2080-2087.
15. Giot L, Bader JS, Brouwer C, Chaudhuri A, Kuang B, Li Y, Hao YL, Ooi CE, Godwin B, Vitols E, et al.: A protein interaction map of Drosophila melanogaster. Science 2003, 302(565I):I727-I736.
16. Winnier AR, Meir JY, Ross JM, Tavernarakis N, Driscoll M, Ishihara T, Katsura I, Miller DM 3rd: UNC-4/UNC-37-dependent repression of motor neuron-specific genes controls synaptic choice in Caenorhabditis elegans. Genes Dev 1999, I3(2I):2774-2786.
17. Mazet F, Yu JK, Liberles DA, Holland LZ, Shimeld SM: Phylogenetic relationships of the Fox (Forkhead) gene family in the Bilateria. Gene 2003, $316: 79-89$.
18. Andrioli LP, Oberstein AL, Corado MS, Yu D, Small S: Grouchodependent repression by sloppy-paired I differentially positions anterior pair-rule stripes in the Drosophila embryo. Dev Biol 2004, 276(2):54I-55I.
19. Stennard FA, Costa MW, Lai D, Biben C, Furtado MB, Solloway MJ, McCulley DJ, Leimena C, Preis JI, Dunwoodie SL, et al.: Murine Tbox transcription factor Tbx20 acts as a repressor during heart development, and is essential for adult heart integrity, function and adaptation. Development 2005, I 32(IO):245I-2462.
20. Cai CL, Zhou W, Yang L, Bu L, Qyang Y, Zhang X, Li X, Rosenfeld MG, Chen J, Evans S: T-box genes coordinate regional rates of proliferation and regional specification during cardiogenesis. Development 2005, I32(I0):2475-2487.
21. Reim I, Lee HH, Frasch M: The T-box-encoding Dorsocross genes function in amnioserosa development and the patterning of the dorsolateral germ band downstream of Dpp. Development 2003, I30(14):3187-3204.
22. Reim I, Mohler JP, Frasch M: Tbx20-related genes, mid and HI5, are required for tinman expression, proper patterning, and normal differentiation of cardioblasts in Drosophila. Mech Dev 2005.
23. Li S, Armstrong CM, Bertin N, Ge H, Milstein S, Boxem M, Vidalain PO, Han JD, Chesneau A, Hao T, et al.: A map of the interactome network of the metazoan C. elegans. Science 2004, 303(5657):540-543.
24. Thellmann M, Hatzold J, Conradt B: The Snail-like CES-I protein of C. elegans can block the expression of the BH3-only celldeath activator gene egl-I by antagonizing the function of bHLH proteins. Development 2003, I30(I7):4057-407I.
25. Campbell G: Regulation of gene expression in the distal region of the Drosophila leg by the HoxII homolog, CI5. Dev Biol 2005, 278(2):607-6I8.
26. Levkowitz G, Zeller J, Sirotkin HI, French D, Schilbach S, Hashimoto H, Hibi M, Talbot WS, Rosenthal A: Zinc finger protein too few controls the development of monoaminergic neurons. Nat Neurosci 2003, 6(I):28-33.
27. Barolo S, Stone T, Bang AG, Posakony JW: Default repression and Notch signaling: Hairless acts as an adaptor to recruit the corepressors Groucho and dCtBP to Suppressor of Hairless. Genes Dev 2002, 16(15):1964-1976.
28. Flores-Saaib RD, Jia S, Courey AJ: Activation and repression by the C-terminal domain of Dorsal. Development 2001, 128(10):1869-1879.
29. Apic G, Gough J, Teichmann SA: Domain combinations in archaeal, eubacterial and eukaryotic proteomes. J Mol Biol 2001, 310(2):31I-325.
30. Gough J: Convergent evolution of domain architectures (is rare). Bioinformatics 2005, 21 (8): $1464-1471$.
31. Hill A, Tetrault J, Hill M: Isolation and expression analysis of a poriferan Antp-class Bar-/Bsh-like homeobox gene. Dev Genes Evol 2004, 214(10):515-523.
32. Hadrys T, Desalle R, Sagasser S, Fischer N, Schierwater B: The Trichoplax PaxB Gene: A Putative Proto-PaxA/B/C Gene Predating the Origin of Nerve and Sensory Cells. Mol Biol Evol 2005, 22(7):1569-1578.
33. Medina M, Collins AG, Silberman JD, Sogin ML: Evaluating hypotheses of basal animal phylogeny using complete sequences of large and small subunit rRNA. Proc Natl Acad Sci USA 200I, 98(17):9707-9712.
34. Adell T, Muller WE: Isolation and characterization of five Fox (Forkhead) genes from the sponge Suberites domuncula. Gene 2004, 334:35-46.
35. Yamada A, Martindale MQ: Expression of the ctenophore Brain Factor I forkhead gene ortholog (ctenoBF-I) mRNA is restricted to the presumptive mouth and feeding apparatus: implications for axial organization in the Metazoa. Dev Genes Evol 2002, 2l2(7):338-348.
36. Martinelli $\mathrm{C}, \mathrm{Spring}$ J: Distinct expression patterns of the two Tbox homologues Brachyury and Tbx2/3 in the placozoan Trichoplax adhaerens. Dev Genes Evol 2003, 213(10):492-499.
37. Hubbard T, Andrews D, Caccamo M, Cameron G, Chen Y, Clamp M, Clarke L, Coates G, Cox T, Cunningham F, et al.: Ensembl 2005. Nucleic Acids Res 2005:D447-453.
38. Mulder NJ, Apweiler R, Attwood TK, Bairoch A, Bateman A, Binns D, Bradley P, Bork P, Bucher P, Cerutti L, et al.: InterPro, progress and status in 2005. Nucleic Acids Res 2005:D20I-205.
39. HMMER: sequence analysis using profile hidden Markov models [http://hmmer.wustl.edu]
40. The \mathbf{R} project for statistcal computing [http://www.rproject.org]
4I. Goodstadt L, Ponting CP: CHROMA: consensus-based colouring of multiple alignments for publication. Bioinformatics 200I, 17(9):845-846.
42. Bairoch A, Apweiler R, Wu CH, Barker WC, Boeckmann B, Ferro S, Gasteiger E, Huang H, Lopez R, Magrane M, et al.: The Universal Protein Resource (UniProt). Nucleic Acids Res 2005:D I54-I59.

Publish with Bio Med Central and every scientist can read your work free of charge

"BioMed Central will be the most significant development for disseminating the results of biomedical research in our lifetime. " Sir Paul Nurse, Cancer Research UK

Your research papers will be:

- available free of charge to the entire biomedical community
- peer reviewed and publishedimmediately upon acceptance
- cited in PubMed and archived on PubMed Central
- yours - you keep the copyright

BioMedcentral

