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Abstract

Background: Traditionally, housekeeping and tissue specific genes have been classified using
direct assay of mMRNA presence across different tissues, but these experiments are costly and the

results not easy to compare and reproduce.

Results: In this work, a Naive Bayes classifier based only on physical and functional characteristics
of genes already available in databases, like exon length and measures of chromatin compactness,
has achieved a 97% success rate in classification of human housekeeping genes (93% for mouse and

90% for fruit fly).

Conclusion: The newly obtained lists of housekeeping and tissue specific genes adhere to the
expected functions and tissue expression patterns for the two classes. Overall, the classifier shows
promise, and in the future additional attributes might be included to improve its discriminating

power.

Background

Importance of housekeeping genes

Housekeeping (HK) genes are defined as genes constitu-
tively expressed in all tissues to maintain essential cellular
functions. Conversely, tissue specific (TS) genes, are
defined as genes only or mainly expressed in a specific tis-
sue or organ, and hence responsible for specific functions
and development [1]. Gene expression profiling is a key to
characterizing normal and diseased biological states.

Many disciplines need to discriminate between house-
keeping and tissue specific genes. In Microbiology, house-
keeping genes are known to play a role in enhancing
virulence of pathogens and they are studied to find poten-
tial drug targets [2,3], while slowly diverging housekeep-
ing genes are used in evolutionary studies to discriminate
subspecies [4,5]. In Medicine they are studied to discover
if genetic diseases linked to housekeeping genes are more

likely to affect multiple organs. In Biology and Physiology
housekeeping genes are the key to determine the set of
basic functions necessary for cellular life or an organ func-
tion [1]. Additionally, many quantitative techniques used
for diagnosis and research use housekeeping gene expres-
sion as a baseline to normalize numerical values and to
detect differential expression. Housekeeping genes like
Glyceraldehyde-3-phosphate Dehydrogenase (GADPH),
beta-actin, or beta-tubulin are used as standards in assay
techniques like microarrays, RT-PCR, Northern blotting
(for mRNA levels) and Western blotting (for protein lev-
els).

Direct assay of expression across tissues

Until now, lists of housekeeping genes have been con-
structed by testing gene expression in different tissues,
with the most recent attempts involving microarrays [6-8].
Unfortunately, microarray techniques suffer from certain
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limitations. Some are intrinsic to the technique, for exam-
ple, the mRNA extraction by hybridization of the polyA
tail on a polyT column causes a loss of mRNA material
that remains attached to the column, a detail particularly
important for mRNA expressed at extremely low levels.
Another problem is the conversion from mRNA to cDNA
where the reverse transcription process introduces a bias
toward certain sequences. Other limitations might
decrease over time, but are still relevant factors today.
Cost, for example, is still an important limitation, and has
a crucial impact on replicates. Another limit in commer-
cial microarrays is that not all new genomes or gene
sequences are immediately available.

In addition, the DNA probes responsible for the specifi-
city of hybridization with a unique gene are sometimes
difficult to create. For example, if the probe is too near to
the end of the gene sequence, any splicing event will make
the probe useless for recognizing different variants of the
same gene. Kothapalli found that most probes were,
unfortunately, chosen from the gene end in commercial
platforms, and so less useful for distinguishing differen-
tially expressed splicing versions [9]. Additionally, the
sensitivity of the technique still limits the possibility of
reproducing results: comparisons have found a maximum
correlation of 70% between genes recognized as expressed
by different commercial platforms like Affymetrix *Gene-
Chips and Amersham ™CodeLink [10]. Tan reports an
even more modest correlation [11].

Other limitations are becoming evident over time, due to
the constantly evolving history of genome sequencing:
some published lists of housekeeping genes contain only
the gene identifiers valid at the time the experiments were
performed, but not the original sequence of the probe.
And in general, quoting Brazma: "gene expression data are
meaningful only in the context of a detailed description of
the conditions under which they where generated" [12].
To overcome these limitations we describe in this article
an alternative system based on genes physical characteris-
tics, that will help in identify housekeeping and tissue spe-
cific genes without having to test them in a wet lab against
all known tissues.

Physical characteristics of housekeeping genes

Recent articles have demonstrated that tissue specific and
housekeeping genes show distinctive physical characteris-
tics of gene length and chromatin compactness. To date,
these features have been analysed individually, while in
this work we will exploit their additive power in an inte-
grated learning procedure.

Gene length
Eisenberg has shown that housekeeping genes tend to be
significantly more compact and shorter than tissue spe-
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cific genes [13]. The average length for introns, exons, 3'
UTR (UnTranslated Region) and 5' UTR is shorter for
housekeeping genes than for tissue specific genes. Moreo-
ver, housekeeping genes tend to have less exons. The the-
ory that underlies these data is that cells are thrifty: "The
transcription process is both slow and costly; it takes 50
milliseconds and two ATP molecules approximately to
transcribe a nucleotide. This might be expected to provide
selective pressure to make genes as short as functionally
possible. The more copies of a gene required for the
organism, the stronger this pressure should be" [13].
Additional evidence from Castillo-Davis showed that
genes with a large number of expressed sequence tags
(ESTs) in public libraries have a significantly shorter aver-
age intron length than those with fewer ESTs (and hence
less expressed mRNAs) [14].

Chromatin compactness

The DNA in the nucleus of eukarya is packed in loops and
folded over histones to form units called nucleosomes.
The DNA structure in the region upstream of a gene is
implicated in gene expression regulation, making it more
or less easy for transcription factors to attach to or near the
promoter and initiate transcription. Ganapathi analyzed
the 5' and 3' flanking regions of housekeeping and tissue
specific genes for various attributes of chromatin organi-
zation [15]. The study showed that putative Scaffold/
Matrix Attachment Regions (S/MAR) are more abundant
upstream of tissue specific genes as compared to house-
keeping genes. S/MAR attach themselves to the nuclear
matrix and hence help the formation of chromatin loops.
Genes less frequently expressed (tissue specific) appear to
have less accessible and more compact DNA in their pro-
moter region, and so more S/MAR sequences. Conversely,
some repeats found to be more abundant upstream of
housekeeping genes, like Poly(dA-dT) and (CCGNN)n,
destabilize the formation of nucleosomes and, leaving the
DNA less packaged, are implicated in maintaining consti-
tutive gene expression [16,17].

The Naive Bayes classifier

To identify an object, in this case a gene, as belonging to a
particular class - e.g. housekeeping vs. tissue specific -
using computational techniques belongs to the broad
field of classification. For the classification to be success-
ful, each class must show some distinct properties or char-
acteristics. None of the characteristics described in the
above sections allows by itself a direct classification of a
given gene as housekeeping or not. This work, however,
tests if multiple features can be combined to create a pow-
erful classifier. The algorithm of choice is the Naive (or
simple) Bayes classifier that finds its origins in the Baye-
sian theory of probability.
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The main advantage of Bayesian classifiers is that they are
probabilistic models, robust to real data noise and miss-
ing values. The Naive Bayes classifier assumes independ-
ence of the attributes used in classification but it has been
tested on several artificial and real data sets, showing good
performances even when strong attribute dependences are
present. In addition, the Naive Bayes classifier can outper-
form other powerful classifiers when the sample size is
small. Using the words of Domingos and Pazzani: "In
summary, [...] the Bayesian classifier has much broader
applicability than previously thought. Since it also has
advantages in terms of simplicity, learning speed, classifi-
cation speed, storage space and incrementality its use
should perhaps be considered more often." [18].

This work classifies housekeeping and tissue specific genes
on the basis of physical characteristics only, without
directly assaying expression in different tissues. It exploits
features already available in databases, like exon length
and measures of chromatin compactness and combines
them into a Naive Bayes classifier to obtain new lists of
housekeeping and tissue specific genes in human, mouse
and fruit fly.

Results

Classifier Evaluation

Attributes

A set of attributes was collected and the corresponding
attribute values were fed to the classifier for each transcript
of all human, mouse and fruit fly genes. Not all attributes,
however, are fit for use in a classifier. First, some attributes
are clearly not independent and do not provide any addi-
tional advantage when evaluated together. For example
the number of exons and the number of introns for each
transcript: the number of introns - or intervening
sequences between exons - is by definition the number of
exons minus one. Second, some attributes are not selec-
tive enough between the two classes of interest, like the
presence of Poly(dA-dT) of 10 or more bp (base pairs).
The attributes remaining after this analysis were, for each
transcript: 1. ¢cDNA length (entire pre-splicing mRNA
length: exons + introns + other untranslated regions), 2.
Coding sequence (CDS) length (exons only), 3. Number
of exons, 4. Presence of S/MAR in the 5' region, 5. Pres-
ence of S/MAR in the 3' region, 6. Presence of Poly(dA-dT)
(with length of 18 or more bp) in the 5' region, 7. Pres-
ence of (CCGNN), . in the 5' region, 8. Percent of GO
terms for the gene that match with the housekeeping GO
terms list, 9. Percent of GO terms for the gene that match
with the tissue specific GO terms list.

Short gene length for housekeeping genes

The work of Eisenberg highlighted the compactness and
short length of human housekeeping genes [13]. We con-
firmed these results also for the mouse and fruit fly
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homologs of human housekeeping and tissue specific
genes. Figure 1 shows the frequency distribution, normal-
ized to one, of the different cDNA lengths found in house-
keeping (HK), tissue specific (TS) and the full gene set, for
each of the three species. The housekeeping distribution
appears to be shifted to the left of the diagram, reflecting
shorter transcripts, while the tissue specific distribution is
more dispersed toward the right, reflecting longer exons
and introns. Similar patterns of results were found for
CDS length and number of exons as summarized in Table
1.

Chromatin compactness upstream housekeeping genes

S/MAR are expected to be less present upstream of human
housekeeping genes [15], as less packed chromatin eases
gene expression. This was confirmed in our analysis
(Table 2) also for mouse, while in fruit fly S/MAR
sequences seems to be more present upstream of house-
keeping genes. Poly(dA-dT) sequences, on the contrary,
should be more likely present upstream of human house-
keeping genes, as they keep the DNA unpackaged and
enhance gene expression. This too was confirmed for
mouse, while the regions upstream fruit fly genes seems to
have almost no Poly(dA-dT) sequences. A pattern similar
to that of Poly(dA-dT) sequences is expected for the nucle-
osomes destabilizing sequence (CCGNN), ., with
increased presence upstream of housekeeping genes to
enhance transcription and decreased presence upstream
of tissue specific genes [15]. This pattern was confirmed
for human and mouse (Table 2) while in fruit fly the
opposite seems true. This could be caused by a real biolog-
ical difference in the structure of housekeeping genes in
fruit fly compared to human, or it could be an artefact of
the homology conversion from human to fruit fly. In this
sense, a fruit fly homologous gene might be similar in
function to the human gene, but not share the same pat-
tern of expression, and hence have different chromatin
structure. An important aspect of the classifier is that it is
independent of the biological interpretation of data. In
theory, for the use in the classifier, it doesn't matter what
the pattern of difference is, as long as it helps in discrimi-
nating between the two classes, but in practice, these new
data would deserve further biological analysis, as the role
of (CCGNN),_. sequences has been extensively studied in
yeast and human only.

Gene Ontology term matching

The Gene Ontology (GO) terms [19] linked to each gene
were compared to the GO terms specific for the house-
keeping or the tissue specific set of genes. A GO term was
defined as being specific for housekeeping genes when the
term appears exclusively in association with one or more
housekeeping genes (for example, a term like nucleus
[GO:0005634] that appears in 24.5% of human house-
keeping genes but also in 13.1% of human tissue specific
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Frequency distribution of cDNA length in human, mouse and fruit fly transcripts. The diagrams represent the fre-
quency distribution of cDNA length (normalized to one) for housekeeping, tissue specific and total transcripts in human (A),
mouse (B) and fruit fly (C).
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Table I: Difference in length and exon number between housekeeping and tissue specific transcripts.

Human Mouse Fruit fly
HK TS P value HK TS P value HK TS P value
Average cDNA length (bp) 1681 2534 I.0E-09 1271 2402 5.6E-17 1413 2705 2.8E-18
Average CDS length (bp) 899 1670 5.9E-16 817 1623 2.8E-18 864 1886 2.5E-18
Average number of exons 72 10.7 6.0E-04 6.7 1.4 4.2E-13 4.0 73 1.7E-21

HK = housekeeping, TS = tissue specific. P value for t-test two tail hypothesis.

genes was not used for analysis). The analogous choice
was made when generating a list of GO terms specific for
tissue specific genes. Table 3 lists the GO terms that
appears more frequently in each set. A measure of similar-
ity was generated comparing the GO terms of each gene
with the list of GO terms specific for housekeeping (or tis-
sue specific) genes (see the Methods section for a more
detailed description).

Training and evaluation

For the classification of housekeeping genes, only genes
classified as housekeeping in all three microarray sets
(from Table 4) were accepted in the training set, and only
tissue specific genes present in at least two of the tissue spe-
cific lists from Table 4 were used (please see the Methods
section for additional information). A Zero Rule classifier
that simply chooses the majority class (here the tissue spe-
cific class) as classification for all instances was trained
and used as a performance baseline (Table 5). For the
actual classification two different Naive Bayes algorithms
were tested, a classic version and the AODE (Averaged
One-Dependence Estimators) version [20,21] that should
reduce the error due to non-independent attributes. Since
the performance of two algorithms was very similar (data
not shown), from now on we will only comment on the
classic Naive Bayes results (Table 6).

After data filtering, each classifier was trained and cross-
validated for 10-times with a 10-fold random sampling.
The ten resulting values for each performance parameter
(see the Methods section for the full evaluation proce-
dure) were averaged to obtain the final figures, and
Receiver Operating Characteristic (ROC) curves, plotting
TP rates vs. FP rates, were analyzed. As expected, the Naive
Bayes classifier shows a definite progression in perform-
ance when data discretisation is used, either supervised or
un-supervised with frequency binning, as shown in Figure
2 for human data. In addition, the performance level is
not particularly affected by the threshold of homology
chosen. To convert the training set from human to mouse
(and fruit fly) thresholds of identity of 40% or 50% have
been tested with no significant difference in performance
(data not shown).

Comparing performance across human, mouse and fruit fly
For all species, the classifier performance improves when
comparing the ZeroRule classifier baseline with the Naive
Bayes classifier (see the Methods section for the definition
of performance parameters). In particular, the classifica-
tion performance over housekeeping genes improves dra-
matically compared with the 0% Precision, Recall and F
Measure of the ZeroRule classifier (Tables 5 and 6).

Table 2: Presence of sequences involved in chromatin packaging in housekeeping and tissue specific genes.

Human Mouse Fruit fly
All genes (%) HK (%) TS (%) Allgenes (%) HK (%) TS (%) All genes (%) HK (%) TS (%)
5'S/IMAR Il 5 9 9 3 7 22 16 24
3' SIMAR 13 7 13 10 10 21 20 26
5' Poly(dA-dT) > 12 bp 30 31 29 22 28 19 10 10 8
5' Poly(dA-dT) > I5 bp 21 24 20 14 25 13 4 | 0
5' Poly(dA-dT) > 18 bp 13 17 I 8 20 7 | | 0
5' Poly(dA-dT) > 20 bp 10 13 7 7 10 6 | | 0
5' (CCGNN)2-5 22 47 20 19 27 12 15 10 16

5' = the sequence is present in the 1500 bp upstream the transcription start, 3' = the sequence is present in the 1500 bp downstream the

transcription end, HK = housekeeping, TS = tissue specific.

Page 5 of 14

(page number not for citation purposes)



BMC Genomics 2006, 7:277

http://www.biomedcentral.com/1471-2164/7/277

Table 3: GO terms specific for the human housekeeping or tissue specific genes set

GO terms specific for: GO ID Description % of HK genes % of TS genes

HK genes GO:0006412 protein biosynthesis 29.1 -
GO:0003735 structural constituent of ribosome 233 -
GO:0005840 ribosome 18.4 -
GO:0005842 cytosolic large ribos. subunit (sensu Euk.) 10.7 -
G0:0030529 ribonucleoprotein complex 4.9 -
GO:0006414 translational elongation 3.9 -

TS genes GO:0005615 extracellular space - 14.8
GO:0004295 trypsin activity - 84
GO:0004263 chymotrypsin activity - 84
GO:0005576 extracellular region - 6.7
GO:0006810 transport - 6.6
G0O:0008233 peptidase activity - 6.6

GO = Gene Ontology, GO ID = Gene Ontology term identifier, HK = housekeeping, TS = tissue specific.

The success rates for the three species are summarized in
Table 7. In addition, the Receiver Operating Characteristic
(ROC) curves in Figure 3 compare the maximum perform-
ance obtained by the classifiers on human, mouse and
fruit fly transcripts. ROC curves represent the classification
data in a ranked order of probability, showing how many
true positives (real housekeeping genes or real tissue spe-
cific genes) one can obtain taking, for example, the high-
est 10% of the ranking list, and how many false positives
one would also unknowingly collect in the meantime. Put
simply, the closer the curve is to the upper left corner, the
better the classification is, while the more the curve relaxes
to the right and toward the centre of the diagram, the
worse the performance (and the number of false positives
collected). The curves in Figure 3 show a decrease in per-
formance for mouse data and, in particular, for fruit fly
data when compared to performance on human data. The
overall performance was examined further and it seemed
unrelated to the identity thresholds, but very sensitive to
the data consolidation used. The sensitivity to data con-
solidation is further analysed in Figure 4: this diagram
shows the decrease in performance that appears in both
mouse and fruit fly when all tissue specific genes are used

Table 4: Published lists of housekeeping and tissue specific genes

to generate the training set instead of using only genes
present in at least two different published sources.

In general, considering both algorithms (Classic and
AODE Naive Bayes) and both filters (supervised and
unsupervised) the best success rate that the system could
achieve for human is 97 % (all methods), for mouse is 93
% (supervised filtering + Classic Naive Bayes) and for fruit
fly is 90 % (unsupervised filtering + AODE) (Table 7).

Comparison with other classifiers

The Naive Bayes classifier performs better than the base-
line on all performance indicators, and was also com-
pared with other well known classifiers. The Naive Bayes
classifier is among the best classifiers and learning meth-
ods when the success rate is used as main indicator. Inter-
estingly, two of the closest contending algorithms are also
derived from the Naive Bayes algorithm (the NB Tree:
Naive Bayes Tree and the LBR: Lazy Bayesian Rules Classi-
fier) [22]. The Naive Bayes algorithm is also extremely fast
compared to the others tested: there is no significant wait
time for a 10-times 10-fold cross-evaluation of ~ 600 tran-
scripts training set, and it takes only a couple of seconds

Author, Year Data originally from Type Nr. of genes Organism Technique Nr. of tissues ~ Genes assayed
extracted
Eisemberg, 2003 [13] Su, 2002 [8] HK 575 Human Affymetrix ma 25 n/a
Warrington, 2000 [6] Warrington, 2000 [6] HK 535 Human Affymetrix ma I about 7000
Haverty, 2002 [35] Hsiao, 2001 [7] HK 451 Human Affymetrix ma 19 about 7000
Haverty, 2002 [35] Hsiao, 2001 [7] TS 1525 Human Affymetrix ma 19 about 7000
Ge, 2005 [23] Ge, 2005 [23] TS 1687 Human Affymetrix ma 33 about 20000
Warrington, 2000 [6] Warrington, 2000 [6] TS 170 Human Affymetrix ma I about 7000

HK = housekeeping, TS = tissue specific,, n/a = not available, Affymetrix ma = microarray from Affymetrix (Santa Clara, CA). All tissues are normal

adult tissues.
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Table 5: Zero Rule classifier performance
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Precision (%) Recall (%) F Measure (%) Success Rate (%) Root Mean Squared Error
Human HK 0.0 0.0 0.0 84.92 £ 0.01 0.36 + 0.0l
TS 100.0 84.9 91.8
Mouse HK 0.0 0.0 0.0 79.12 £ 0.01 0.41 £ 0.0l
TS 100.0 79.1 88.3
Fruit fly HK 0.0 0.0 0.0 83.74 £ 0.01 0.37 £ 0.0l
TS 100.0 68.7 523

HK = housekeeping, TS = tissue specific, null = not possible to calculate the value (a zero appears as the denominator of a division). See the
Methods section for the definition of Precision, Recall, F Measure and Success Rate.

to obtain the classification of a 40000 instances test set
(data not shown).

Genes and transcripts

In this work, we use transcripts as minimal genetic units
for classification, instead of genes. This decision is justi-
fied by the biological existence, especially for mammali-
ans, of multiple transcripts for each gene, each with a
potentially different tissue expression pattern. In fact, in
this study 514 human (2132 mouse, 232 fruit fly) genes
having two or more different transcripts had their tran-
scripts classified with different housekeeping probabili-
ties. And 6 human (17 mouse, 15 fruit fly) genes had at
least one transcript classified as housekeeping and at least
another transcript classified as tissue specific.

The different classification of transcripts of the same gene
reflects the ability of the classifier to identify different bio-
logical ways of regulating gene expression: by gene length
or by chromatin compactness. If a gene contains several
transcripts with different patterns of expression, the evo-
lutionary pressure on the chromatin compactness around
the gene may be conflicting. The preference for having
open chromatin around a housekeeping gene may be
some how offset by the pressure for having compact chro-
matin around a tissue specific transcript. However, there
will still be pressure on gene length to keep transcripts
often expressed shorter. Similarly, in the classifier, the set
of different transcripts for a gene will have all the values
for the chromatin attributes in common, as the 3' and 5'
regions are the same for all transcripts in a gene. But the
classifier can use the other attributes (transcript length
and number of exons) to drive the final classification.

Predicted housekeeping transcripts

In the evaluation phase the classifier was trained on nine
tenths of the known data while the remaining tenth was
withhold for calculating the classifier performance. In the
second phase each classifier was trained with all available
known data for each species. In the third phase each of the
classifiers was run on all available transcript data for all
genes (with known and unknown housekeeping status) to
obtain predictions (see additional files 1, 2 and 3). The

classifier trained on human data was applied to all 45921
human transcripts (34270 putative genes), the mouse
classifier was applied to all 31535 mouse transcripts
(24461 putative genes), and the Drosophila classifier was
applied to the 20016 Drosophila transcripts (14399 puta-

A Naive Bayes: Housekeeping genes classification
( ) 100%

OZeroRule
90% (baseline)

80% -

o |
0% ONaive Bayes
60% -
50% A

40% 1 @ Naive Bayes +

o Unsupervised
30% 4 Discretization
20% -
10% - W Naive Bayes +
Supervised
0% T Discretization
Precision Recall F measure Success rate
B Naive Bayes: Tissue specific genes classification
( ) 100%
OZeroRule
90% 1 ~ (baseline)

80% -

%
70% ONaive Bayes
60% -

50% -

40% 4 E Naive Bayes +
Unsupervised

30% - Discretization

20% -

10% - W Naive Bayes +
Supervised

0% Discretization

T T T
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Figure 2

Effects of discretisation on Naive Bayes classifier per-
formance (human data). The success rate value is plotted
in both the housekeeping (A) and the tissue specific (B) chart
for comparison. Precision, Recall and F Measure for the
ZeroRule classifier on housekeeping data (white bar) is equal
to zero and hence not directly visible in the housekeeping
chart (A).
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Table 6: Naive Bayes classifier performance with unsupervised discretisation

Precision Recall F Measure Success Rate Root Mean Squared Error
Human HK 93.0 90.3 91.6 97.49 £ 0.14 0.13 £ 0.0l
TS 98.3 98.8 98.5
Mouse HK 83.3 79.6 81.4 92.57 £ 0.2 0.24 + 0.0l
TS 94.7 95.8 95.2
Fruit fly HK 63.2 60.0 61.5 87.46 + 0.34 0.32 + 0.0l
TS 923 93.2 928

HK = housekeeping, TS = tissue specific. Discretisation: unsupervised with equal frequency binning. See the Methods section for the definition of

Precision, Recall, F Measure and Success Rate.

tive genes). Excluding the genes already known to be
housekeeping or tissue specific, the three classifiers
extracted new lists of housekeeping and tissue specific
genes for each of the three species.

The probabilistic classifications uses "housekeeping" and
"tissue specific" as the two ends of the spectrum consid-
ered. The probability of being housekeeping and being tis-
sue specific add up to one, for example: if the
housekeeping probability is 96.5 %, then the tissue spe-
cific probability is 3.5%. The actual classification decision
will depend on the threshold used. If we use 90% as min-
imum threshold, all genes with a housekeeping probabil-
ity above 90% (and hence tissue specific probability
below 10%) will be considered housekeeping. Accord-
ingly, all transcripts with tissue specific probability above
90% (and hence housekeeping probability below 10%)
will be considered tissue specific.

The number of transcripts with housekeeping probability
above 90% and above 50% (a more relaxed threshold)
can be found in Table 8. The lists of new housekeeping
transcripts found in all three species show a high presence
of proteins from housekeeping families, like ribosomal
proteins: the related GO terms appear 704 times in the
human housekeeping list, 9 times only in the tissue spe-
cific predicted set. The classifier also correctly classified as
housekeeping mRNAs commonly used as standardization
controls like: beta-actin (ACTB), beta-2-microglobulin
(B2M), non-POU domain containing nuclear RNA-bind-
ing protein (NONO), and the ribosomal proteins RPS27,
RPL19, RPL11 and RPS3.

Table 7: Success Rate for ZeroRule and Naive Bayes

Predicted tissue specific genes

The number of transcripts with predicted tissue specific
probability above 90% (and hence housekeeping proba-
bility below 10 %) and tissue specific probability above
50% (housekeeping probability below 50%) are also
shown in Table 8. The new predicted tissue specific genes
have an extremely varied set of functions, rich in tissue
specific structures like brain receptors, muscle fibre com-
ponents, and also protein variants known to be involved
in disease and tumorigenesis. For example, in human,
1133 transcripts have brain specific description (only 16
in the housekeeping set). Some functions are almost com-
pletely absent in the housekeeping set, but present in the
tissue specific set like: 304 synaptic transmission tran-
scripts (1 in the HK set), 201 spermatogenesis transcripts
(1 in the HK set) 221 olfactory receptors transcripts (0 in
the HK set), 62 cytokines (0 in the HK set), 32 platelet
transcripts (0 in the HK set), 28 GABA transporters and
receptors (0 in the HK set), 27 dystrophy involved tran-
scripts (0 in the HK set). The tissue specific set is also par-
ticularly enriched in functions like signal transduction
(the related GO terms are associated to tissue specific tran-
scripts 1901 times, while only 28 times in the HK set) or
receptor activity (GO terms appearing 1553 times in the
tissue specific set, but only 12 times in the housekeeping
set).

Many other tissue specific functions are represented, like
the 5-aminolevulinate synthase erythroid-specific, or
involved in disease, like the Abnormal spindle-like micro-
cephaly-associated protein. Other differences between the
sets are less quantitatively evident, but not less interesting.

ZeroRule Naive Bayes
Discretisation Unsupervised Supervised
Human 84.92 + 0.0l 9749 £ 0.14 97.34 + 0.1
Mouse 79.12 £ 0.01 92.57 £ 0.2 93.18 £ 0.19
Fruit fly 83.74 £ 0.0l 87.46 + 0.34 86.41 +0.23

HK = housekeeping, TS = tissue specific. Discretisation: unsupervised with equal frequency binning. See the Methods section for the definition of

Success Rate.
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Figure 3

ROC curves of maximum classification performance
for human, mouse and fruit fly. For human and fruit fly:
unsupervised discretisation (with equal frequency binning) +
AODE algorithm for classification; for mouse: supervised dis-
cretisation + classic Naive Bayes algorithm for classification.

For example, among the predicted housekeeping tran-
scripts we find 136 general and mitochondrial elongation
factors. In the tissue specific set too we find 96 elongation
factors, but not mitochondrial ones, and 36 are testis spe-
cific factors, while 16 are negative elongation factors,
involved in diseases that subvert the common housekeep-
ing of cell growth, like breast cancer and Wolf-Hirschhorn
syndrome, a multiple malformation syndrome character-
ized by mental and developmental defects.

Patterns of expression across tissues

The pattern of expression across different tissues of the
new housekeeping and tissue specific genes can be used to
check and confirm the classifier predictions. The UniGene

Table 8: Number of new transcripts with housekeeping probability

Comparison of performance:
HK + TS genes from merged lists
vs. HK + all TS genes

100%

90% -
80% -
70% -
60% - f

50% ;|

True Positive Rate

40% -+

Mouse (TS genes from merged lists)

30% 41 Mouse (all TS genes)

= Fruit fly (TS genes from merged lists)

20% -+
------ Fruit fly (all TS genes)

10% +

0% T T T
40% 60% 80%

False Positive Rate

0% 20% 100%

Figure 4

ROC curves of classification performance: house-
keeping + all tissue specific genes versus housekeep-
ing + tissue specific genes from merged lists. ROC
curves comparing the classifier performance when all tissue
specific genes or just tissue specific genes present in at least
two published lists are used. For human and fruit fly: unsu-
pervised discretisation (with equal frequency binning) +
AODE algorithm for classification; for mouse: supervised dis-
cretisation + classic Naive Bayes algorithm for classification.

site offers text reports containing the number of EST
(Expressed Sequence Tag) found for each UniGene cluster
(gene) in 30 basic tissues. The number of EST registered in
the database is considered a measure of the level of gene
expression in each particular tissue. Figure 5 shows the
known and the predicted housekeeping genes, plotted
against the number of tissues in which they are expressed.
Most of the new predicted human housekeeping genes are
expressed in more than 20 tissues out of 30, as would be
expected for potential housekeeping genes.

Housekeeping probability > 90% > 50% < 50% < 10%
Predicted class HK HK TS TS
Human 1342 (3%) 5570 (12%) 40151 (87%) 20686 (45%)
Mouse 3375 (11%) 8001 (25%) 23534 (75%) 16367 (52%)
Drosophila 287 (1%) 3410 (17%) 16606 (83%) 11780 (59%)

HK = housekeeping, TS = tissue specific. The values between parentheses represent the percentage over the entire set of transcripts for the given
species. For human and fruit fly: unsupervised discretisation (with equal frequency binning) + AODE algorithm for classification; for mouse:

supervised discretisation + classic Naive Bayes algorithm for classification.
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Figure 5

Tissue expression for known and predicted human
housekeeping genes. Data extracted from UniGene dbEST
in July 2005 (UniGene human build 186). The probability for
predicted housekeeping transcripts is > 90%. Discretisation:
unsupervised; classification algorithm: AODE Naive Bayes.

The area between the line representing predicted house-
keeping genes (the continuous line above in Figure 5) and
the line representing the known transcripts (the dashed
line below) visually represents the number of new house-
keeping transcripts extracted for human (1251 new tran-
scripts, corresponding to 927 new genes). Since the
original lists of housekeeping genes were mainly extracted
at a time when Affymetrix microarrays contained only
7000 human genes (against a total of around 25000
today), it would be expected that the classifier would find
a number of new housekeeping genes.

Discussion

The three species investigated (human, mouse and fruit
fly) were chosen to generate a certain evolutionary fan,
and to test the range of applicability of the method. All
theories regarding gene length and chromatin compact-
ness have been verified only in human (and to a limited
degree in mouse), but not in fruit fly. However, eukaryotic
genes are known to share similar structures and patterns,
which have been used in the past to automate gene dis-
covery.

The approach used here is to perform computational
experiments, without prior expectations regarding the pat-
terns of mouse or fruit fly data. The results obtained are
clearly not random, and the classification performance is
good. Therefore, these computational studies broadly
confirm that the characteristics of human housekeeping
genes can be identified in other species. But the differ-
ences between species that we observe also suggest further
investigation into characteristic features of such genes for
species more distantly related to human, and into the

http://www.biomedcentral.com/1471-2164/7/277

method of determining homologs would indeed be
worthwhile.

In particular, one of the main challenges for the training
phase was the conversion of the housekeeping and tissue
specific genes identifiers: up to 25% of the UniGene gene
identifiers published in past works on housekeeping
genes were retired from the UniGene database in the last
four years. 10% of the UniGene identifiers have been
retired without having a new identifier assigned, and so
part of the potential housekeeping training set was lost.
The identifiers conversion between the NCBI accession
numbers (or Entrez genes identifiers) and the European
EMBL identifiers caused a loss of around 15% of the
genes.

In addition, the available tissue specific lists agreed on just
7 transcripts out of 5225 human transcripts from [7],
5740 from [23] and 680 from [6], (but the authors agree
on the actual tissue the gene is expressed in only for one
transcript). However, to create a strong training set and to
preserve high performance we still tried to merge the
available list to obtain only the data on which different
authors and different experimental techniques agreed.
Another constraint was the ratio between housekeeping
and tissue specific genes: from microarray estimates in
Homo sapiens housekeeping genes represent about 5-7 %
of the total [7], but there is no evidence that the human
estimate applies also to the other species.

Conclusion

To-date, studies of housekeeping genes have typically con-
centrated on human genes only, and the housekeeping
genes are normally taken from a small number of already
published lists. The labelling of genes with housekeeping
or tissue specific status is not common, even in highly
curated databases. In this work, we propose an automated
solution that is based on the integration of existing data-
sets. As noted above, integration is not straightforward,
but is achievable.

The main achievement of this work is to have proved that
it is possible to discover if a gene is housekeeping using
simple features of that gene sequence and its surround-
ings. This is made possible by the integration of different
attributes operated by the Naive Bayes engine, since the
attributes already discovered in literature (like the associ-
ation between exon length and being an housekeeping
gene) were not powerful enough, taken alone, for decid-
ing if a gene was housekeeping or not. This opens up the
possibility of automatically assigning the housekeeping/
tissue specific status to all genes (or potential ORFs) for
which we have a sequence.
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Our method proposes not only a housekeeping label, but
a certainty value, that gives a measure of trust in the pre-
diction. This classification method is applicable to genes
of any eukaryotic species, exploiting information that is
already available in publicly accessible databases, and it
can generate a functional description even for sequenced
but otherwise unknown genes. Considering this strength
of the method here evaluated, future work might include
the analysis of less well known genomes.

At the same time, in the future the structure of the classi-
fier might be enriched, for example, the Gene Ontology
structure might be further exploited to compare also GO
terms that are in a parent or child relation with the GO
terms of each gene. As the risk of overfitting is always
present with attributes that are partially learnt from the
training set, the GO attributes could be further elaborated,
for example: using housekeeping and tissue specific lists
of GO terms verified by expert curators, or by learning the
GO lists from other sources. Thanks to the flexible struc-
ture of the Naive Bayes classifier additional attributes can
be easily added, either attributes already studied (for
example, the Alu repeats for chromatin compactness
already analyzed in [15]) or newly discovered ones.

Methods

Software

The EMBOSS suite [24,25] program MARsearch was used
to extract the presence of S/MARs and the dreg program to
extract the Poly(dA-dT) and (CCGNN)n sequences
present in the 5' and 3' regions of each transcript. The
Weka Data Mining Java suite [26,27] was used for training
and testing the Naive Bayes classifier and for the compar-
ison to other learning algorithms. A Python script was
used to extract the number of tissues each gene is
expressed in from the reports available at the UniGene
FTP site [28]. A Microsoft Access database (Office 2003)
was used for storing and manipulating all the data. The
database was accessed through the proprietary interface,
and from Java with a JDBC-ODBC bridge.

Algorithms

Discretisation

The Weka algorithm used for filtering with Unsupervised
discretisation involves separating the data in ranges using
equal-frequency binning (histogram equalization) so that
the same number of training example fall into each bin.
No class information is taken into consideration [29]. For
Supervised discretisation the data is separated in intervals
as homogeneous as possible in relation to class content.
The entropy based method with MDL (Minimum
Description Length) stopping criterion [30] is used to
define where to stop when segmenting the intervals.

http://www.biomedcentral.com/1471-2164/7/277

Classifiers

All the algorithms used were taken from the Weka suite
[26,27]. In addition to the classic Naive Bayes algorithm
and the AODE (Averaged One-Dependence Estimators)
version [20,21], the other classifiers used were: Adaboost
MI method, Alternating Decision Tree (AD Tree), Deci-
sion Table, J48 (a variant of the C4.5 decision tree), Lazy
Bayesian Rules Classifier (LBR), Logistic Model Trees
(LMT), Naive Bayes tree (NB Tree), One Rule classifier (1R
classifier), PART decision list, Ridge Logistic Regression
and RIpple-DOwn Rule learner (Ridor). For a comparison
of performance see [22].

Evaluation

All evaluation parameters are calculated with a ten times,
ten fold cross-evaluation. The method uses nine tenths of
the data for training the system while the remaining tenth
is set aside as a test set (control) for estimating the various
evaluation parameters, like the success rate (see below for
parameters definition). The data is randomised and the
procedure is repeated 10 times to estimate the average
value for each parameter. The parameters used for evalua-
tion are the following (where TP = true positive, FP = false
positive, TN = true negative and FN = false negative). Pre-
cision: defined as the number of positive instances
retrieved over the total number of instances declared pos-

itive by the classifier (= L) Recall: defined as the
TP + FP

number of true positive instances retrieved over the total
number of instances that are positive in the set (=
P
TP + FN
2 Recall Precision or: 2TP
2TP+ FP + FN
number of real positive and negative instances retrieved

); F Measure: combines precision and recall (=

— ); Success Rate: the
Recall + Precision

over the total number of instances (=

TP + TN

); Root Mean Squared Error:
TP+ TN +FP+FN
2 2

- +..+(p, —

\/(pl @) (Pn = n) , where p;, p,,..., p, are the
n

predicted values for each transcript, a;, 4,,..., 4, are the
actual values and n is the total number of predictions
(number of transcripts considered). The standard devia-
tion over the ten success rate values and over the ten root
mean squared error values is calculated as follows
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Data

In this work we used the EMBL [31,32] database version
Ensembl 34, based on the following assemblies. For
human: NCBI 35 assembly (July 2004). For mouse: NCBI
m34 mouse assembly (freeze May 17, 2005, strain C57BL/
6]). For fruit fly: BDGP 4 assembly (Apr 2005), FlyBase
gene build (Feb 2005). The length and sequence data, and
the GO terms were extracted from the EMBL Genome
Browser using the EnsMart (now BioMart) batch query
interface [31]. The 5' UTR region analyzed for chromatin
compactness signals corresponds to the 1500 bp upstream
the transcription start (for the 3' UTR region, the 1500 bp
downstream the translation stop were analyzed). Data
from the EMBL Ensembl was also used for cross-species
homology. In Table 4 we summarized the author, data
provenance, number of genes analyzed and technique
used for each of the published lists used. The UniGene
identifiers history files were downloaded from the Uni-
Gene web site [33]. Data regarding the pattern of expres-
sion in different tissues were extracted with a Python
script from the UniGene reports [34] based on the dbEST
version of July 2005 (the UniGene build was 186 for
human and 148 for mouse; fruit fly reports not available).

Training sets

For the classification of human genes: only housekeeping
genes present in all three list were accepted in the training
set, and only tissue specific genes present in at least two of
the tissue specific lists from Table 4 were used. The same
criteria were used for mouse and fruit fly. In addition,
only pairs of human/mouse (or human/fruit fly) tran-
scripts that surpassed identity and coverage thresholds of
50% were accepted as being homologous to generate the
mouse (or fruit fly) training set. This procedure created a
set of around 100 housekeeping transcripts for each spe-
cies (specifically: 76 genes/103 transcripts for human, 93
genes/113 transcripts mouse and 40 genes/80 transcripts
fruit fly). For tissue specific genes a full merging would
have been too limiting, as only a handful of genes are
present in all lists. Therefore we resorted to include all tis-
sue specific genes that were supported by at least two inde-
pendent experiments, collecting a set of 326 genes/580
transcripts for human and 286 genes/564 transcripts
mouse. For fruit fly, however, the homology conversion
from human had already heavily reduced the number of
usable genes and, if tissue specific genes from at least two
lists are used, at the end of the merging the percentage of
housekeeping genes is near 50% and the number of genes
only 74. The alternative chosen was to accept all tissue
specific genes available, bringing the ratio back to the
human level and the gene number up 193/412 transcripts,
even if this leads to a degradation in performance as
shown in Figure 4.
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Attributes

To generate the percent of matching with specific Gene
Ontology (GO) terms for each transcript, two preliminary
lists of terms were generated: the Housekeeping GO terms
list, which contains the identifiers of all GO terms con-
nected to housekeeping genes (terms also connected to
any tissue specific gene were excluded from the list), and
the Tissue specific GO terms list: a list containing the identi-
fiers of all GO terms connected to tissue specific genes
(and not connected to any housekeeping gene). The per-
cent of matching with these lists was then calculated for
each gene. For example, if a gene is annotated with a total
of 5 GO terms, of which 3 are present in the housekeeping
GO terms list, and 1 is in the tissue specific GO terms list,
the percentages will be: 60% of matching for the house-
keeping GO terms and 20% of matching for the tissue spe-
cific GO terms.
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Additional material

Additional file 1

Attributes values and housekeeping probabilities for all EMBL human
genes. The file contains the following attributes in tab separated format:
1. EMBL_gene_id = The EMBL gene identifier, 2. HGNC_symbol = the
HUGO Gene Name Committee identifier 3. description = a textual
description of the gene function, 4. EMBL_transcript_id = The EMBL
transcript identifier, 5. cDNA_length = cDNA length (entire pre-splicing
mRNA length: exons + introns + other untranslated regions), 6.
cds_length = Coding sequence length (exons only), 7. exons_nr = Number
of exons, 8. 3_MAR_presence = Presence of S/MAR in the 3' region, 9.
5_MAR_presence = Presence of S/MAR in the 5' region, 10.
5_polyA_18_presence = Presence of Poly(dA-dT) (with length of 18 or
more bp) in the 5' region, 11. 5_CCGNN_2_5_presence = Presence of
(CCGNN),_s in the 5' region, 12. perc_go_ts_match = Percent of GO
terms for the gene that match with the tissue specific GO terms list, 13.
perc_go_hk_match = Percent of GO terms for the gene that match with
the housekeeping GO terms list, 14. is_hk = The housekeeping or tissue
specific former classification from published lists (when known), 15.
predicted_class = The predicted class given the probability (class is house-
keeping if housekeeping probability >50%, tissue specific if probability <
50%) 16. hk_probability = The new housekeeping probability generated
by the Naive Bayes classifier When a value was unknown it was repre-
sented by a question mark, following the "arff" file standard for machine
learning.

Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2164-7-277-S1.tsv]
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Additional file 2

Attributes values and housekeeping probabilities for all EMBL mouse
genes. The file contains the following attributes in tab separated format:
1. EMBL_gene_id = The EMBL gene identifier, 2. MGI_symbol = the
Mouse Genomic Informatics (MGI) symbol 3. description = a textual
description of the gene function, 4. EMBL_transcript_id = The EMBL
transcript identifier, 5. cDONA_length = cDNA length (entire pre-splicing
mRNA length: exons + introns + other untranslated regions), 6.
cds_length = Coding sequence length (exons only), 7. exons_nr = Number
of exons, 8. 3_MAR_presence = Presence of SIMAR in the 3' region, 9.
5_MAR_presence = Presence of S/MAR in the 5' region, 10.
5_polyA_18_presence = Presence of Poly(dA-dT) (with length of 18 or
more bp) in the 5' region, 11. 5_CCGNN_2_5_presence = Presence of
(CCGNN),_s in the 5' region, 12. perc_go_ts_match = Percent of GO
terms for the gene that match with the tissue specific GO terms list, 13.
perc_go_hk_match = Percent of GO terms for the gene that match with
the housekeeping GO terms list, 14. is_hk = The housekeeping or tissue
specific former classification from published lists (when known), 15.
predicted_class = The predicted class given the probability (class is house-
keeping if housekeeping probability > 50%, tissue specific if probability <
50%) 16. hk_probability = The new housekeeping probability generated
by the Naive Bayes classifier When a value was unknown it was repre-
sented by a question mark, following the "arff" file standard for machine
learning.

Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2164-7-277-S2.tsv]

Additional file 3

Attributes values and housekeeping probabilities for all EMBL fruit
fly genes. The file contains the following attributes in tab separated for-
mat: 1. EMBL_gene_id = The EMBL gene identifier, 2. FlyBase_symbol
= the FlyBase symbol 3. description = a textual description of the gene
function, 4. EMBL_transcript_id = The EMBL transcript identifier, 5.
c¢DNA_length = cDNA length (entire pre-splicing mRNA length: exons +
introns + other untranslated regions), 6. cds_length = Coding sequence
length (exons only), 7. exons_nr = Number of exons, 8. 3_MAR_presence
= Presence of SIMAR in the 3" region, 9. 5_MAR_presence = Presence of
S/MAR in the 5' region, 10. 5_polyA_18_presence = Presence of Poly(dA-
dT) (with length of 18 or more bp) in the 5' region, 11.
5_CCGNN_2_5_presence = Presence of (CCGNN),_s in the 5' region,
12. perc_go_ts_match =Percent of GO terms for the gene that match with
the tissue specific GO terms list, 13. perc_go_hk_match = Percent of GO
terms for the gene that match with the housekeeping GO terms list, 14.
is_hk = The housekeeping or tissue specific former classification from pub-
lished lists (when known), 15. predicted_class = The predicted class given
the probability (class is housekeeping if housekeeping probability > 50%,
tissue specific if probability <50%) 16. hk_probability = The new house-
keeping probability generated by the Naive Bayes classifier When a value
was unknown it was represented by a question mark, following the "arff"
file standard for machine learning.

Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2164-7-277-S3.tsv]
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