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Abstract
Background: In prokaryotic genomes, genes are organized in operons, and the genes within an
operon tend to have similar levels of expression. Because of co-transcription of genes within an
operon, borrowing information from other genes within the same operon can improve the
estimation of relative transcript levels; the estimation of relative levels of transcript abundances is
one of the most challenging tasks in experimental genomics due to the high noise level in
microarray data. Therefore, techniques that can improve such estimations, and moreover are
based on sound biological premises, are expected to benefit the field of microarray data analysis

Results: In this paper, we propose a hierarchical Bayesian model, which relies on borrowing
information from other genes within the same operon, to improve the estimation of gene
expression levels and, hence, the detection of differentially expressed genes. The simulation studies
and the analysis of experiential data demonstrated that the proposed method outperformed other
techniques that are routinely used to estimate transcript levels and detect differentially expressed
genes, including the sample mean and SAM t statistics. The improvement became more significant
as the noise level in microarray data increases.

Conclusion: By borrowing information about transcriptional activity of genes within classified
operons, we improved the estimation of gene expression levels and the detection of differentially
expressed genes.

Background
Genome-wide monitoring of transcription by means of
DNA microarrays is used to infer transcriptional and reg-
ulatory networks in living organisms. In most of microar-
ray experiments, transcript levels of thousands of genes
are measured with a relatively small number of replica-
tions, so the estimates of true expression levels from
microarray data may be poor, mostly due to a small sam-
ple size. To address this problem, several statistical meth-

ods have been proposed to borrow information from
other genes to improve detection of the differentially
expressed ones [1-9]. The main idea is to borrow informa-
tion from other genes to estimate either the distributions
of genes's expression levels or the distribution of error
terms. The underlying assumption is that it should be pos-
sible to improve the estimates of expression levels of
genes by borrowing information about transcriptional
activity across the sets of genes that are biologically, or
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physically, related. In some cases, the expression levels
may significantly vary across the genes, then borrowing
information from unrelated genes may not improve, or
even worsen, the estimates of gene expression levels [10].
However, if, based on biological knowledge, we can
expect that some genes are more likely to express at simi-
lar levels (i.e. co-express), then we can improve the infer-
ence by using information about the activity of those
genes.

An operon [11] is a set of linearly juxtaposed genes tran-
scribed as a single mRNA; operons are commonly found
in prokaryotic genomes such as Escherichia coli. Transcrip-
tion of operons of E. coli has been examined, and operons
have been predicted in many studies [12-19], which pro-
vides background information about the E. coli regulatory
network. The genes within the same operon usually have
similar expression levels, hence show some local structure
in expression profiles [20], and this fact has been success-
fully used in operon prediction [21,22].

Based on the existing information about the structure of
operons, we propose a hierarchical Bayesian model which
improves gene expression estimation by borrowing infor-
mation from genes within the same operon. Most existing
methods for detecting differently expressed genes [1-9]
borrow information from other genes in the whole
genome, while our proposed method only borrows infor-
mation from other genes within the same operon, which
has sound biological basis. Wren et al [23] have proposed
a simulated annealing approach to adjust gene expression
data by using existing microarray measurements obtained
on the same organism, which effectively reduced the noise
and made it possible to compare different microarray
experiments. But their method relies on reference micro-
array experiments that cover the dynamic range of tran-
script abundances for most of the genes, which may be
difficult to select or unavailable. Instead of using existing
microarray measurements, we use existing information
about the operons' structure to reduce the noise in micro-
array data.

A more accurate estimation of transcript abundances of
individual genes will improve our ability to evaluate tran-
scriptional activity on a genome-wide scale, and hence
facilitate the exploration of gene regulatory networks. Our
proposed method provides a better way to estimate rela-

tive transcript levels, which is critical for distinguishing
differentially expressed (DE) genes from equally
expressed (EE) genes. Herein, we refer to the logarithm of
a ratio of the fluorescent intensities of the test and control
samples as the observed gene expression level. The genes
with estimated expression levels significantly different
from zero are identified as DE genes, otherwise as EE
genes.

Using more than 200 microarray experiments, we
obtained the evidence of co-transcription of genes within
E. coli operons on a genome-wide scale. We applied the
proposed method to three simulated and one experimen-
tally obtained data sets. The simulation studies and the
real data application demonstrated that the proposed
method performed better than the sample mean and the
SAM t statistics in estimating the gene expression levels as
well as in detecting differentially expressed genes. The
improvement became more significant as the noise level
in microarray data increased.

Results
Simulation study
We carried out three simulations, with similar settings and
the noise level gradually increasing from simulation 1 to
3. In simulations, we assumed that the genes within an
operon are co-transcribed. Since the true expression levels
in a simulated data set were known, we could calculate the
mean squared errors of the estimated expression levels
(summarized in Table 1). Without incorporating the
information from operons, the sample mean of the
observed expression levels would be a natural estimator of
a gene's expression level. The mean squared errors of the
two estimates, the posterior mean from the proposed
model and the sample mean, are shown in Table 1 for
comparison. It can be easily seen that the incorporation of
operon information leads to a better estimate, with a
smaller mean squared error, of expression levels. When
the noise level increased, the improvement from incorpo-
rating operon information also increased.

To evaluate the performance of the proposed method in
detecting DE genes, the estimated expression level of each
gene was used to rank the genes, and the highly ranked
genes were identified as DE genes. Since the identities of
DE genes in the simulation studies were known, we com-
pared the performances of the proposed method, sample
mean, and SAM t statistics in detecting DE genes using
receiver operating-characteristic (ROC) curves (Figure 1).
In a ROC curve, the sensitivity is plotted against 1 – specifi-
city. The sensitivity is denned as a fraction of true DE genes
being correctly detected and the specificity is a fraction of
the true EE genes being correctly identified. The ROC
curves in Figure 1 demonstrate that the performance of
the sample mean and of the SAM t statistic were very close,

Table 1: Mean squared errors for different methods

Proposed model Sample mean Difference

Setting 1 0.062 0.068 8.6%
Setting 2 0.129 0.146 12.8%
Setting 3 0.222 0.255 15.1%
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ROC curves of simulation settingsFigure 1
ROC curves of simulation settings. The Figure (A), (B), and (C) are the ROC for simulations 1,2 and 3, respectively. It 
shows that the sample mean and the SAM t statistic have similar performance in detecting DE genes, and our hierarchical 
model outperformed both of them.
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and our hierarchical model, incorporating operon infor-
mation, outperformed both of them. The difference in the
performance became greater as the noise level increased.
For example, as the specificity equals to 0.8, the sensitivi-
ties of the methods using the sample mean or SAM t were
about 0.91, 0.80, and 0.68 for simulations 1,2, and 3,
respectively, while the sensitivities of the proposed
method were 0.95, 0.89 and 0.83, respectively.

Application to E. coli data
To verify the assumption that the genes organized in oper-
ons are co-expressed, we pooled together data from 217
microarray experiments, obtained in 53 conditions [24].
The distribution of pairwise correlations between expres-
sion profiles of genes in operons was greatly skewed
towards positive values, with the mean correlation of 0.62
(Figure 2A). Unlike the profiles of genes organized in
operons, expression profiles of randomly picked pairs of
genes were not correlated; the corresponding distribution
of correlation coefficients was almost symmetric around
0, with the mean correlation of 0.012 (Figure 2B). This
result demonstrated the similarity of transcriptional activ-
ity of genes within operons and served as a motivation for
borrowing information from other genes within the same
operon.

The proposed method [see Additional file 1] was used to
analyze differential transcriptional activity in an E. coli
mutant lacking the flhDC gene, a master regulator of tran-
scription of genes whose products mediate bacterial
motility and chemotaxis [see Additional file 2]. The genes
were ranked by their estimated expression levels, i.e. their
posterior means of µi obtained from the proposed model.
For the sake of comparison, the sample mean and SAM t
statistics were also used to rank the genes [see Additional
file 3]. Using the functional annotation from Macnab [25]
as a standard, we obtained the number of false positives at
different cut-off levels (total positives). The comparison
revealed that ranking genes by the proposed method pro-
duced fewer false positives than the ranking based on the
SAM t or sample mean statistics (Figure 3).

To find a reasonable cutoff value for differently expressed
genes, we calculated the false discovery rate (FDR)
[26,27]based on the posterior probability [7]. In this
experiment, we also estimated the FDR by using the func-
tional annotation from Macnab [25] as a reference. Com-
parison of the estimated False Discovery Rates revealed
that the estimated FDR from the posterior probability was
a little lower than that derived from the annotation, which
could be due to the partial incompleteness of the refer-
ence (Fig. 4). Overall, the estimated FDR from the poste-
rior probability is close to the FDR using the reference list
of genes, indicating that our method for estimating the
FDR is adequate. We set the cutoff for the FDR to be 0.01,
which identified the top 44 genes as DE genes. At such a
cutoff, the estimated number of false negatives is 14 and
the estimated false negative rate is about 0.003 (see the
"Methods" section for details). The top 44 genes are listed
in Table 2. Note that, in Table 2, the gene expression level
is on the log scale and the FDR corresponds to a specific
number of DE genes and not to each individual gene
itself. According to Macnab's classification [25], 41 genes
out of the 44 were expected to be differentially expressed

Histogram of the correlation coefficientsFigure 2
Histogram of the correlation coefficients. Histogram of 
pairwise correlation coefficients for (A)the genes within 
operons and (B) random gene pairs. The correlations are cal-
culated across experimental conditions. The correlation of 
genes organized in operons is much higher than that of ran-
dom genes, strongly indicating the co-expression of genes 
within operons.
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in the flhDC- dependent manner, whereas the lists of 44
genes identified by using SAM t and sample mean con-
tained only 36 and 38 expected genes, respectively.

We examined some genes and operons in more detail, to
demonstrate the advantages of borrowing information
from within an operon. For example, an operon argT-his-
JQMP contains 5 genes (argT, hisJ, hisM, hisP, hisQ) and
is not expected to be differentially expressed under the
examined experimental condition, according to our bio-
logical knowledge [25]. But from the microarray data, the
mean expression level (an average log ratio) of the gene
argT was -2.73, which ranked 15th among all the expres-
sion levels in the E. coli genome. This "high expression" of
the argT could possibly be caused by random noise in
microarray measurements and/or in biological samples,
since the mean expression levels of other genes within the
same operon were close to 0 (those for genes hisP, hisM,
hisQ, hisJ were 0.00, -0.05, 0.03, and 0.05, respectively).
However, accounting for expression levels of other genes
within the same operon lowered the estimate of the
expression level (posterior mean of µi of the argT to -0.02,
rank of 1456, indicating that this gene was not differen-

tially expressed. Analysis of another operon, fliDST, illus-
trates a complimentary case. Transcription of the fliDST
operon (containing 3 genes, fliD, fliS, fliT) is known to be
controlled by the FlhDC [25], and thus, under the experi-
mental condition, differential expression of genes in that
operon would be expected. While the expression level of
the fliT, estimated by the sample mean at -0.90, ranked
only 65th, the estimated expression level of the gene after
borrowing information from two other genes in the
operon was -3.25, which ranked 19th.

In general, through borrowing information, our Bayesian
method worked in a way giving more consistent estimates
of the expression levels for the genes of the same operon.
For example, compared with using the sample mean to
estimate expression levels, the Bayesian method tended to
yield smaller standard deviations of the expression esti-
mates for within-operon genes (see Figure 5).

Discussion
In this paper, we proposed and applied a hierarchical
Bayesian model, to estimate relative gene expression lev-
els and detect differentially expressed genes by borrowing
expression information within operons. The performance
of the proposed method was compared with that of the
sample mean and SAM t statistics. Through the simulation

FDR estimationFigure 4
FDR estimation. Estimate FDR by using posterior probabil-
ity and the functional annotation from Macnab et al. The solid 
line is for the FDR estimate using existing functional annota-
tion while the dashed line for using posterior probability. It 
indicates that estimate the FDR by using posterior probability 
yields reasonable result.
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Number of false positives vs. Number of total positivesFigure 3
Number of false positives vs. Number of total posi-
tives. For the E. coli motility data, the genes are ranked by 
using the proposed method, SAM t statistic and sample 
mean. The number of false positives is plotted against the 
number of total positives for each ranking criterion. It shows 
that ranking genes by proposed method has less false posi-
tives than ranking genes by SAM t or sample mean.
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studies, we showed that the proposed method outper-
formed the sample mean and the SAM t statistics in esti-
mating gene expression levels and detecting DE genes. The
proposed method was used to analyze differential expres-
sion in an E. coli mutant with a defect in transcription of
motility/chemotaxis genes, giving results more consistent
with the existing biological knowledge than those
obtained by using the other statistics.

A major advantage of the proposed approach is in borrow-
ing expression information from other genes within the
same operon. The approach is developed within a statisti-
cally sound Bayesian model and it offers necessary flexi-
bility with respect to the amount of information that
needs to be borrowed from other genes. By borrowing
information we can obtain stabilized estimates of expres-
sion levels from rather noisy microarray data. As a result,
the estimates of transcript levels within the same operon
become more similar to each other, more so than without

Table 2: Top 44 genes and their estimated relative transcription levels

Name B number Operon Verified Estimated expression FDR

fliC B1923 + -4.71 0.000
flgB B1073 flgBCDEFGHIJK + -3.90 0.000
flgE B1076 flgBCDEFGHIJK + -3.82 0.000
flgL B1083 + -3.81 0.000
flgF B1077 flgBCDEFGHIJK + -3.81 0.000
flgD B1075 flgBCDEFGHIJK + -3.81 0.000
flgK B1082 flgBCDEFGHIJK + -3.76 0.000
flgI B1080 flgBCDEFGHIJK + -3.76 0.000
flgJ B1081 flgBCDEFGHIJK + -3.75 0.000
flgH B1079 flgBCDEFGHIJK + -3.74 0.000
flgC B1074 flgBCDEFGHIJK + -3.73 0.000
flgG B1078 flgBCDEFGHIJK + -3.71 0.000
fliA B1922 fliAZY + -3.44 0.000
fliY B1920 fliAZY + -3.35 0.000
fliZ B1921 fliAZY + -3.32 0.000
fliD B1924 fliDST + -3.30 0.000
fliS B1925 fliDST + -3.25 0.000
fliT B1926 fliDST + -3.25 0.000
tap B1885 + -3.22 0.000
tar B1886 + -2.97 0.000
tsr B4355 + -2.64 0.000
fadL B2344 - -2.37 0.001
fliH B1940 fliFGHIJK + -2.03 0.001
fliG B1939 fliFGHIJK + -2.01 0.001
fliF B1938 fliFGHIJK + -1.99 0.001
fliK B1943 fliFGHIJK + -1.99 0.001
fliJ B1942 fliFGHIJK + -1.92 0.000

flgA B1072 flgAMN + -1.91 0.001
fliI B1941 fliFGHIJK + -1.89 0.001

flgM B1071 flgAMN + -1.87 0.001
flgN B1070 flgAMN + -1.81 0.001
flxA B1566 + -1.70 0.002
aer B3072 + -1.66 0.002

cheZ B1881 + -1.63 0.002
cheR B1884 + -1.60 0.003
fliM B1945 fliMNOPQR + -1.55 0.003
cheY B1882 + -1.51 0.005
fliL B1944 fliMNOPQR + -1.50 0.005
fliN B1946 fliMNOPQR + -1.49 0.005
ycgR B1194 - -1.44 0.007
cheW B1887 motAB-cheAW + -1.42 0.007
cheA B1888 motAB-cheAW + -1.39 0.007
b1904 B1904 - -1.38 0.009
mot A B1890 motAB-cheAW + -1.32 0.009

Note: the estimated gene expression levels is log scale.
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borrowing information; this is consistent with a biologi-
cal fact that genes within the same operon are transcribed
as a single mRNA molecule. With the proposed method,
the estimated expression levels of genes in "differentially
expressed" operons are consistently high, and more
importantly, transcript abundances of genes in "equally
expressed" operons are stabilized towards zero. In the
experimentally obtained microarray data, the within
operon variation was smaller than the variation among
the replicate data points for the same genes, indicating
that the expression levels of the genes within an operon
were very similar.

In our model, the ratio of parameters τ2 and  deter-

mines how much information comes from the observed
expression of a gene and how much comes from the aver-
age expression of an operon, when estimating the expres-
sion level of an individual gene within an operon. A

smaller τ, as compared to , puts more weight on the

average expression of an operon. Here we assumed the

same τ value for all operons, implying that all operons

had similar within-the-operon variability. However, this
assumption might not be realistic. In some operons and
physiological conditions, the genes might express very
similarly, but in others, especially under the control of
internal promoters, transcription of individual genes may
be more heterogeneous. In the future, we will investigate

the effect of an operon-specific τ. Operonal organization
of genes is common in prokaryotes and also present in
some eukaryotic organisms [28-30], and the proposed
method can be extended to biological systems where the
operonal structure is unknown. Many biological studies
have demonstrated that co-expressed genes tend to cluster
on the chromosome. Although the nature of this phe-
nomenon is not quite understood, a positional clustering
of co-expressed genes can be found in many eukaryotes
including yeast [31,32], worm [33], fly [34,35], mouse
[36], and human [37-39]. These findings indicate that the
genes are likely to co-transcribe with their chromosomal
neighbors. In those cases, instead of borrowing informa-
tion from genes in the same operon, we can borrow infor-
mation from gene neighbors on the chromosome.
Another extension of our method would involve incorpo-
ration of gene annotation information into the analysis of
expression data. The approach would be very similar to
the one described in this paper: based on biological
knowledge, the genes belonging to the same functional
group are more likely to be co-expressed, so we can use a
hierarchical model to borrow information from and for
the genes within the same functional group to improve
the estimates of gene expression levels.

Conclusion
The information about operon structure leads to a better
estimation of gene expression levels. Using simulated and
experimental data sets, we have demonstrated that the
proposed method performs better than the sample mean
and the SAM t statistics in estimating the relative levels of
transcript abundances and detecting differentially
expressed genes.

Methods
RegulonDB database and E. coli. microarray data
RegulonDB [40] is a database containing information
about known operons in E. coli. According to the Regu-
lonDB annotations, 1486 genes (about one third of all
genes predicted in the E. coli genome) are organized in
600 operons.

The E. coli data set contains results of 217 microarrays col-
lected in 53 different experimental conditions. The fluo-
rescent intensities of the test and control samples were
measured, and the average log ratio of the intensities for
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each gene under the same condition was used here to rep-
resent an observed gene expression level under that condi-
tion [24].

An E. coli motility expression data set ([41] series acces-
sion number: GPL2101) was obtained in a direct pair-
wise comparison between a knock-out mutant of the
flhDC, a master regulator of the motility/chemotaxis regu-
lon [25], and its isogenic wild type strain. Total RNA sam-
ples of a mutant E. coli (test samples) and an isogenic wild
type E. coli (control samples) were labeled with red (Cy5)
and green (Cy3) fluorophors. The intensities from the red
and the green channels were normalized by the lowess
method [42]. There were 4281 genes (G = 4281) with four
replicates for each gene (n = 4). Let Yi,j be defined as the
log ratio of the intensities between the test and control
samples for gene i on array j; that is,

Hierarchical models
We propose a hierarchical Bayesian model,

where, Yi,j is the log ratio of gene i in replicate j, µi and σi

are the true expression level and the standard deviation,

respectively. In our method, the posterior mean of µi is

used as the estimated expression level of gene i, while the

sample mean, ., is referred to as the observed expression

level.

As prior knowledge, we assume that if several genes
belong to the same operon, in accordance with the Regu-
lonDB annotation, then their expression levels are from a
normal distribution, with the mean λp and the variance τ2.
Specifically,

where Op denotes operon p. λp represents the expression

level of the operon p, which is the average of the mean

expression levels of all genes within the operon p. τ2 is the
within operon variation, and is assumed to be the same
across all operons. A non-informative prior is assigned to

λp, that is Pr(λp) α 1, to reflect the lack of prior informa-

tion,  and τ2 have vague priors, which are inverse

Gamma distributions with the shape and rate parameters

equal to 0.01 and 0.01 respectively [43]. If gene i is not in
any operon, then

so the posterior mean of µi is just the the sample mean ;

if gene i is in operon p, then the conditional distribution

of µi can be derived as:

where

Equation (3) shows that, when borrowing information
from the other genes within the same operon, the esti-
mated expression level of the gene i becomes the weighted
average of the observed expression level of gene i and the
expression level of operon p, given that gene i belongs to
operon p. The weights are inversely proportional to the
variances. In this model, a key concept is to shrink the

observed expression level , towards λp, the expression

level of an operon, based on the knowledge of the operon
structure. The degree of shrinkage is determined by the

variability of . and λp. Without incorporating operon

information, the estimated expression level would be

close to the observed expression level,  In the hierarchi-

cal model, λp represents the expression level of operon p,

and

where, mp is the number of genes in operon p, and i ∈ O p
denotes that gene t is in operon p. Although the posterior
distribution was not available in a closed form, we could
derive a closed form of the full conditional distribution,
and used Markov chain Monte Carlo (MCMC) to simulate
the parameters from the posterior distribution. With this
closed form expression, the model could be easily coded
in R [see Additional file 1] for MCMC simulation using
Gibbs sampling [44]. The expression level of gene i is esti-
mated by the posterior mean of µi, and the genes are
ranked by the absolute values of the posterior means of
the µi's. Genes with high rankings were designated as dif-
ferentially expressed (DE) genes.
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SAM t statistic
To evaluate the performance of the proposed method in
estimating gene expression levels and identifying DE
genes, we compared the proposed method to the sample
mean and SAM t statistics [1,3]. Because of its good per-
formance, the SAM t statistic [1,3] is widely used to rank
genes and detect DE genes [45]. We denote the SAM t sta-
tistic for the gene i as Zi, then

where  and Si are the sample mean and sample standard

deviation for the gene i, and So is the 90 th percentile of
Si's.

Simulation settings

We conducted three simulation studies to assess the use-
fulness of our method. The operon structure of the E. coli
genome from the RegulonDB database [40] was used in
simulation studies. We randomly chose 100 operons
(involving about 340 genes) and assumed that genes from
those operons were differentially expressed DE genes.
Then we randomly picked a subset of non-operon genes
to be DE genes and adjusted the total number of DE genes

to 400. Let µi be the expression level of gene i, for i = 1,

2,..., 4821. For DE genes, µi's were simulated from an

equal mixture of N(1, 0.252) and N(–1,0.252) distribu-
tions, and genes within the same operon were from the
same component of the mixture distribution. For EE

genes, µi ~ N(0, 0.252). We simulated 4 replicates from a

normal distribution for each gene, Yij ~ N(µi, ), where

Yi,j was the log ratio of transcript abundances for the gene

i on the array j. To provide increasing noise levels for sim-

ulations 1, 2 and 3, the σi's were simulated from the uni-

form(0.25, 0.75), uniform(0.5,1.0), and
uniform(0.75,1.25), respectively.

Estimation of false positives and false negatives
Using the posterior distributions, we can evaluate the FDR
for specific number of DE genes. Using Pr(|µi| > δ'|Yi,j) to
estimate the probability of gene i to be a DE gene, we can
estimate the number of false positives for a cut off value k
[7]:

Here, the genes are ranked based on the estimated mean
expression level µi. In this study, we set δ = 1,

which corresponding to the commonly used 2-fold cutoff.

The false discovery rate (FDR) for the cut off k can be
derived as:

Similarly, the number of false negatives for the cut off k
can be calculated as:

Algorithm for Gibbs sampler
The algorithm is implemented below:

Set initial values:

FOR t FROM 1 TO T, draws random samples:

END FOR
where Vi is the sample variance of gene i, and V0 is the
median of Vi's. np is the number of genes in operon p. T is
the total number of iteration. To diminish the effect of the
initial values, we discard the results from the early itera-
tions (t ≤ TB, where TB is the burn in time). The posterior
mean of µi, of gene i is calculated by:
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In our proposed method, the expression level of gene i is

estimated by . In the real data example, TB and T are

500 and 2000, respectively.
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