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Abstract
Background: Validation of a novel gene expression signature in independent data sets is a critical
step in the development of a clinically useful test for cancer patient risk-stratification. However,
validation is often unconvincing because the size of the test set is typically small. To overcome this
problem we used publicly available breast cancer gene expression data sets and a novel approach
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to data fusion, in order to validate a new breast tumor intrinsic list.

Results: A 105-tumor training set containing 26 sample pairs was used to derive a new breast
tumor intrinsic gene list. This intrinsic list contained 1300 genes and a proliferation signature that
was not present in previous breast intrinsic gene sets. We tested this list as a survival predictor on
a data set of 311 tumors compiled from three independent microarray studies that were fused into
a single data set using Distance Weighted Discrimination. When the new intrinsic gene set was
used to hierarchically cluster this combined test set, tumors were grouped into LumA, LumB,
Basal-like, HER2+/ER-, and Normal Breast-like tumor subtypes that we demonstrated in previous
datasets. These subtypes were associated with significant differences in Relapse-Free and Overall
Survival. Multivariate Cox analysis of the combined test set showed that the intrinsic subtype
classifications added significant prognostic information that was independent of standard clinical
predictors. From the combined test set, we developed an objective and unchanging classifier based
upon five intrinsic subtype mean expression profiles (i.e. centroids), which is designed for single
sample predictions (SSP). The SSP approach was applied to two additional independent data sets
and consistently predicted survival in both systemically treated and untreated patient groups.

Conclusion: This study validates the "breast tumor intrinsic" subtype classification as an objective
means of tumor classification that should be translated into a clinical assay for further retrospective
and prospective validation. In addition, our method of combining existing data sets can be used to
robustly validate the potential clinical value of any new gene expression profile.

Background
The classification of human tumors using microarray data
has been an area of intense research, but it remains a
daunting task to validate a new profile and generate a clin-
ically useful test. Many different gene expression-based
predictors have been developed for breast cancer [1-9],
and two different gene expression predictors have reached
the final step of prospective clinical trial testing [10,11].
Using cDNA microarrays, we previously identified five
distinct subtypes of breast tumors arising from at least two
distinct cell types (basal-like and luminal epithelial cells)
[1-3]. This molecular taxonomy was based upon an
"intrinsic" gene set, which was identified using a super-
vised analysis to select genes that showed little variance
within repeated samplings of the same tumor, but which
showed high variance across tumors [1]. We showed that
an intrinsic gene set reflects the stable biological proper-
ties of tumors and typically identifies distinct tumor sub-
types that have prognostic significance, even though no
knowledge of outcome was used to derive this gene set
[3,12-14].

A major challenge for microarray studies, especially those
with clinical implications, is validation [15,16]. Due to
the practical barriers of cost and access to large numbers
of fresh frozen tumor samples with associated clinical
information, very few microarray studies have analyzed
enough samples to allow promising initial findings to be
sufficiently validated to justify the major investment
required for clinical testing. An efficient approach would
be to use public gene expression data repositories as test
sets; however, it has been difficult to compare and/or

combine data sets from independent laboratories due to
differences in sample preparation, experimental design,
and microarray platforms. An accepted method for valida-
tion is to derive a prognostic/predictive gene set from a
"training set" and then apply it to a completely independ-
ent "test set" [17]. The "purest" test sets are comprised of
samples not generated by the primary investigators to
remove any possibility of bias [18]. In this study, we illus-
trate the successful application of these principles by (1)
deriving a new breast tumor intrinsic gene list that identi-
fies the "intrinsic" biological features of breast tumors and
(2) validating this predictor using a combined test set of
311 breast tumor samples compiled from the public
domain. These analyses show that the breast tumor intrin-
sic subtypes are significant predictors of outcome when
correcting for standard clinical parameters, and that com-
mon patterns of expression and outcome predictions can
be identified in data sets generated by independent labs.

Results
Identification of the Intrinsic/UNC gene set
Our goals were to (1) create a new breast tumor intrinsic
list, (2) validate this list on an independent dataset to
show the clinical significance of the "intrinsic" classifica-
tions, and (3) to derive an objective "intrinsic subtype"
classifier that could be used clinically (see Figure 1 for
overview of analyses performed). An intrinsic analysis is a
"within class" versus "across classes" analysis that identi-
fies genes that show low variability within a group (i.e. a
tumor-metastasis pair), but which show high variation in
expression across different tumors; in essence, one is
selecting for genes that are consistently expressed when
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Overview of the analysis methods and datasets used in this paperFigure 1
Overview of the analysis methods and datasets used in this paper.

Training Set

A dataset of 105 breast tumor samples, 9 normal breast samples,

and 26 sample pairs (each pair of samples is taken from

the same patient), represented by 146 arrays, is used to

derive the 1300-gene "Intrinsic/UNC" gene set.

Combined Test Set

A test set of 311 tumors and 4 normal breast

samples represented by 315 arrays and 2800 genes in

common, was created by combining the datasets of

Sorlie et al. (2001; 2003), van't Veer et al. (2002) and

Sotiriou et al. (2003). This "combined test set" was

analyzed by hierarchical clustering using the subset

of "Intrinsic/UNC" genes that were present within

the combined test set (306 genes).

Single Sample Predictor (SSP)

The hierarchical clustering of the "combined test set" is

used to create 5 Subtype Mean expression profiles

(i.e. Centroids) based upon the expression of the

306 Intrinsic/UNC genes. New samples are then assigned

to the nearest subtype/centroid as determined by

Spearman correlation.

Validation of the SSP using 2 test datasets

The SSP is used to make subtype predictions on

2 test sets of homogenously treated patients.

The resulting classifications were then analyzed

using Kaplan-Meier Survival plots.
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individual tumors are examined, but that vary in expres-
sion across different tumors. To develop a new breast
tumor intrinsic gene set (Intrinsic/UNC), we assayed a
training set of 105 breast tumor samples and 9 normal
breast samples, which contained 26 sample pairs (See
Additional file 2, 146 microarray experiments in total),
using Agilent oligo microarrays. Using the intrinsic analy-
sis method as described in Sorlie et al. 2003[3], we identi-
fied an intrinsic gene set of 1410 microarray elements
representing 1300 genes. We felt it important to create a
new intrinsic list because first, we wanted to take advan-
tage of newer microarrays (Agilent arrays with 17,000
genes vs. 8,000 gene cDNA microarrays previously
used[3]), and second, we wanted to use paired tumor
samples that were not before-and-after chemotherapy

pairs, but were instead pre-treatment tumor pairs. The
Intrinsic/UNC gene set showed overlap with a previous
breast tumor intrinsic gene set (108 genes in common
with the Intrinsic/Stanford gene set of Sorlie et al.
2003[3]), but also showed a significant increase in gene
number likely due to the greater number of genes present
on current microarrays.

Validation of the Intrinsic/UNC gene list
To evaluate the Intrinsic/UNC gene set on an independent
test dataset, we applied it to a "combined test set" of 315
breast samples (311 tumors and 4 normal breast samples)
using hierarchical clustering methods as have been done
previously [1-3]. The "combined test set" of 315 breast
samples was a single data set created by combining

Hierarchical cluster analysis of the 315-sample combined test set using the Intrinsic/UNC gene set reduced to 306 genesFigure 2
Hierarchical cluster analysis of the 315-sample combined test set using the Intrinsic/UNC gene set reduced to 306 genes. (A) 
Overview of complete cluster diagram. (B) Experimental sample-associated dendrogram. (C) Luminal/ER+ gene cluster with 
GATA3-regulated genes highlighted in pink. (D) HER2 and GRB7-containing expression cluster. (E) Interferon-regulated cluster 
containing STAT1. (F) Basal epithelial cluster. (G) Proliferation cluster.
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together the data from Sorlie et al. 2001 and 2003 (cDNA
microarrays)[2,3], van't Veer et al. 2002 (custom Agilent
oligo microarrays)[5] and Sotiriou et al.2003 (cDNA
microarrays)[19]. We created a single data table of these
three sets by first identifying the common genes present
across all three microarray data sets (2800 genes). Next,
we used Distance Weighted Discrimination (DWD) to
combine these three data sets together [20]. DWD is a
multivariate analysis tool that is able to identify system-
atic biases present in separate data sets and then make a
global adjustment to compensate for these biases; in
essence, each separate data set is a multi-dimensional
cloud of data points, and DWD takes two points clouds
and shifts one such that it more optimally overlaps the
other. Finally, we determined that 306 of the 1300 unique
Intrinsic/UNC genes were present in the combined test set
and performed a hierarchical clustering analysis of these
306 genes and 315 samples (Figure 2; see Additional file
1, for the complete cluster diagram). We analyzed the
combined test set instead of analyzing each of the 3 data-
sets separately because we believed this would provide
more statistical power to perform multivariate analysis,
and would yield more meaningful results because any
finding would need to be shared/present across all 3 data-
sets. Remarkably, despite the loss of genes in the Intrinsic/
UNC list due to the requirement of having to be present
on 4 different microarray platforms, the hierarchical clus-
tering analysis in Figure 2 identified the five main sub-
types/groups corresponding to the previously defined
HER2+/ER-, Basal-like, LumA, LumB and Normal Breast-
like tumor groups [2,3].

As shown in previous studies, a HER2+ expression cluster
was observed in the cluster analysis of the "combined test
set" and contained multiple genes from the 17q11 ampli-
con including HER2/ERBB2 and GRB7 (Figure 2D). The
HER2+ intrinsic subtype (pink dendrogram branch in Fig-
ure 2B) was predominantly ER-negative (i.e. HER2+/ER-)
as previously shown. A Basal-like expression cluster was
also present and contained genes (i.e. c-KIT, FOXC1 and
P-Cadherin) previously identified to be characteristic of
basal epithelial cells (Figure 2F). Using the program
EASE[21], the Gene Ontology (GO) categories "extracellu-
lar space" and "extracellular region" were over-repre-
sented relative to chance in the Basal epithelial gene
cluster. As shown in previous studies, a Luminal/ER+
expression cluster was present and contained ER, XBP1,
FOXA1 and GATA3 (Figure 2C). GATA3 has recently been
shown to be somatically mutated in some ER+ breast
tumors, and some of the genes in Figure 2C are GATA3-
regulated (FOXA1 and TFF3)[22], thus showing the func-
tional clustering of a transcription factor and some of its
direct targets. The Gene Ontology (GO) categories "tran-
scription regulator activity" and "DNA binding" were

over-represented relative to chance in the Luminal/ER+
gene cluster.

The most significant difference between the previous
Intrinsic/Stanford gene lists and the new Intrinsic/UNC
gene list was that the latter contained a large proliferation
signature (Figure 2G) [23-25]. As expected, EASE analysis
showed that the GO categories "mitotic cell cycle" and "M
phase" were over-represented relative to chance in the
proliferation signature. The inclusion of proliferation
genes in the Intrinsic/UNC gene set, but not in the Intrin-
sic/Stanford gene set, is likely due to the fact that the
Intrinsic/Stanford lists were based upon before-and-after
chemotherapy paired samples of the same tumor, while
the Intrinsic/UNC list was based upon paired samples
taken at the same time point with respect to chemother-
apy (22/26 were pre-treatment pairs). This finding sug-
gests that tumor cell proliferation rates do vary before and
after chemotherapy, but that proliferation is a reproduci-
ble and intrinsic feature of a tumor's expression profile.

A possible new tumor group (IFN) characterized by the
high expression of Interferon (IFN)-regulated genes was
observed in the combined test set analysis (Figure 2E).
According to EASE, the GO categories "immune response"
and "defense response" were over-represented relative to
chance in the interferon-regulated gene cluster. This clus-
ter contained STAT1, which is thought to be the transcrip-
tion factor responsible for mediating IFN-regulation of
gene expression [26,27]. Genes in the IFN cluster have
been linked to lymph node metastasis and poor prognosis
[7,13]. In summary, the Intrinsic/UNC list contained
more genes than previous lists, encompasses most fea-
tures of the Intrinsic/Stanford list (i.e. Basal, Luminal/
ER+, and HER2-amplicon gene clusters) and adds the bio-
logically and clinically relevant proliferation signature.

Tumor subtypes identified by the Intrinsic/UNC gene set 
are predictive of outcome
To determine how many biologically relevant tumor sub-
types/groups might be present within the cluster in Figure
2, we used 3 criteria, which resulted in the identification
of 6 potential subtypes/groups. The first criterion was the
simple and obvious dendrogram branching pattern (Fig-
ure 2B) suggesting six groups. Second was the observation
that each of the six groups uniquely expressed distinct sets
of known biologically relevant genes including the basal,
luminal/ER+, HER2-amplicon, IFN-regulated, and prolif-
eration-associated signatures. Third was our knowledge of
the previous classifications made by the Sorlie et al. 2003
Intrinsic/Stanford list of the Stanford/Norway samples
(these samples are identified in Additional file 1): there
was a high concordance (78%) between the classification
of these samples made using either the Sorlie et al. 2003
Intrinsic/Stanford list or the Intrinsic/UNC list (excluding
Page 5 of 12
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the IFN samples). Therefore, the 311 tumors/patients
were stratified into six groups, and we proceeded to look
for differences in outcomes and associations with other
clinical parameters between these six groups. The Intrin-
sic/UNC gene set identified tumor groups/subtypes that
were predictive of Relapse-Free Survival (RFS, Figure 3A)
and Overall Survival (OS, p = 0.000001, data not shown)
in Kaplan-Meier survival analysis on the combined test
set. As previously seen in Sorlie et al. (2001 and 2003), the
LumA group had the best outcome while the HER2+/ER-,
Basal-like, and LumB groups had significantly worse out-
comes. The new IFN class had a Kaplan-Meier survival
curve similar to that of LumB, and both showed elevated
proliferation rates when compared to LumA (Figure 2G).

In the combined test set, the standard clinical parameters
of ER status, node status, grade, and tumor size (note: data
for clinical HER2 status was not available) were significant

predictors of RFS using Kaplan-Meier analysis (Figure 4),
thus showing that the act of combining three different
patient sets together did not destroy the prognostic abili-
ties of these standard markers. In a multivariate Cox pro-
portional hazards analysis of the combined test set using
these standard clinical parameters, size, grade and ER sta-
tus were significant predictors of RFS (Table 1A).

To further evaluate the prognostic/predictive value of the
intrinsic subtype classification, we performed multivariate
Cox proportional hazards analysis of the combined test
set using the six intrinsic subtypes/groups defined above
and the five standard clinical parameters with RFS, OS, or
DSS as the endpoint (Table 1B shows analysis for RFS).
The intrinsic subtypes, when added to the multivariate
model containing the standard clinical variables, resulted
in a model significantly more predictive of RFS, OS, and
DSS (p = 0.01, 0.009, and 0.04 respectively, by the likeli-

Kaplan-Meier survival curves of breast tumors classified by intrinsic subtypeFigure 3
Kaplan-Meier survival curves of breast tumors classified by intrinsic subtype. Survival curves are shown for (A) the 315-sample 
combined test set classified by hierarchical clustering using the Intrinsic/UNC gene set and (B) the 60-sample Ma et al., (C) 96-
sample Chang et al., and (D) 105-sample (used to derive the Intrinsic/UNC gene set) datasets classified by the Nearest-Cen-
troid predictor (Single Sample Predictor).
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hood-ratio test). In multivariate analysis for RFS (Table
1B), the Basal-like, LumB and HER2+/ER- subtypes had
hazard ratios significantly greater than 1 (LumA served as
the reference group), while the IFN and Normal Breast-
like groups were not significant. Thus, the intrinsic sub-
types classifications of LumA, LumB, Basal-like and
HER2+/ER- add new and important prognostic informa-
tion beyond what the standard clinical predictors provide.

Associations of the intrinsic subtypes with clinical and 
biological parameters
To further characterize and better understand the intrinsic
subtypes, we determined whether an association existed
between intrinsic subtype and grade, node status, ER sta-
tus, age, and tumor size in the combined test set. Two-way
contingency table analysis showed significant association
between grade and subtype, with HER2+/ER- and Basal-
like tumors more likely to be grade 3 (Table 2). The
Cramer's V statistic[28], which measures the strength of
association between two variables in a contingency table,

indicated a substantial association (Cramer's V > 0.36)
between grade and subtype. Two-way contingency table
analysis did not show significant association between
node status and subtype (p = 0.44), but did show signifi-
cant association between ER status and subtype (p <
0.0001; Cramer's V = 0.72) and between tumor size and
subtype (p = 0.01; Cramer's V = 0.17). As would be
expected, ER+ tumors were more likely to be LumA or
LumB. As indicated by the low Cramer's V (Cramer's V <
0.19 indicates a low relationship), tumor size and subtype
were not strongly correlated.

To determine association between age and subtype, we
used an unpaired Student's t-test to compare the average
ages of diagnosis of each tumor subtype. Interestingly, the
average age of diagnosis for HER2+/ER- tumors was signif-
icantly less than that for all other tumor types. The average
age of diagnosis for LumA tumors was significantly greater
than that for LumB tumors.

Kaplan-Meier survival curves using RFS as the endpoint, for the common clinical parameters present within the 315-sample combined test setFigure 4
Kaplan-Meier survival curves using RFS as the endpoint, for the common clinical parameters present within the 315-sample 
combined test set. Survival curves are shown for (A) ER status, (B) node status, (C) histologic grade (1 = well-differentiated, 
2 = intermediate, 3 = poor), and (D) tumor size (1 = diameter of 2 cm or less; 2 = diameter greater than 2 cm and less than or 
equal to 5 cm; 3 = diameter greater than 5 cm; 4 = any size with direct extension to chest wall or skin).
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Derivation and application of a Single Sample Predictor
A caveat to the above analyses is that our classifications
were based upon hierarchical clustering, which is a pow-
erful tool for intrinsic class discovery, but which is not
suited for individual sample classification because to clas-
sify a new sample would require a reanalysis of all sam-
ples. Therefore, we wanted to create an unchanging and
objective method to classify tumors according to intrinsic
subtype that could be clinically applicable. To this end, we
developed a Single Sample Predictor (SSP) using the com-
bined test set hierarchically clustered using the 306 Intrin-
sic/UNC genes (Figure 1). For the SSP, a mean expression
profile (i.e. centroid) was created for each subtype that
was significant in the multivariate analysis (LumA, LumB,
Basal-like, HER2+/ER-) and for the Normal Breast-like
group using the combined test set (Figure 2). Next, any
new sample is then compared to each Centroid and
assigned by the SSP to the nearest subtype/centroid as
determined by Spearman correlation (note: this SSP is
based on methods developed by Tibshirani and col-

leagues[3,29,30]); thus, the SSP contains five different
idealized profiles, and any new sample is compared to
each of the five profiles and assigned a profile label (i.e.
subtype name) based upon the single idealized profile it
most resembled.

To validate the SSP, we tested it on two additional datasets
not used previously. The first was the 60-patient Ma et al.
dataset, which represents a group of early stage ER+
tamoxifen-treated patients [6]. The SSP classified these
samples as follows: 2 Basal-like, 2 HER2+/ER-, 12 Normal
Breast-like, 34 LumA, and 9 LumB. The 2 Basal-like and 2
HER2+/ER- assigned samples were excluded from a sur-
vival analysis because they were too few for a meaningful
survival analysis and possibly were misclassified ER-nega-
tive tumors. Among the remaining samples the SSP classi-
fication was a significant predictor of RFS (p = 0.04, Figure
3B), due to the poor outcome of the LumB group. Next,
we applied the SSP to a 96-sample test set of local only
(surgery)-treated patients from Chang et al. [31]. The
tumor groups identified by the SSP showed significant dif-
ferences in RFS (Figure 3C, p = 0.0006) and OS (p = 0.001,
data not shown) in Kaplan-Meier analysis, with the poor
outcome groups as expected: LumB, Basal-like, and
HER2+/ER-. Thus, the SSP identified tumor groups that
are truly prognostic and have significantly different out-
comes as was seen before: namely, LumA always has the
most favorable outcome, while LumB, Basal-like and
HER2+/ER- do poorly[2,3,9,19].

We also applied the SSP onto the 105-sample dataset used
to derive the Intrinsic/UNC gene list, which is technically
not a test set for the SSP because it was used to derive the
Intrinsic/UNC gene set. The tumor groups identified by
the SSP showed significantly different RFS (Figure 3D, p =
0.02) and OS (p = 0.03, data not shown) in Kaplan-Meier
analysis with the poor outcome groups again being LumB,
Basal-like, and HER2+/ER-. A subset of the 105-sample
dataset (48 in total) had been previously characterized
using an immunohistochemical (IHC) analysis[32],
which showed that (1) all 18 Basal-like tumors were ER-
negative and HER2-negative (defined as not having a 3+
score on HER2 IHC analysis), (2) all 18 luminal subtype
tumors were ER-positive and HER2-negative, and (3) all
12 HER2+/ER- subtype tumors were ER-negative and 11
out of these 12 showed HER2-overexpression (defined as
having a 3+ score on HER2 IHC analysis). Thus, the SSP
correlated with many standard clinical parameters, and
was also able to identify clinically relevant groups (i.e.
LumA vs. LumB) not identifiable using the standard clin-
ical assays, thus indicating potential value as an objective
classification method that should be developed further as
a clinically applicable test.

Table 1: Multivariate Cox proportional hazards analysis of (A) 
standard clinical factors alone, or with (B) the Intrinsic Subtypes 
in relation to Relapse-Free Survival for the 315-sample combined 
test set. Size was a binary variable (0 = diameter of 2 cm or less, 1 
= greater than 2 cm); node status was a binary variable (0 = no 
positive nodes, 1 = one or more positive nodes); age was a 
continuous variable formatted as decade-years. Hazard ratios for 
Intrinsic Subtypes were calculated relative to the Luminal A 
subtype. Variables found to be significant (p < 0.05) in the Cox 
proportional hazards model are shown in bold.

A. Relapse-Free survival

Variable Hazard Ratio (95% CI) p-value

Age, per decade 1.04 (0.90–1.20) 0.64
ER status 0.59 (0.41–0.83) 0.003
Node status 1.41 (0.98–2.04) 0.07
Tumor grade 2 vs. 1 2.41 (1.08–5.36) 0.032
Tumor grade 3 vs. 1 3.98 (1.80–8.82) 0.0007
Size 1.60 (1.31–1.95) <0.0001

B. Relapse-Free survival

Variable Hazard Ratio (95% CI) p-value

Age, per decade 1.08 (0.94–1.24) 0.29
ER status 0.69 (0.42–1.13) 0.14
Node status 1.35 (0.92–1.98) 0.13
Tumor grade 2 vs. 1 1.88 (0.82–4.32) 0.14
Tumor grade 3 vs. 1 2.58 (1.08–6.12) 0.03
Size 1.59 (1.30–1.95) <0.0001
Basal-like vs. LumA 2.02 (1.05–3.90) 0.036
HER2+/ER- vs. LumA 3.47 (1.78–6.76) 0.0003
LumB vs. LumA 1.92 (1.07–3.45) 0.028
IFN vs. LumA 1.40 (0.67–2.91) 0.37
Normal-like vs. LumA 1.56 (0.59–4.16) 0.37
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Discussion
The development and validation of gene sets for cancer
patients requires significant resources because large train-
ing and test sets are required to achieve robust results. In
fact, microarray studies are often criticized for a lack of rig-
orous validation due to small sample sizes [17,18]. There-
fore, we utilized a previously described microarray data set
combining method (Distance Weighted Discrimination) to
create a large validation test set of over 300 tumors, and
used it to validate a newly derived gene list for breast cancer
prognostication and prediction. This approach allowed us
to perform a multivariate analysis in which we show for the
first time that the intrinsic subtype classification adds valu-
able information in the presence of five standard clinical
parameters. We believe this combined test set is a valid test
set for use in our analysis because after the multiple data
sets were combined, the prognostic abilities of the standard
clinical variables such as ER and grade remained intact.

The remarkable power of our DWD-based approach is
indicated by the fact that although samples came from dif-
ferent platforms, hierarchical clustering analysis of the
combined data set managed to group samples and genes
based upon biology, and not some artifact caused by com-
bining the data sets together. Evidence that this grouping
reflected biology and not some artifact comes from (1) the
finding that various Gene Ontology terms were signifi-
cantly over-represented relative to chance in individual
gene clusters seen in this analysis and (2) the groupings of
the samples showed inter-dataset mixing and were signif-
icant predictors of outcome in univariate Kaplan-Meier
and multivariate Cox analysis. It is also remarkable that
this classification was successful in predicting outcome
despite the fact that the Intrinsic/UNC gene set was
reduced from 1300 genes to 306 genes in the combined
test set; this indicates the robust nature of the intrinsic
subtypes as defined by the new Intrinsic/UNC gene list.

One of the accomplishments of this manuscript was to
develop an unchanging and objective intrinsic subtype
predictor that could be used routinely in the clinical set-
ting. This was accomplished by first identifying a new
intrinsic gene set and then using this set to develop the
Single Sample Predictor (SSP) that was shown here to be
both prognostic on the local therapy-only patient subset
from Chang et al. [31] and predictive of outcomes on the
ER+ tamoxifen-treated data set of Ma et al. [6]. Many other
gene expression based predictors for breast cancer patients
have been developed, and in a complementary publica-
tion[33], we tested the intrinsic subtype SSP developed
here, relative to those predictions made by four other pre-
viously published breast cancer prognostic/predictive
gene sets using a single patient/tumor set of 295 cases; the
four other expression-based predictors used were (1) the
"70-gene" Good vs. Poor outcome predictor developed by
van't Veer and colleagues[5,11], (2) the "Wound-
Response" profile developed by Chang et al[31,34], (3)
the "Recurrence Score (RS)" profile developed by Paik et
al. [10], and (4) the 2-gene (HOXB13:IL17BR) ratio pre-
dictor developed by Ma et al. [6]. The results showed that
of samples classified as Basal-like, HER2+/ER-, or LumB
by the SSP, 93–100% were classified by the 70-gene, RS
and Wound-Response predictors as being in each predic-
tor's bad prognosis group. These data suggest that a high
concordance exists across these multiple predictors, in
particular the RS, 70-gene and Intrinsic Subtypes; thus, the
new intrinsic gene list and classification method devel-
oped here, when compared to other predictors as accom-
plished in Fan et al. [33], showed that a high concordance
across predictors exists, which provides additional valida-
tion for each predictor.

Conclusion
The results of this study advance our current knowledge of
the intrinsic breast tumor subtypes and provides an objec-
tive method (SSP) for prospectively classifying tumors

Table 2: Association between tumor histologic grade and intrinsic subtype in the 315-sample combined test set.

Intrinsic Subtype

Two-way 
contingency table

LumA 
(#of pts.)

LumB 
(#of pts.)

IFN 
(#of pts.)

HER2+/ER- 
(#of pts.)

Basal-like 
(#of pts.)

Grade
1 (well) 29 2 1 0 1
2 (intermediate) 45 26 8 6 16
3 (poor) 15 32 16 21 67
Statistics for two-way contingency table analysis
p-value† <0.0001
Cramer's V†† 0.42

†p-value calculated from Chi-square test on contingency table. ††Cramer's V statistic (value can range from 0 to 1) measures the strength of 
association between the two variables analyzed in the contingency table, with 1 indicating perfect association and 0 indicating no association.
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that could be used in the clinical setting. More broadly
speaking, our findings show that while the individual
brushstrokes (i.e. genes) may sometimes show discord-
ance across data sets, the portraits created by the com-
bined patterns of the individual brushstrokes is conserved
and recognizable across datasets because of the similari-
ties to the family portrait [24]. Moreover, these data show
that the breast tumor intrinsic subtypes identified using
the Intrinsic/UNC gene list can be generalized to many
different patient sets, both treated and untreated.

Methods
Sample collection, RNA isolation and microarray 
hybridization
105 fresh frozen breast tumor samples and 9 normal
breast samples were obtained using IRB-approved proto-
cols at 4 institutions: the University of North Carolina at
Chapel Hill (UNC-CH), The University of Utah, Thomas
Jefferson University, and the University of Chicago. This
sample set represents an ethnically and geographically
diverse cohort. Additional file 2 contains clinical data for
these samples. Patients were heterogeneously treated
according to the standard of care dictated by disease stage,
ER and HER2 status.

Total RNA was purified from each sample using the Qia-
gen RNAeasy Kit. RNA integrity was determined using the
RNA 6000 Nano LabChip Kit and Agilent 2100 Bioana-
lyzer. Total RNA amplification and labeling were done as
previously described in [35]. Microarray hybridizations
were performed using Agilent Human oligonucleotide
(1Av1, 1Av2 and custom designed 1Av1-based) microar-
rays using 2 µg of Cy3-labeled common reference sample
that is a modified version of the Stratagene Human Uni-
versal Reference[36], and 2 µg of Cy5-labeled experimen-
tal sample. Microarrays were hybridized overnight,
washed, dried, and scanned as described in [35]. The
image files were analyzed with GenePix Pro 4.1 and
loaded into the UNC-CH Microarray Database[37] where
a Lowess normalization procedure was performed to
adjust the Cy3 and Cy5 channels[38]. All primary micro-
array data associated with this study are available at [39],
2006 #2192} and in the GEO[40] under the accession
number of GSE1992, series GSM34424-GSM34568.

Identification of the intrinsic gene set
We derived a new breast tumor intrinsic gene set, referred
to as the "Intrinsic/UNC" list, using a training set com-
posed of the 105 tumor samples described above, 9 nor-
mal breast samples, and 26 sample pairs (in total,
represented by 146 microarrays). 15, 9, and 2 of the 26
sample pairs were different physical pieces of the same
tumor (taken at the same time point), tumor-metastasis
pairs and normal sample pairs, respectively. The back-
ground subtracted, Lowess normalized log2 ratio of Cy5 to

Cy3 intensity values were first filtered to select genes that
had a signal intensity of at least 30 units above back-
ground in both the Cy5 and Cy3 channels. Only genes
that met these criteria in at least 70% of the 146 microar-
rays were included for subsequent analysis. Next, we per-
formed an "intrinsic" analysis as described previously[3]
using the 26 sample pairs and 86 additional microarrays.
An intrinsic analysis identifies genes showing low varia-
bility in expression within paired samples but high varia-
bility in expression across different tumors; for each gene
a ratio of "within-pair variance" to "between-subject vari-
ance" is computed. Genes with ratios below one standard
deviation of the mean ratio were defined as "intrinsic".
This analysis resulted in 1410 microarray elements repre-
senting 1300 genes being identified as "intrinsic". In order
to obtain an estimate of the number of false-positive
intrinsic genes, we permuted the sample labels to generate
26 random pairs and 86 non-paired samples. This permu-
tation was performed 100 times and the intrinsic scores
were calculated for each. These permuted scores were used
to determine a threshold on the intrinsic score corre-
sponding to a false discovery rate (FDR) less than 1%. The
selected threshold resulted in 1410 microarray features
being called significant with a median FDR = 0.3% and
90th percentile FDR = 0.5%. (See Tusher et al. for a com-
plete description of this calculation [41]).

Creation and analyses of the combined test set
The independent test set was a 315-sample "combined
test set" consisting of three DNA microarray datasets (Sor-
lie et al. 2001 and 2003[2,3], van't Veer et al. 2002[5] and
Sotiriou et al. 2003[19]). To combine these datasets
obtained from different microarray platforms, we per-
formed the following pre-processing methods. First, the
R/G ratios in each dataset were log2 transformed and Low-
ess normalized[38]. Next, missing values were k-NN
imputed[42]. Gene annotations from each dataset were
converted into UniGene Cluster IDs (UCIDs, Build 161)
using the SOURCE database[43], and multiple occur-
rences of a UCID were collapsed by taking the median
value for that ID within each experiment and platform,
which resulted in ~2800 genes having expression data in
all three datasets. Next, Distance Weighted Discrimina-
tion[20] was performed in a pair-wise fashion by first
combining the Sorlie et al. and Sotiriou et al. datasets, and
then combining this with the van't Veer et al. dataset to
make a single dataset. In the final pre-processing step,
each microarray experiment was normalized such that
each column/experimental sample was standardized to
N(0,1), and each row/gene was median centered. 306 of
the 1300 Intrinsic/UNC genes had microarray data
present in the combined test set and were used in a two-
way average-linkage hierarchical cluster analysis [44].
Cluster results were visualized using the program
"Treeview".
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Derivation of the Single Sample Predictor
The Single Sample Predictor (SSP) is a Nearest Centroid-
based method based upon the work of Hastie and Tib-
shirani [3,45,46]. Our SSP classifies an individual sample
according to its nearest centroid as determined by Spear-
man correlation. To derive our SSP, we utilized the 315-
sample combined test set from Figure2 to create centroids
for each of the five intrinsic subtypes (LumA, LumB,
HER2+/ER-, Basal-like and Normal Breast-like). Please note
that we did not create a centroid for the IFN group because
it failed significance in multivariate testing, but did create a
centroid for the Normal Breast-like group because we feel it
is important to be able to identify true normal samples; an
H&E examination of most tumor samples falling into the
Normal Breast-like category shows that this is occurring
mainly because of too much normal tissue contamination.

To create each intrinsic subtype centroid, we averaged the
gene expression profiles for samples clearly assigned to
each subtype (limiting the analysis to 249 of the 315 sam-
ples) using the hierarchical clustering dendrogram as a
guide (Figure 2). We then applied the SSP to two inde-
pendent test datasets: (1) the Ma et al. 60-sample ER+
tamoxifen-treated tumor dataset and (2) the Chang et al.
96-sample local only-treated tumor dataset. By matching
UCIDs, microarray data for as many as possible of the 306
Intrinsic/UNC genes was obtained from these 2 datasets.
To remove microarray platform/source systematic biases,
we applied DWD to the 2 test datasets relative to the com-
bined test set. The SSP was then used to classify tumors by
intrinsic subtype in these 2 test datasets. Using similar
methods, the SSP was also applied to the 105-sample
training set used to derive the intrinsic/UNC gene set.

Survival analyses
Kaplan-Meier survival plots were compared using the
Cox-Mantel log-rank test in WinSTAT for Excel (R. Fitch
Software). Two-way contingency table analysis and
unpaired Student's t-test were done using WinSTAT. For
the "combined test set", multivariate Cox proportional
hazards analysis was performed using SAS (Cary, NC).
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