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Abstract
Background: Classification of large volumes of data produced in a microarray experiment allows
for the extraction of important clues as to the nature of a disease.

Results: Using multi-dimensional unsupervised FOREL (FORmal ELement) algorithm we have re-
analyzed three public datasets of skeletal muscle gene expression in connection with insulin
resistance and type 2 diabetes (DM2). Our analysis revealed the major line of variation between
expression profiles of normal, insulin resistant, and diabetic skeletal muscle. A cluster of most
"metabolically sound" samples occupied one end of this line. The distance along this line coincided
with the classic markers of diabetes risk, namely obesity and insulin resistance, but did not follow
the accepted clinical diagnosis of DM2 as defined by the presence or absence of hyperglycemia.
Genes implicated in this expression pattern are those controlling skeletal muscle fiber type and
glycolytic metabolism. Additionally myoglobin and hemoglobin were upregulated and ribosomal
genes deregulated in insulin resistant patients.

Conclusion: Our findings are concordant with the changes seen in skeletal muscle with altitude
hypoxia. This suggests that hypoxia and shift to glycolytic metabolism may also drive insulin
resistance.

Background
Diabetes affects hundreds of millions world wide, con-
tributing to cardiovascular disease, blindness, amputa-
tion, kidney failure and many other diseases. Obesity and
impaired insulin sensitivity are among the major factors
responsible for development of type 2 diabetes (DM2).
Skeletal muscle and white adipose tissue are believed to
play a major role in insulin resistance [1,2]. However,

long-term studies indicate that even major factors such as
insulin resistance are not sufficient to fully predict the
onset of disease [3]. Recently a series of papers connected
insulin sensitivity and type 2 diabetes to expression of a
group of oxidation phosphorylation genes that are co-reg-
ulated by the peroxisome proliferator activator protein
(PGC-1α) [4,5]. These experiments, as well as others [6,7],
suggest that mitochondrial dysfunction plays a role in the
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genesis of DM2 and have fuelled discussions about energy
metabolism as a primary factor in insulin resistance.

Microarray expression profiling allows researchers to
monitor expression levels of thousands of genes in a sin-
gle analysis. Classification of samples by such molecular
signatures allows for improved stratification of patients,
rational application of treatment, and better risk assess-
ment. Importantly, these techniques often uncover previ-
ously unanticipated pathways and identify of new targets
for therapy. These experimental and computational
approaches were first developed and applied in numerous
cancer-related research projects [8]. Applying these same
techniques to classify skeletal muscle samples of DM2 and
non-diabetic patients has encountered very serious prob-
lems. When comparing the differences in gene expression
of DM2 and non-diabetic patients, the differences are
modest, with analytic noise masking the underlying
informative changes in gene expression. Two different
approaches have been suggested to counter this challenge.
Mootha et al. have developed the Gene Set Enrichment
Approach (GSEA). In the absence of significantly over- or
under-expressed genes, they identified groups of genes to
discriminate between DM2 and normal samples based on
function, gene ontology (GO) annotation, chromosomal
location and other factors. Joining genes from common
functional groups is effectively the same as using multiple
replicates as it dramatically increases the power of the
experiment. Similarly, Patti et al. found no single gene dif-
ferentially expressed between diabetic and non-diabetic
muscle samples after correction for multiple comparisons.
They also used extensive functional annotation to identify
genes differentially expressed between DM2 and non-dia-
betic patients. Even though statistical significance of dif-
ferential expression of these genes was lacking,
classification by occurrence of GO terms [9] revealed dis-
parate expression of genes involved in energy metabolism
between DM2 and normal. Taken together, both papers
implicate genes involved in energy metabolism as the
major contributors to DM2 status of the patients. These
findings are logical from a biological standpoint and
build upon prior data [10,11].

The analytical strategies employed by Mootha et al. and
Patti et al. were based on presumption of two distinct cat-
egories (DM2 and not DM2) and that these clinical cate-
gories should manifest themselves through the gene
expression patterns in skeletal muscle. Instinctively, we
perceive diabetic and non-diabetic patients in two differ-
ent categories. However, the onset of diabetes depends on
other factors such as lipotoxicity [12-14], a failure of lep-
tin signaling [15], abnormalities in hypothalamic func-
tion [16], to name a few. These and many other factors can
mitigate the effect of gene expression in skeletal muscle
with regards to the onset of diabetes. Taking into account

the complexity of the disease, the very existence of distinct
categories such as diabetics and non-diabetics when ana-
lyzing gene expression data cannot be taken for granted.

The approach described herein does not assign patients'
transcriptomes (interrogated by the microarray experi-
ment) to a diagnostic category (DM2 vs. IGT vs. NGT or
normal). Instead, we rely on the "natural classification" to
identify the groups of samples within the data that are
similar to each other by their transcriptome. The concept
of natural classification is well established in computer
analysis of biological data [17,18]. In the first step of our
analysis, our goal was to identify natural categories (clus-
ters) in the expression data. To accomplish this goal we
applied a high-dimension unsupervised cluster analysis
algorithm developed based on FOREL (see Methods). This
algorithm performs a "class discovery" type of clustering
[19,20] without pre-selection of a small set of genes to
reduce dimensionality. The output consists of a set of fin-
ished clusters, which can be further analyzed and hyper-
clustered in order to establish the relationship between
natural classes. The second step of the analysis is to relate
the observations in the data set to the clinical characteris-
tics, and to identify the underlying discriminant genes
implicated in formation of specific clusters. Our strategy is
based entirely on the observation of similarities within
the data and avoids speculative assumptions about gene
function. When using a "natural classification" strategy
the only assumption being made is that the most com-
mon gene expression patterns associated with the devel-
opment of diabetes are expected to be found many times,
providing that a sufficiently large number of samples are
included and the microarray technique accurately reflects
the underlying molecular mechanisms.

Results
FOREL analysis of the Mootha et al. data set revealed 6
clusters and 2 singletons. No clear-cut categories emerged
that were related to the presence or absence of diabetes in
these patients. In other words, diabetic and non-diabetic
subjects did not form dichotomous groups in the expres-
sion space. However, one of the clusters (Cluster #3) was
found to contain mostly non-diabetics and one glucose-
tolerance impaired (IGT) sample. The centroids of all 4
clusters were stretched along a single line (Figure 1).

To visualize this trend we used the centroids of clusters as
control points to reduce the dimensionality down to the
number of clusters. The clusters were projected into the
space of the first 3 principal components and plotted as
3D spheres with radius equal to the distance between the
centroid and the most distant member (subject) of the
corresponding cluster. Unsupervised class discovery anal-
ysis suggests that the population of samples is highly var-
iable along a single smoothly arched line in the
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FOREL Clustering Partially Separates Normal from DM2 and IGTFigure 1
FOREL Clustering Partially Separates Normal from DM2 and IGT. A. The set of 43 samples (Mootha et al. data set) 
from the skeletal muscle of normal glucose tolerance (NGT), impaired glucose tolerance (IGT) and diabetic (DM2) breaks into 
a series of clusters spread along a line in the gene expression space. Each cluster is represented by a sphere with the radius 
equal to the distance from the centroid to the most distant member of the cluster. The color is proportional to the percentage 
of diabetic samples in the cluster, ranging from red (100% normal) to blue (DM2). Cluster 8 and cluster 1 represent singletons 
(i.e. single subjects that do not cluster with the other 41 samples). The percentage of diabetes in each cluster varied along prin-
cipal component 2. B. Analysis of the prevalence of NGT and IGT across clusters revealed that the number of subjects with 
NGT dropped as distance from Cluster 3 increased. Similarly, the number of subjects with IGT increased as distance from 
Cluster 3 increased. The two clusters with the greatest distance from the 'normal' cluster 3, Cluster 6 and Cluster 7, 1/2 were 
diagnosed with DM2 and all other members of these clusters have IGT. Principle Components are presented as the value × 
104.
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multidimensional expression space. To simplify the pres-
entation of the data, all clusters were graphed along a line
connecting the centroids of the clusters in the expression
space (Figure 2). There is a modest gradient of the average
insulin sensitivity and the position of the cluster along the
"main line" of variation. On one end of this line there is a
cluster composed of 4 normal samples and one sample
with slightly impaired glucose tolerance. The subjects in
this cluster are also the most metabolically sound among
the data set. For the purpose of this paper, metabolically
sound is defined as having they have high insulin sensitiv-
ity and an ideal body mass index (BMI).

The juxtaposition and separability of resulting clusters has
been analyzed using MANOVA and hierarchical classifica-
tion of clusters (hyperclustering) based on inter-centroid
and inter-class distances. The results of this analysis are
presented in the supplementary materials (Additional file
1, Supplementary Figures 1–4). Considering visualization
and statistic analysis we suggest the following interpreta-
tion: the data set represents one core cluster of the most
metabolically sound samples (cluster 3 on Figure 1) and a
continuum of samples extended in one direction, like a
head and a tail of a comet. The imaginary line stretched
between the core and the most distant FOREL cluster rep-
resents the major trend in gene expression space.
Although there is no clear separation between diabetic
and non-diabetic samples as two categories, the distance
along this main line of variation coincides with the occur-
rence of diabetes and severity of the common risk factors.

Differences in gene expression between the FOREL 
clusters
Next, we identified genes that were most differentially
expressed between cluster 3 (metabolically healthy) and
cluster 6 (high prevalence of DM2, low insulin sensitiv-

ity). To select such genes we applied caGEDA tools [21] on
unabbreviated list of genes (see Methods). We found that
clusters occupying the extremes ends of the line connect-
ing the centroids varied with respect to the expression of
genes encoding ribosomal proteins. Other significant
function categories included actin, myosin, hemo- and
myoglobins, enzymes involved in glucose and fructose
metabolism, lipid metabolism and genes encoding pro-
teins involved in oxidative phosphorylation (see Addi-
tional file 2 in supporting materials [22]).

We also performed functional annotation of these same
genes at the extremes of clusters 3 and 6 using EASE [23].
We found several categories of genes that were signifi-
cantly overrepresented as compared to their expected
occurrence (see Additional file 3 in supporting materials
[22]). The most prominent functional categories included
ribosomal genes, genes involved in skeletal muscle con-
traction, actin, cytoskeleton and protein biosynthesis.

The dataset produced at the East Carolina University [24]
has a different purpose, it is focused on skeletal muscle
fatty acid metabolism in connection with obesity, but uti-
lized the Affymetrix GeneChip (U133). This chip is differ-
ent from those used in experiments of Mootha et al. (U95)
and Patti et al. (HS6800). Given that obesity and insulin
resistance are clearly linked [25,26] it is interesting to
compare this study with our re-analyses of the Mootha et
al. dataset. The 24 samples were collected from 3 groups
of patients with normal weight (BMI 23.8 ± 0.58), obese
(BMI 30.9 ± 0.81) and morbidly obese (BMI 53.8 ± 3.5).
Surprisingly, the FOREL clustering results from the Hulver
dataset presented on Figure 3 are highly similar to the
clustering results from the Mootha et al. dataset. Four
large clusters, produced by FOREL analysis form a line in
the gene expression space, one end of the line is occupied

FOREL Classification Of The Transcriptome Relates To Insulin SensitivityFigure 2
FOREL Classification Of The Transcriptome Relates To Insulin Sensitivity. Clusters are graphed along a line con-
necting the centroids of the clusters in the expression space (see Figure 1). Each cluster is represented by a sphere with the 
radius equal to the distance from the centroid to the most distant member of the cluster. The color is proportional to the 
average cluster insulin sensitivity as measured by M-value. The color to the percentage of diabetic samples in the cluster, rang-
ing from white (insulin sensitive) to green (insulin resistant). The M-value for each cluster (Cluster, M-value, units); 3, 10.08; 2, 
5.28; 4, 6.41; 5, 5.78; 6, 5.35; 7, 6.25.
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by a cluster composed almost entirely by the most meta-
bolically sound specimens, with the opposite cluster again
containing the least sound samples. Analysis of the genes
most differentially expressed between the most distant
clusters along this line reveals a remarkably similar list of
genes to the first analysis (see Additional file 5 in support-
ing materials [22]).

The other data set used in this study (Patti et al.) is much
smaller; it contains 15 samples of which 10 represent nor-
mal and 5 represent DM2. Again using the FOREL cluster-
ing process, we found that all samples fell into 4 clusters.
The largest cluster (#4) contains 5 samples, of which 3 are
DM2, Cluster #2 is entirely composed of samples from

normoglycemic subjects, clusters #1 and #3 include
mostly normoglycemic subjects but each includes one
DM2 subject. It is reasonable to suppose that clusters #2
and #4 represent the most contrast groups of samples in
the data and the line that stretches between centroids of
these clusters would be analogous to the trend we observe
in the Mootha et al. data set. The results of our re-analysis
of the Patti et al. data can be found in supporting materi-
als [22] (see Additional file 4, supplementary figure 7 in
Additional file 1).

When comparing these three studies, the samples are
absolutely independent and differ in many ways (age,
gender, type of microarray used, feature extraction algo-

Results of clustering of 24 samples of skeletal muscle from patients with various degrees of obesity (Hulver at al.)Figure 3
Results of clustering of 24 samples of skeletal muscle from patients with various degrees of obesity (Hulver at 
al.). The data breaks into 4 clusters and 2 singletons. Color indicates the prevalence of average BMI for the cluster (Cluster#-
BMI): 1–25, 2–31.6, 3–40.9, 4–38.4, 5–22.0, 6–62.0.
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rithm etc.), yet the genes that are most differentially
expressed between the most and least metabolically
sound are again remarkably similar to those found in our
re-analyses of the Mootha and Hulver datasets. (see sup-
porting materials [22], Additional files 2, 3, 4, 5) These
discriminant genes include GAPDH, myoglobins, titin,
FHL1 and a score of ribosomal proteins. Although genes
involved in oxidative phosphorylation are among those
differentially expressed in all three datasets, they are not at
the top of the list when ranked by the fold change between
clusters. Thus these analyses identified common genes
and functional categories that were unanticipated based
on the earlier analyses.

After these efforts to cluster the subjects, we next clustered
the genes independent of the subjects. Cluster analysis of
the genes throughout the data set revealed a number of
highly correlated clusters. Again using the FOREL tech-
nique with the Mootha dataset, we found several interest-
ing clusters of genes. Based on a functional annotation
analysis [23] of these genes, we found that one of the clus-
ters contains a group of genes related to lipid transport
and metabolism. However, the largest cluster includes
221 genes and among these genes are the same ribosomal,
glucose and fructose metabolism genes that discriminated
between the most and least metabolically sound subjects.

Natural classification of subjects based on their 
transcriptome separates subjects into categories 
recognizable by their clinical characteristics
We next asked whether the natural classification of the
molecular phenotypes using the FOREL analysis corre-
sponded to the clinical phenotype as measured by BMI,
insulin sensitivity, etc. The clinical data, provided by
Mootha et al. was used to compare the 'metabolic sound-
ness' of the patients across cluster membership from the
FOREL analysis (Figure 4). Patients from clusters 2, 5, 6
and 7 have a higher body mass index (BMI) and lower
insulin sensitivity (M-value) when compared to the 'nor-
mal' cluster. This visual analysis was confirmed by
ANOVA (supplementary data, supplementary Figures 1–
4). From this and the other results (Figures 1 and 2) the
subjects represented in cluster 3 are in exceptional physi-
cal form for their age. They form a tight group with a nor-
mal BMI and normal insulin sensitivity. Interestingly,
maximal aerobic capacity (VO2max) does not clearly dis-
criminate this group from the least metabolically sound
cluster with a high proportion of DM2. The two single-
tons, both NGT have either normal (#8) or almost normal
(#1) BMI and high insulin sensitivity (M-value). A few
NGT samples are also found in clusters 2, 4, 5, even less
are found in clusters 6, and 7 that are dominated by DM2
and IGT samples. Thus in spite of the high BMI and low
insulin sensitivity these individuals manage to remain
normo-glycemic. This is consistent with the natural his-
tory of DM2 where beta cell failure is a late event with a

variable onset but invariably preceded by insulin resist-
ance. We speculate that the metabolically unsound indi-
viduals are at risk for the development of DM2 as beta cell
apoptosis ensues and islet neogenesis fails to compensate
[27]. These 'natural' clusters coincided with the classic
markers of diabetes risk, namely obesity and insulin
resistance, but did not follow the accepted clinical diagno-
sis of DM2 as defined by the presence or absence of hyper-
glycemia. Unfortunately, there are other important
parameters missing in all three data sets, such as time of
onset of hyperglycemia and estimation of physical activ-
ity. Since all samples were collected from the patients of
general hospitals we can speculate that the level of physi-
cal activity and its distribution among sample donors is
typical for the urban population of US East Coast and on
average not very high. It is possible that molecular mech-
anisms of insulin resistance discussed below are signifi-
cantly influenced by the level of patients' physical activity.

Discussion
Type 2 Diabetes (DM2) is a complex multifactorial dis-
ease where dozens or perhaps even hundreds of different
genetic and environmental factors play a role. It is likely
that there is more than one reason for a patient to develop
hyperglycemia (i.e. beta cell failure), although insulin
resistance is a dominant factor. Similarly, it is likely that
genetic and environmental factors play a role in the devel-
opment of insulin resistance, a metabolic feature that
invariably precedes beta cell failure. Moreover, DM2 is not
a disorder caused by malfunction of a single tissue. Skele-
tal muscle plays very important, but not exclusive role
along with pancreas, adipose tissue, etc. DM2 is diag-
nosed on the level of the whole organism as increased
blood sugar [28]. Thus, there is no reason to believe that
muscle samples from a single tissue would contain just
one single gene expression signature associated with the
onset of the DM2. Classification models based on only
two classes separated by DM2 diagnosis may be at a dis-
advantage as they have limited separation performance.
Our initial motivation for application of unsupervised
clustering algorithms was based on the hypothesis that
DM2 samples as well as normal NGT controls could pos-
sibly be subdivided into many classes with more distinc-
tive gene expression signatures than those revealed by the
original analysis. Indeed this was the case. We found that
individuals could be separated based on their gene expres-
sion profiles along a single continuum.

Relationship of the FOREL classifications with clinical 
characteristics
In the next step of analysis we superimposed the clusters
in the space of first principal component. For all three
datasets, the centroids of the clusters were situated along
a single line or plane. Clusters with the most metaboli-
cally sound subjects with NGT and the least sound sub-
jects (with DM2) occupy the extreme ends of this line,
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while most IGT samples are found in the mixed clusters
between the extremes. In the Mootha dataset, the healthi-
est group is represented by a single cluster, which has 3
non-diabetic and 1 IGT subjects. On the opposite end,
two dominant clusters contain only one non-diabetic
sample each, while all other members are either diabetic
or insulin resistant. This picture suggests a simple inter-
pretation: instead of categorical classes of normal and dia-
betic samples we observe a continuous trend. On one end
of the trend are the samples from the most metabolically
sound individuals with a low prevalence of DM2. Preva-
lence of DM2 increases along the line, but can be miti-
gated by a number of factors. Many of these factors are
beyond the scope of this research and probably relate to
β-cell apoptosis and/or failure of beta cell neogenesis/rep-
lication [27,29,30]. As expected, unsupervised clustering
revealed a few distinct classes. However, we did not antic-
ipate that these clusters would be aligned along a single
principal component. Rather than multiple 'subtypes'
these analyses suggest a single underlying disorder.
Importantly, these natural classes differ in average clinical
characteristics and in the number of diabetic and non-dia-
betic members.

Discriminant genes
Once the direction of the trend is established it is rela-
tively easy to select and annotate the genes that are most
differentially expressed between the extremities of the
trend. The list of such genes does include those involved
in the energy metabolism and oxidative phosphorylation,
as reported by Mootha et al. and Patti et al. The expression
level of such genes changes dramatically between clusters
on the extreme ends of the trend. Oxidative phosphoryla-
tion genes possibly play an important role in the etiology
of DM2 although this role is not decisive and is insuffi-
cient for discrimination between classes. This also
explains the difficulties Mootha et al. had selecting the
genes that discriminate between DM2 and NGT samples.

These discriminant genes fall into several interesting gene
ontogeny categories. First, we observed an increase in
expression of genes encoding proteins required for glyco-
lytic rather than oxidative metabolism such as GAPDH.
This is consistent with prior data demonstrating a reduc-
tion in oxidative capacity of skeletal muscle from insulin
resistant diabetics [31].

Second, we discovered that myoglobin, lactate dehydroge-
nase A, GAPDH, aldolase A, and pyruvate kinase, genes
that are classically upregulated when oxygen tension falls
[32] were upregulated in the least metabolically sound
samples. Human skeletal muscle adaptation to altitude
hypoxia has been well characterized and includes a seem-
ingly paradoxical reduction in oxidative capacity, an
increase in myoglobin, and a shift to glycolytic metabo-

lism [32]. All of these are dominant features of the gene
expression data reported herein. Altitude hypoxia reduces
the overall mitochondrial volume by 20%, but with a
preferential reduction in sub-sarcolemmal mitochondria
(-43%) [33] compared to a modest change in the intra-
myofibrilar mitochondria (-13%), a finding strikingly
similar to the mitochondrial defects observed in type 2
diabetes [6]. Reduced oxidative enzymes are also observed
in S. Cerevisiae as hypoxia ensues [34]. Hypoxia/anoxia
also shifts substrate metabolism from aerobic to glycolytic
in diverse species from S. Cerevisiae to man [32,35]. Mul-
tiple transcription factors are involved in the transcrip-
tional response to hypoxia in S. Cerevisiae including Rox1
[34], Hap1–4, Sut1, UPC2, and Mox 1–3, (reviewed in
[35-37]) and in man HIF-1a [38]. The role of these tran-
scription factors in DM2 is unknown and warrants explo-
ration. If hypoxia is involved in the observed molecular
and cellular phenotype it does not cause a compensatory
effect on the capillary density. The capillary density and
maximum oxygen capacity (VO2max) as reported in the
supplementary materials (Supplementary Table 6) by
Mootha et al. shows no significant difference across
FOREL clusters. This again, is consistent with the literature
on structural adaptations to hypoxia where no change in
capillary density are seen unless intense exercise was
employed as part of the experimental paradigm
[33,39,40]. This finding does not necessarily present a
contradiction: a shift from oxidative to glycolytic pathway
metabolism in skeletal muscle tissue may reduce demand
for oxygen as an alternative to capillary growth. Alter-
nately, insulin is capable of activating the bundle of genes
that are similar to those activated by HIF-1a. In vivo, insu-
lin upregulates aldolase A, and GAPDH, both of which are
classic targets of HIF-1a [38,41]. There is some contro-
versy whether these effects are dependent on changes HIF-
1 mRNA [42], occur through the stabilization of HIF-1a
protein or through an unknown HIF response element
binding protein [43]. It is established, however, that insu-
lin upregulation of these genes requires phosphoinositol
3-kinase [42,44]. In summary, the unsupervised FOREL
analysis identified upregulation of a cassette of genes
strikingly similar to hypoxia inducible genes in the obese,
insulin resistant state.

Lastly, we discovered a set of genes encoding ribosomal
proteins separated metabolically sound from unsound
subjects with DM2 and IGT. On the surface, this is an
anomalous finding. However, microarray studies of
petite, mitochondria deficient (ρ-) yeast data demonstrate
an upregulation of genes encoding ribosomal proteins as
compared to mitochondria replete (ρ+) yeast [45]. Simi-
larly, as yeast become anoxic and shift from an oxidative
to ethanol producing metabolism (the diauxic shift)
many of these same genes encoding ribosomal proteins
are up/downregulated. This is congruous with prior data
Page 7 of 12
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showing a downregulation of oxidative phosphorylation
genes and disrupted mitochondria in DM2 [31]. An alter-
nate explanation for the increased expression of ribos-
omal and other genes associated with cell growth reflects
alterations upstream of the mammalian Target of
Rapamycin (mTOR) pathway. mTOR is a major regulator
of metabolic processes in cell. It has been reported to
stimulate ribosomal biogenesis and repress nutrient turn-
over [46,47]. Prior studies have implicated mTOR in
nutrient sensing and diabetes [46,48]. Acute insulin infu-
sion upregulates the expression of many ribosomal genes

[49], providing an alternate pathway for the observed
changes in ribosomal gene expression.

In contrast to the subtle changes in gene expression of the
oxidative phosphorylation genes identified by Mootha et
al., we found several genes that discriminanted lean
healthy people and individuals with DM2 or IGT. For
example, Aldolase A was 3.3 times overexpressed in obes-
ity/insulin resistance and GAPDH 4 times higher. Simi-
larly, hemoglobin was upregulated in obesity/insulin
resistance; by 13, 12.1 and 11.8 fold for subunits alpha 2,

A Three-dimensional plot of the FOREL clusters from Mootha et al. data set in relationship to Body Mass Index (BMI), total oxygen capacity (VO2max) and insulin sensitivity (M-value)Figure 4
A Three-dimensional plot of the FOREL clusters from Mootha et al. data set in relationship to Body Mass 
Index (BMI), total oxygen capacity (VO2max) and insulin sensitivity (M-value). Members of cluster 3, occupying the 
extreme end of the variation spectrum and two singletons (both non-diabetic) are the most insulin sensitive. Some non-dia-
betic phenotypes are found in clusters characterized by high risk factors (↓M-value, ↑BMI) particularly cluster 4. Conversely, 
there is only one subject with IGT in cluster 3. On this plot clusters are represented by corresponding centroids.
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beta and alpha 1 respectively. The novel transcription fac-
tor FHL1 was ~3.5 fold upregulated. The second and third
data sets (Hulver et al. and Patti et al.) although limited by
sample size and without complete clinical phenotypes,
produced almost identical cluster layout with a single
group of the most metabolically sound subjects and sev-
eral mixed groups with differing prevalence of DM2. Sim-
ilarly, the genes most differentially expressed between the
two most and least metabolically sound clusters were
remarkably similar across the three datasets. This suggests
all three datasets identified similar underlying pathophys-
iological mechanisms leading to DM2.

Further study will be required to determine which factor
plays the primary role, whether impaired oxidative phos-
phorylation causes a shift to glycolytic metabolism or oxi-
dative phosphorylation is repressed as a result of
unknown upstream transcriptional events [50]. Regard-
less, the observed upregulation of ribosomal gene expres-
sion might be a marker of the risk to develop type 2
diabetes.

Conclusion
In summary, using a novel unsupervised clustering tech-
nique, FOREL, we found a single set of genes in skeletal
muscle that separate subjects that are metabolically sound
from those with insulin resistance, IGT and diabetes. This
finding was confirmed in two additional datasets from
different populations and suggests a single underlying
pathophysiological process lies underneath the clinical
diagnosis of insulin resistance. The genes that discrimi-
nate between metabolically sound and metabolically
unsound patients include the anticipated gene categories
of fat oxidation, oxidative phosphorylation, and glyco-
lytic metabolism. We also found several categories of
genes not previously associated with insulin resistance or
diabetes, namely, genes involved in ribosomal function
and oxygen sensing (myoglobin and hemoglobin). A sep-
arate analysis, where we identified clusters of genes that
were co-regulated within the datasets, showed a large
degree of overlap. Based on prior literature in energy
metabolism and mitochondrial dysfunction in Saccharo-
myces cerevisiae, these results suggest that hypoxia,
changes in ribosomal function, and glycolytic metabolism
as key players in insulin resistance and diabetes.

Methods
Data sets
We downloaded the data published by Mootha et al [5],
Patti et al [4] and Hulver et al. [24]. The Mootha et al. data
set consists of 43 age-matched samples representing 17
normal, 8 with impaired glucose tolerance and 18 with
DM2. Affymetrix U133 biochips were used to measure
expression of over 22,000 genes. This data, along with the
clinical information, was downloaded from the author's

data portal at the Broad Institute [51]. The other data set
[22] consists of 10 normal non-diabetic skeletal muscle
tissue samples and 5 samples from the patients diagnosed
with DM2. Five replicate microarrays are present in this
dataset. In our analysis these samples are always found in
one cluster close to each other. We have excluded these
samples from the final data set.

Clustering algorithm
As a starting point for the algorithm development we took
the heuristic concept proposed by Zagoruiko et al.
[52,53], which included the original idea of a limited
radius hypersphere, moving stepwise to the mass center of
captured objects. This idea represents a departure from
widely used k-means and other hypersphere-based algo-
rithms. This algorithm has been also extensively discussed
in a reference book for applied statistics in economics
[54]. Since their first introduction algorithms of the
FOREL family have been widely applied in taxonomic
analysis of biomedical data, pattern recognition in geol-
ogy and image analysis [55-58]. The original algorithm
underwent a significant development the Pennington
Center to accommodate for extreme dimensionality of
gene expression data. The results of this development and
case study in classification of molecular subtypes of lung
cancer has been recently published [22]. Our algorithm is
based on dynamic amalgamation of objects (for example,
expression profiles) in vicinity of an artificially introduced
object (FORmal ELement). The vicinity is defined by
equal distance from a point in all directions by selected
inter-object distance metric (such as Euclidean, correla-
tion, binary, etc.). Although theoretically the vicinity
could be defined as any geometrical shape around the
given point, only hyperspheric vicinity has been imple-
mented and used in this study. FOREL clustering is based
on the perception of the data set O as:

where O(i) is a cluster of ni elements. Clusters are
extracted from the general population in order of their sta-
tistical fitness (see Cluster validation). This perception is
fundamentally different from the popular k-means algo-
rithm, which shares certain similarity with FOREL, but in
k-means concept the whole data set is a sum of distinct
classes rather then a union. FOREL clusters can partially or
completely overlap in space or even share the same cen-
troid, but can be separated as long as they differ in other
statistical characteristics, for example density. In a nut-
shell, a white and a yolk of an egg would be separate
classes by FOREL, while inseparable by k-means. Other
hypersphere-based algorithms such as k-means imply
Gaussian distribution of objects (phenotypes) in clusters
[59]. FOREL is more flexible and does not require such
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assumptions. FOREL effectively combines the best fea-
tures of k-means and hierarchical clustering approaches
for the price of increased computation complexity. How-
ever, the performance of our C++ implementation is
acceptable; up to a few hundreds of microarrays can be
clustered on a Pentium IV PC within one hour. The algo-
rithm starts with positioning of a hypersphere with a
radius R0 and a center C0 in a certain coordinate, which
can be one of the objects or a centroid of pre-defined clus-
ter or any other point of interest in the expression space.
Position of the "formal element" element is calculated as
a center of mass of all objects, for which the distance ρi(Ci)
≤ Ri. After the mass center of all captured objects is calcu-
lated, its center is moved to the new position. If new
objects are found within the radius from the new position,
they are added to the provisional cluster and the mass
center is recalculated. This process is repeated until the no
more objects can be added on the current step of the algo-
rithm and the hypersphere stops.

Cluster validation
The version of FOREL developed at Pennington Biomedi-
cal Research Center (PBRC) consists of alternating steps of
cluster isolation and cluster validation. Each completed
walks of a hypersphere with Rn and a center Cm produces
a provisional cluster O(RnCm), which is temporarily
stored. We perform an exhaustive coverage of the data try-
ing each element of the original data set as potential start-
ing point. For each starting point we perform series of
clustering steps with different hypersphere radius, ranging
between minimum R = min(D(Ci, Cj)) + μ and maximum
R = min(D(Ci, Cj)) - μ. Here D(Ci, Cj) is a distance (for
example, Euclidean) between any two objects in the data
set and μ is a margin, introduced to reduce computation
time. The step of R increment is also a parameter. The
resulting provisional clusters are fuzzy subsets, each cap-
tured by a hypersphere with specific radius as it moves
gradually from the starting to the resting point. The valid-
ity of the provisional cluster can be verified by a statistical
utility measure based on density, variance, sum of inter-
cluster distances, etc (see [60] for review). If the cluster
meets the selection criteria, it is removed from the original
data set and the process reiterated until no more statisti-
cally valid (according to the chosen metric) unclassified
objects left or the best provisional cluster does not satisfy
the minimal fitness requirement. The PBRC implementa-
tion accommodates a few different metrics for computa-
tional cluster validation, but only one density-based
metric has been applied in this study:

 if ni ≥ 2 and F = 0 otherwise.

This metric is a reasonable compromise between precision
and performance, which has proven to be effective in

analysis of microarray data [22]. The "brute force"
approach to computational cluster validation provides
more reliable results compared to re-sampling, but results
in considerably longer execution times. Depending on the
validation metric applied and the parameter settings com-
plete clustering of a large data set, such as Mootha et al.
data can take up to a few hours on a typical computer. The
demand for computational power is significantly miti-
gated by effective C++ implementation and generally
affordable, considering the time required to collect such
data.

Software implementation
The implementation developed by A. Ptitsyn [22] and
available for anonymous download [61] employs a com-
plete test of every object as a possible cluster seed or
hypersphere starting point. By default the current version
of the program implements an iterative solution: all pos-
sible radii are tested with a certain step within a limited
range. The step (or precision) is derived from the analysis
of variation of distances within the whole data set. The
range is defined by the minimal and maximal distance
found within the whole dataset. These are extreme values,
with a radius less then a minimal distance, the algorithms
can produce only singletons, and on the other hand with
radius equal to the maximal distance, all objects are guar-
anteed to fall into one large cluster. The best radius is one
that produces a provisional cluster with the best quality.
Cutting percentile margins from the possible radius range
can reduce the computation demands of the program. By
default 20% of the range is cut from both minimal and
maximal radius values.

The implementation of FOREL clustering algorithm made
at the PBRC runs on the standard PC under MS Windows
(win32 console application) or Linux. FOREL execution
time is practically unaffected by the dimensionality of the
data, but can be sensitive to the number of objects (sam-
ples) in the set. Large data sets of over 1000 microarrays
would require a high-performance computer.

Identification of informative genes
We have selected genes differentially expressed between
most distant clusters using J5 algorithm [21] with Jack-
knife option set to 4. We used the software implemented
at the University of Pittsburg Cancer Institute with access
through the Web interface [62].

Functional Annotation and Interpretation of the results
The consequent hyper-cluster analysis was performed in
order to reveal relations between clusters and their juxta-
position in the gene expression space. Centroids of the
original FOREL clusters have been used to produce a hier-
archical classification (Euclidean distance, UPGMA) with
the help of Spotfire Decisionsite for Molecuar Genetics
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(Spotfire Inc.). Functional annotation of the discriminat-
ing genes has been performed with EASE and DAVID tools
[23]. Only a small portion of the results can be included
within this publication. The additional supplementary
materials can be found at [22].
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