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Abstract
Background: Meiotic recombination events have been found to concentrate in 1–2.5 kilo base
regions, but these recombination hot spots do not share a consensus sequence and why they occur
at specific sites is not fully understood. Some previous evidence suggests that poly-purine/poly-
pyrimidine (poly-pu/py) tracts (PPTs), a class of sequence with distinctive biochemical properties,
could be involved in recombination, but no general association of PPTs with meiotic recombination
hot spots has previously been reported.

Results: We used computational methods to investigate in detail the relationship between PPTs
and hot spots. We show statistical associations of PPT frequency with hot spots of meiotic
recombination initiating lesions, double-strand breaks, in the genome of the yeast S. cerevisiae and
with experimentally well characterized human meiotic recombination hot spots. Supporting a
possible role of poly-pu/py-rich sequences in hot spot recombination, we also found that all three
single nucleotide polymorphisms previously shown to be associated with human hot spot activity
changes occur within sequence contexts of 14 bp or longer that are 85% or more poly-pu/py and
at least 70% G/C. These polymorphisms are all close to the hot spot mid points. Comparing the
sequences of experimentally characterized human hot spots with the orthologous regions of the
chimpanzee genome previously shown not to contain hot spots, we found that in all five cases in
which comparisons for the hot spot central regions are possible with publicly available sequence
data, there are differences near the human hot spot mid points within sequences 14 bp or longer
consisting of more than 80% poly-pu/py and at least 50% G/C.

Conclusion: Our results, along with previous evidence for the unique biochemical properties and
recombination-stimulating potential of poly-pu/py-rich sequences, suggest that the possible
functional involvement of this type of sequence in meiotic recombination hot spots deserves
further experimental exploration.

Background
Crossovers between chromosomes occur during meiotic
cell division resulting in heritable genetic recombination.

These crossovers have a complex, non-random distribu-
tion, and in the last decade recombination hot spots 1–
2.5 kilo bases (kb) wide have been experimentally well
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characterized in yeast, mice and humans (reviewed in
[1,2]). Hot spots show a wide range of crossover frequen-
cies, which are occasionally several hundred times greater
than the level expected if crossovers were distributed ran-
domly across chromosomes. Experimental studies that
have located multiple hot spots in contiguous regions of
the human genome have found that they often occur in
clusters, which are separated by regions of about 50–100
kb showing very low recombination frequencies [3-5].

Hot spots do not share a consensus sequence, and the
mechanisms responsible for regulating their distribution
and activity levels are not well understood, but several
molecular features of hot spot recombination have been
described (reviewed in [6]). These include a locally open
chromatin structure, presumably allowing access to
recombination machinery [7,8], and a requirement for a
chromosomal double-strand break (DSB) to initiate
recombination [9,10]. A less well explained feature of hot
spots is the influence on activity levels of sequence con-
text, including flanking sequences several kb away [11-
13]. This suggests that epigenetic, or distal sequence, fac-
tors may have a greater influence than local sequences on
hot spot regulation, and consistent with this idea are
recent studies showing that the locations of hot spots in
humans and chimpanzees do not correspond despite
more than 98% sequence similarity between the two spe-
cies [14,15].

Local sequences clearly have some influence on hot spot
recombination, however, as activity levels can be sensitive
to local, single nucleotide changes [16-19]. The molecular
basis of this sensitivity is largely unexplained, with the
exception of the Schizosaccharomyces pombe ade 6 hot spot,
in which a single nucleotide change promotes transcrip-
tion factor-binding, creating the hot spot [20,21], though
its activity is also influenced by flanking sequences
[22,23]. Other sequences have been found to be associ-
ated with hot spots including GC-rich DNA [24], tandem
repeats [19,25], transcription factor binding sites [26-28],
poly-A/T tracts [29] and some specific motifs less than 10
bp long [30]. Direct experimental evidence for a role of
such sequence features in hot spot activity is lacking in
most cases, the exceptions being transcription factor bind-
ing sites [20,21,26-28], and a 14 bp poly-A/T tract, dele-
tion of which was found to reduce gene conversion
activity at the yeast ARG4 hot spot by 75% [29].

Human recombination rates estimated across windows
hundreds of thousands to millions of bp wide have been
reported to correlate negatively with poly-A/T tract fre-
quencies [31], but positive correlations with broad scale
recombination rates have been shown for other simple
sequences, including the class of sequence with purines (A
or G) on one strand of the DNA duplex, and pyrimidines

(T or C) on the complementary strand, of which poly-A/T
is a subset [31,32]. Experimental evidence also suggests
that poly-purine/poly-pyrimidine (poly-pu/py) tracts
(PPTs) in general deserve further attention, for example
they have been shown to affect recombination [33], repli-
cation [34], and gene expression [35] in model systems
and these effects have often been linked to the ability of
PPTs with some GC-content readily to form stable
intramolecular secondary structures under physiological
conditions [33,34,36,37]. These structures can be sensi-
tive to single nucleotide changes [38,39], but cannot be
formed by poly-A/T [40], though poly-A/T duplex DNA
can form intermolecular three-stranded aggregates with
synthetic oligonucleotides [41]. Recently, a study predict-
ing hot spot locations throughout the human genome
based on statistical analysis of haplotype data found sev-
eral poly-pu/py-rich motifs of 5–9 bp to be associated
with hot spots [30], providing further support for the pos-
sible importance of poly-pu/py-rich sequences in meiotic
recombination.

We investigated in detail the relationship between PPTs
and hot spots in humans and the yeast S. cerevisiae. We
show significantly elevated PPT frequencies in hot spots in
both species. We also found that the three single nucle-
otide changes shown to be associated with human hot
spot recombination rates all occur in high GC-content
poly-pu/py-rich sequences of at least 14 bp, and that
sequence differences between humans and chimpanzees
in regions where there is a hot spot in humans but none
in chimpanzees occur in similar poly-pu/py-rich sequence
contexts.

Results and discussion
Hot spots investigated
Recent experimental studies in humans [3-5] and yeast
[24] have reported multiple meiotic recombination hot
spots and cold regions across contiguous segments of
genomic DNA, allowing comparison of sequence patterns
between the two types of regions. In the yeast S. cerevisiae,
recombination intensity has been assayed indirectly
throughout the entire genome using microarray analysis
of DSB frequency patterns [24]. This study identified 303
hot and 49 cold open reading frames (ORFs), and, com-
bining adjacent ones, defined 177 hot spots, which
encompassed all previously known hot spots in the spe-
cies, and 40 cold spots. For the purposes of our investiga-
tion, we extended the hot and cold spots to include the
intergenic regions (IGRs) adjacent to the ORFs concerned,
since yeast hot spots are typically centred on IGRs, in
which most DSBs occur [42]. The hot spots as we defined
them had a mean length of 3466 bp. DSBs have also been
mapped to 76 much narrower sites on S. cerevisiae chro-
mosome 3 [42], but many of these had very low levels of
DSBs and may therefore indicate background recombina-
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tion events rather than hot spots as normally defined, so
we analysed them separately.

In humans, multiple hot spots have been mapped by
experimental methods in the MHC Class II region on
chromosome 6, in which seven hot spots have been iden-
tified over 292 kb [4,5,43], and in a 206 kb segment of
chromosome 1, in which eight hot spots have been
mapped [3,19]. In each region, areas between hot spots
showed very low levels of recombination. Two other
human hot spots have been well characterized experimen-
tally. In the Beta-Globin gene cluster, a hot spot was
mapped to within 11 kb, with a 90 kb adjacent cold region
also identified [44]. The location of the Beta-Globin hot
spot was later narrowed to a region of under 2 kb [45].
Finally, in the pseudoautosomal region of the Y chromo-
some, a 9.9 kb section of the SHOX gene was assayed for
recombination and found to contain a hot spot [46]. All
of the human hot spots included in our analysis were 2.5
kb or less in size. We limited our investigation in humans
to these 17 well-characterized hot spots known at the time
of writing. Hot spots have also been predicted throughout
the human genome using statistical analysis of haplotype
data to infer past recombination events [30], but recent
evidence indicates that these methods are not always reli-
able for predicting hot spots in the present generation
[3,5,47,48].

Hot spots show elevated frequencies of PPTs
We used a pattern-matching computer algorithm to detect
PPTs in the hot spots and cold regions reported in the
above-mentioned studies. A 12 bp PPT has been shown to
form a stable intramolecular quadruplex [49], but in our
search of the literature we did not find reports of shorter
PPTs forming stable secondary structures, so we initially
searched for PPTs of at least 12 bp. In yeast, mean frequen-
cies per kb were 1.92 in hot spots, and 0.97 in cold spots,
which was a statistically significant difference (p = 1.74 ×
10-10). Because most DSBs occur in IGRs [42], we repeated
the analysis excluding ORFs and found that the difference
between hot spots and cold spots increased, with the
mean per kb frequencies 3.93 in hot spot IGRs and 1.62
in cold spot IGRs (p = 1.65 × 10-9). The mean length of
PPTs of at least 12 bp was 15.49 bp in hot spots and 14.22
bp cold spots, also a statistically significant difference (p =
0.0036). In yeast, there were no significant differences
between hot and cold spots for mean PPT GC-content.

Transcription factors can bind to PPTs as short as 5 bp
[50], and we wished to know whether very long PPTs were
associated with hot spots, so we varied the minimum PPT
length between 5 and 40 bp. We found greater mean PPT
frequencies in hot spots than cold spots, with the differ-
ences statistically significant, for length minima 7 through
33. Frequencies for the 233 remaining regions of the

genome not classified as hot or cold spots had similar fre-
quencies to cold spots, showing that the differences were
primarily due to elevated frequencies in hot spots rather
than lowered frequencies in cold spots (Figure 1).

The 17 human hot spots did not show significantly ele-
vated PPT frequencies for length minima 5–12 bp.
Increasing the length minimum increased the ratio of fre-
quencies between hot spots and cold regions, however,
with the differences statistically significant for minima of
13 bp (means per kb 2.02 in hot spots and 1.33 kb in cold
regions, p = 0.045), 14 bp (means per kb 1.50 in hot spots
and 0.99 in cold regions, p = 0.036), and 15 bp (means
per kb 1.21 in hot spots and 0.73 in cold regions, p =
0.036). In humans, no significant differences between hot
spots and cold regions were found for mean PPT length,
but human hot spot-associated PPTs had a higher mean
GC-content (45.4%) than those in cold regions (37.5%),
which was a statistically significant difference (p = 0.001).
The difference was not due to a high GC-content ratio
between hot spots and cold areas (1.00). Evidence indi-
cates that high GC-content PPTs are more likely to form
secondary structures [40,51-53], so we repeated the
searches looking only for PPTs with GC-contents above
the mean, as calculated across all PPTs of at least 12 bp

Association of high PPT frequencies with yeast hot spotsFigure 1
Association of high PPT frequencies with yeast hot 
spots. Mean frequencies of PPTs with length minima 
between 12 and 20 bp in 177 hot spots of meiotic double-
strand breaks (DSBs) in the genome of the yeast S. cerevisiae 
compared with the mean frequencies in 40 DSB cold spots 
and 233 other regions comprising the remainder of the 
genome sequence. Error bars are plus and minus one stand-
ard error of the mean.
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found in the study regions (38% G/C). We found that this
limitation increased the levels of enrichment of PPTs in
human hot spots. The associations were statistically signif-
icant for size minima 13 bp (mean frequencies per kb
1.48 in hot spots and 0.795 in cold regions, p = 0.0079)
and 14 bp (mean frequencies per kb 1.04 in hot spots and
0.533 in cold regions, p = 0.017). In contrast, the associa-
tion between PPTs and hot spots in yeast was weaker for
high GC-content PPTs.

Because PPTs with mismatches to the homopurine/
homopyrimidine motif are much more common than
pure PPTs, we repeated all the searches allowing some
mismatches. In humans, mean frequency differences for
tracts of at least 20 bp (means per kb 1.51 in hot spots and
0.80 in cold regions, p = 0.022) and 24 bp (means per kb
0.92 in hot spots and 0.34 in cold regions p = 0.036) were
statistically significant for PPTs with one mismatch per 10
bp allowed. No significant differences were found with
one mismatch allowed every 5 bp. In yeast, allowing mis-
matches generally reduced the frequency ratios between
hot spots and cold spots, but did increase the greatest size
minimum for which the difference was statistically signif-
icant from 33 bp (for pure PPTs) to 39 bp when one mis-
match was allowed per 10 bp, and 41 bp when one
mismatch was allowed per 5 bp.

In both yeast and humans hot spot intensities vary greatly,
so we asked if hot spot intensity was correlated with PPT
frequency. We found no significant correlations in
humans, but in yeast we did find significant positive cor-
relations between previously reported hot spot intensity
[24] and mean PPT frequencies with the length minima
18, 23, 25 and 26 bp, and for minima 26, 29 and 32
through 34 with one mismatch allowed per 10 bp. Even
longer PPTs were correlated when one mismatch was
allowed per 5 bp, with significance for minima 33, 35 and
37 through 39. The correlations were weak in all cases,
however, with coefficients ranging between 0.15 and 0.19
(Spearman's rho).

The lack of a strong correlation between PPT frequency
and hot spot intensity suggests that a high density of PPTs
is not in itself a primary determinant of hot spot activity
levels. High PPT density is also not sufficient in itself to
cause a hot spot, since hot spot locations in humans and
chimpanzees do not correspond despite more than 98%
sequence similarity between the two species [14,15]. High
PPT frequency could be a factor in hot spots, however, and
it is also possible that only certain types of PPT may be
involved in recombination. Below, we discuss evidence
that PPTs could stimulate recombination through second-
ary structure formation and/or protein binding. Exact
sequence requirements are not fully understood, either for
binding of recombination-related proteins, or secondary

structure formation by PPTs. It is possible, therefore, that
the association between PPT frequency and hot spots may
be due to a greater likelihood that regions with a high fre-
quency of PPTs will contain a functional tract.

PPTs are associated with DSB sites mapped with a 
resolution of about 500 bp
Baudat and Nicolas (1997) mapped meiotic DSBs
throughout chromosome 3 of the genome of the yeast S.
cerevisiae and identified 6 ORFs and 70 IGRs subject to at
least one DSB [42]. Overall, these DSB-containing ORFs
and IGRs averaged 567 bp in length. We found that 53 of
the 70 DSB-containing IGRs had at least one PPT of 12 bp
or longer (76%), and 35 of them had a PPT of at least 15
bp (50%). Of the 92 IGRs on the chromosome without a
mapped DSB, 56 had a PPT of at least 12 bp (61%), and
26 had one of at least 15 bp (28%). Frequencies of PPTs
with length minima 5–15 bp were significantly elevated
in DSB-containing IGRs compared with the remaining
IGRs on the chromosome. The strongest enrichment was
observed with a 15 bp minimum length (p = 0.000791);
mean per kb frequencies 1.83 in DSB-containing IGRs and
0.925 in IGRs without a DSB. When mismatches were
allowed, mean frequencies were greater in DSB-contain-
ing IGRs than non-DSB IGRs with the differences statisti-
cally significant for size minima 10 through 23 bp with
one mismatch allowed per 10 bp, and 11 through 26 bp
with one mismatch allowed per 5 bp. We found no signif-
icant differences between the 6 DSB-containing ORFs and
other ORFs on the chromosome.

Most of the 70 DSB-containing IGRs showed very low lev-
els of DSBs (see Figure 2 in ref [42]), and 48 of them
occurred outside hot spots reported in the genome-wide
survey by Gerton and co-workers [24]. It is therefore likely
that many of them indicate non-hot spot background
recombination events, since these have been found to
occur with low frequency between hot spots [3-5]. For
PPTs of at least 15 bp, the mean frequency per kb was 1.70
in DSB-containing IGRs outside hot spots reported by
Gerton et al. [24]. This was significantly greater than the
mean per kb frequency of 0.925 found in IGRs without a
DSB (p = 0.00262).

PPTs are associated with broad hot spot-containing 
regions
Because PPTs have been shown to stimulate formation of
recombination intermediates at distances as great as 4000
bp [54], we wished to know if they were associated with
broad hot spot-containing regions. In yeast, we compared
frequencies of PPTs of at least 12 bp between IGRs and
ORFs flanking hot spots, and IGRs and ORFs within cold
spots. Comparisons were made up to a maximum dis-
tance of 4 IGRs from hot spots. IGRs one ORF removed
from hot spots and IGRs two ORFs removed from hot
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spots showed significantly higher PPT frequencies than
cold spot IGRs, indicating a regional association between
PPT frequency and hot spot-containing areas. The mean
PPT frequency of 2.90 per kb in the PPT-enriched hot
spot-flanking IGRs was significantly less, however, than
the mean per kb frequency of 3.93 in hot spot IGRs. The
mean distance encompassed by the hot spot-containing
regions in which PPTs were enriched was just over 11.5
kb. We found no significant differences between ORFs
flanking hot spots and cold ORFs.

In humans, we investigated PPT frequencies for all 17 hot
spots in windows of increasing size centred on hot spot
mid points, which we will refer to as hot regions. PPT fre-
quencies in hot regions 3 to 40 kb wide were compared
with remaining cold regions, which were defined as exper-
imentally mapped cold regions lying outside these win-
dows. We found no significant differences for PPTs of at
least 12 bp, except when low GC-content tracts were
excluded. PPTs of at least 12 bp with greater than the
mean PPT GC-content had consistently higher frequen-
cies in hot regions than remaining cold regions with the
differences statistically significant for window sizes 3, 4, 9,
10, 12, 14 through 22, and 24 kb. Excluding the hot spot
sequences themselves from the analysis weakened the

associations, but they remained significant for window
sizes 4, 10, and 15 through 20 kb. Sliding window plots
of the densities of high GC-content PPTs in the two
regions in which multiple human hot spots have been
mapped showed that peaks in density often occur within
a few kb of hot spots. For PPTs of at least 12 bp, this was
most striking with window sizes of about 10 kb (Figure 2).
No significant regional associations were found for high
GC-content PPTs in yeast.

The associations are not primarily due to microsatellite 
PPTs
One cause of the associations we observed might be a
mutation bias resulting from recombination, or other
properties of hot spot regions, acting to cause expansion
of PPTs. With regard to this possibility, the degree to
which the hot spot-associated PPTs consist of short, direct
tandem repeats (STRs, or microsatellites) is relevant,
because microsatellites have well-described mutational
dynamics [55], but it is unclear how a mutation bias could
act on non-repetitive PPTs. We therefore asked whether
hot spots contained an elevated proportion of microsatel-
lite PPTs. Using a separate search for PPTs of at least 12 bp
consisting of short tandem repeats with a repeated unit 6
bp or less (PP-STRs), we found mean per kb frequencies in

Densities of high GC-content PPTs relative to human hot spot locationsFigure 2
Densities of high GC-content PPTs relative to human hot spot locations. Sliding window plots of the densities of 
PPTs of at least 12 bp, with GC-contents above the mean for PPTs over the regions we investigated, relative to hot spot loca-
tions in A): a 292 kb region of the human MHC Class II region in which 7 hot spots are known and B): a 206 kb region of 
human chromosome 1 in which 8 hot spots are known. Vertical dotted lines represent hot spot mid point locations. Sliding 
windows were 10 kb wide and moved in steps of 100 bp. Locations of genes in the regions are shown below the plots with 
arrows indicating direction of transcription.
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yeast of 0.41 in hot spots and 0.13 in cold spots. Poly-A/T
made up a large proportion of these, with mean per kb fre-
quencies of 0.27 in hot spots and 0.059 in cold spots.
After subtracting the number of PP-STRs of at least 12 bp
from the number of PPTs of all kinds of at least 12 bp for
each hot spot and cold spot, we found that the difference
in mean per kb frequencies was still significant (1.51 in
hot spots and 0.84 in cold spots, p = 1.19 × 10-6). In
humans, PP-STRs of at least 12 bp were more frequent in
cold regions than hot spots. This was also the case for
poly-A/T considered separately. While not ruling out the
possibility of a mutation bias, these results suggest that
any bias that may be operating to cause an excess of PPTs
in hot spot regions is probably not primarily due to inser-
tions causing duplications of adjacent sequence, which is
how microsatellites expand [55].

Sequence polymorphisms suggesting a function in hot 
spots for high GC-content poly-pu/py-rich sequences
At the time of writing, there are three known cases in
humans of single nucleotide changes associated with
altered recombination levels in hot spots [16,18,19]. All
three polymorphisms were associated with several-fold
reductions in recombination frequency and were located
close to the estimated hot spot mid points. We found that
each of these polymorphisms occurs within 3 bp of the
end of a sequence 14 bp or longer consisting of 85% or
more poly-pu/py and at least 70% G/C (Table 1).

Known features of hot spot recombination are similar
across very diverse taxa (reviewed in [6]), so comparison
of PPTs between humans and chimpanzees in the regions
of human hot spots where there is no hot spot in chim-
panzees might provide interesting data. To date, there are
six cases in which the recombination activity of chimpan-
zee chromosomal regions orthologous to experimentally
characterized human hot spots has been investigated, and
in all these cases little or no evidence for hot spot activity
was found in chimpanzees [15]. Because the human hot
spot activity-associated polymorphisms all occurred
within 166 bp of the hot spot mid points [16,18,19], we
aligned the human and chimpanzee sequences 166 bp on
either side of the human hot spot mid points. We found
that all five of the hot spot central regions for which align-
ments are possible contain differences within sequences

14 bp or longer consisting of more than 80% poly-pu/py
and at least 50% G/C (Table 2). In three out of the six
sequences, there were differences within 3 bp of their
ends, and four out of six contained a difference in the ter-
minal 4 bp. The analysis did not include the DNA2 hot
spot, because the publicly available chimpanzee sequence
was missing 206 of the 332 bp region centred on the hot
spot mid point, including the mid point itself. The DMB2
hot spot was included in the analysis, but the chimpanzee
sequence was missing 34 bp from the central region.
Within these limitations, 11 out of the total of 43 differ-
ences within 166 bp of the human hot spot mid points
occurred within high GC-content, poly-pu/py-rich
sequences as defined above. Over all the central regions
we found 9 such sequences, 6 of which contained at least
one difference between humans and chimpanzees. Of the
33 sequences of this type located within hot spots but out-
side the central regions, 10 contained differences. The dif-
ferences were probably not due to recombination or other
features of hot spots preferentially causing mutations in
this type of sequence, because similarity between the two
species in poly-pu/py-rich sequences as defined was
96.73% in hot spots, which was only slightly lower than
the 97.27% overall sequence similarity for the 5 hot spots.

The observation that all three human hot spot recombina-
tion frequency-associated polymorphisms known at the
time of writing occur in poly-pu/py-rich high GC-content
sequences suggests that certain sequences of this type may
be involved in determining hot spot activity. This is some-
what supported by the similar sequence contexts found
for the human/chimpanzee differences. The particular
PPTs that we have identified as possibly having functional
roles in hot spots (Tables 1 and 2) might prove to be use-
ful targets for experimental studies. Secondary structure
formation and protein binding by the sequences are con-
sistent with the data, and could be investigated further.

Although the sequence requirements for poly-pu/py-rich
sequences to form secondary structures are not fully
understood [52,53,56], the structures can tolerate a sub-
stantial proportion of interruptions to the homopurine/
homopyrimidine motif [34,36,53], and can also be sensi-
tive to single nucleotide changes [38,39]. They have been
shown to stimulate inter-plasmid recombination [33] and

Table 1: Poly-pu/py-rich sequence contexts of polymorphisms associated with hot spot activity in humans. Sequence contexts of the 
three polymorphisms associated with reduced recombination frequencies in human hot spots. The recombination-suppressing alleles 
are shown in lower case.

Hot Spot References Sequence context Distance from hot spot mid point (bp)

MS32 [19] (G/c)GTGGGAAGGGTGG 151
NID1 [3, 18] CC(C/t)CCCACCCCACCCC 64
DNA2 [4, 16] AGGGGGCAGCAACAGGG(A/g)GG 166
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dimerization [57], as well as recombination hot spot
activity in E. coli [58]. Immunocytological evidence shows
that PPTs do form secondary structures on human chro-
mosomes in vivo [59], but the possibility that this occurs
in meiotic recombination hot spots has not to our knowl-
edge been tested.

The additional, non-exclusive, possibility that certain
poly-pu/py-rich sequences could contain binding motifs
for proteins that act to stimulate recombination is sup-
ported by evidence that PPTs can bind transcription fac-
tors [50,60], since transcription factor binding is a
determining factor in some yeast hot spots [20,21,26-28].
Binding of the nuclear matrix-associated type III interme-
diate filament proteins is also a possibility. Intramolecu-
lar quadruplex secondary structures, which can be formed
by poly-pu/py-rich, GC-rich sequences [53], have been
shown preferentially to bind these proteins in vitro [61].

Speculation on possible mechanisms by which PPTs could 
influence hot spot recombination
There are several possible mechanisms by which PPTs
could act as functional components in recombination hot
spots. It is conceivable that PPTs could mediate recombi-
nation by being themselves the sites of DSB formation,
possibly as a result of nuclease action on secondary struc-
tures. This seems unlikely to be a common mechanism,
however, since DSBs are found at many positions over
100–500 bp regions in yeast hot spots, and are probably
position-specific rather than sequence-specific (reviewed
in [2]). PPTs may also function in hot spots by altering
local chromatin structure. This could result from their pre-
viously demonstrated involvement in the formation of
DNase I hypersensitive sites, which are nucleosome-free
regions of chromatin [62,63]. An open chromatin struc-
ture is one important factor in hot spots, presumably
allowing access to the recombination machinery [7,8].
Binding of transcription factor proteins may help to
achieve this in at least some hot spots, since opening up
of chromatin structure is one function of transcription fac-

tors, and this has been proposed as the most likely reason
for the requirement shown by some yeast hot spots for
transcription factor binding (reviewed in [2]). The possi-
ble role of PPTs in hot spots may also be mediated by tran-
scription factors, since PPTs in promoter regions can affect
transcription, and evidence suggests that this is due to
opening of the chromatin structure by the PPT via second-
ary structure formation and/or binding of transcription
factor proteins (reviewed in [60,64]). Not all promoter
regions are hot spots, however, so factors other than an
open chromatin structure are clearly involved.

The potential of PPTs to cause replication pausing
(reviewed in [65]) may also be relevant to their possible
function in hot spots. A presently unexplained spatial and
temporal coupling between DNA replication and meiotic
recombination has been demonstrated in yeast [66], and
it has been suggested that replication pausing could pro-
mote DSB formation via localized modification of his-
tones [2]. Another property of PPTs suggesting a
mechanism by which they could promote recombination
is their ability to stick together, forming multi-stranded
aggregates [41,67]. This suggests the possibility that they
may help homologous chromosomes to align prior to
meiotic recombination, and it has been proposed that this
could be mediated by Hoogsteen base pairing interactions
[67].

Conclusion
Our results, along with previous evidence for the unique
biochemical properties and recombination-stimulating
potential of poly-pu/py-rich sequences, suggest that the
possible functional involvement of this type of sequence
in meiotic recombination hot spots deserves further
experimental exploration. Relevant tests include deleting
PPTs from hot spot regions in model organisms and assay-
ing the effects on recombination. Another possible
approach would be to test the structure-forming and pro-
tein-binding capabilities of hot spot-associated PPTs in
vitro.

Table 2: Poly-pu/py-rich sequence contexts of differences between humans and chimpanzees in human hot spot central regions. 
Differences between humans and chimpanzees within 166 bp of human hot spot mid points occurring in sequences at least 14 bp long 
consisting of over 80% poly-pu/py and at least 50% G/C. In each case, the hot spots are absent in chimpanzees. The chimpanzee 
sequence is shown in lower case.

Hot Spot References Sequence context Distance of difference from 
human hot spot mid point (bp)

Beta-Globin [15, 45] CCTTTTCCCCTCCTACCCCTACTTT(C/t)T 133
DMB1 [4, 15] GGGGGTGAGCAACAG(A/g)AA 35
DMB2 [4, 15] GAGAGGAGAGAAGTGGAGTGGGAGAAAGAAGGAGAG(G/

a)GACATAGAGAGAGGGA(G/a)(G/a)GAGGGGAG(C/-)GG(-/a) GGGAAG/
AGAGAGAGAGCTGGA

115, 98, 97, 88, 85

DMB2 [4, 15] GGGAGGGGAG(G/t)TGGA 51
DNA3 [4, 15] GGGAGGCC(A/g)AGG(C/a)GGG 23,27
TAP2 [4, 15] (C/g)CTTCATTCCATCC 83
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Methods
We used pattern-matching algorithms programmed in C
to search for PPTs and PP-STRs in genomic DNA
sequence. Where possible, we used the sequence versions
used in the studies that reported the hot spot locations
Yeast sequences and ORF locations were downloaded
from the Stanford website [68]. The GenBank accession
numbers for the 16 yeast chromosomes are NC_001133
through NC_001148. The GenBank accession numbers
for the human hot spot sequences are: Beta-Globin hot
spot: GI:37541814, chromosome 1 hot spots:
GI:37549514, and SHOX hot spot: U82668. For the MHC
hot spots we used the 28 October 1999 version of the
MHC class II region sequence, since that was the version
to which the reported hot spot locations corresponded
[4]. This version is available at the Sanger Centre website
[69]. The GenBank accession numbers for the chimpanzee
sequences were as follows: DNA3: NW_108387.1, Beta-
Globin: NW_113864.1, DNA2, DMB1 DMB2 and TAP2:
NW_107937.1.

PPTs overlapping hot and cold regions were excluded.
When we investigated PPT frequencies in windows with
increasing length centred on human hot spots, some of
the windows included areas for which recombination
rates are unknown, and these were excluded from the
analysis. Areas where windows overlapped were com-
bined. When we searched for sequences with mismatches
to the poly-pu/py motif we disallowed mismatches in the
terminal two bp of tracts. When we searched for sequences
at least 80% poly-pu/py rich, we imposed the additional
restriction that no 6 bp segment of any sequence was
allowed more than two mismatches. Alignments were per-
formed using the BLAST algorithm [70].

Statistical comparison of means (Student's T-test and
Mann-Whitney U Test, 2-tailed tests in call cases) and cor-
relation analyses (Spearman's Rank Test) were done using
SPSS with significance inferred where p < 0.05 in all cases.
All samples were initially tested for normality (Shapiro-
Wilk Test) and significantly non-normal samples were
subjected only to the non-parametric tests. In cases where
yeast hot spots contained multiple ORFs, we used the
mean reported ORF rank [24] for the correlation analysis
of hot spot intensity and PPT frequency.
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