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Abstract
Background: EST sequencing is one of the most efficient means for gene discovery and molecular marker development,
and can be additionally utilized in both comparative genome analysis and evaluation of gene duplications. While much
progress has been made in catfish genomics, large-scale EST resources have been lacking. The objectives of this project
were to construct primary cDNA libraries, to conduct initial EST sequencing to generate catfish EST resources, and to
obtain baseline information about highly expressed genes in various catfish organs to provide a guide for the production
of normalized and subtracted cDNA libraries for large-scale transcriptome analysis in catfish.

Results: A total of 17 cDNA libraries were constructed including 12 from channel catfish (Ictalurus punctatus) and 5 from
blue catfish (I. furcatus). A total of 31,215 ESTs, with average length of 778 bp, were generated including 20,451 from the
channel catfish and 10,764 from blue catfish. Cluster analysis indicated that 73% of channel catfish and 67% of blue catfish
ESTs were unique within the project. Over 53% and 50% of the channel catfish and blue catfish ESTs, respectively, had
significant similarities to known genes. All ESTs have been deposited in GenBank. Evaluation of the catfish EST resources
demonstrated their potential for molecular marker development, comparative genome analysis, and evaluation of ancient
and recent gene duplications. Subtraction of abundantly expressed genes in a variety of catfish tissues, identified here,
will allow the production of low-redundancy libraries for in-depth sequencing.

Conclusion: The sequencing of 31,215 ESTs from channel catfish and blue catfish has significantly increased the EST
resources in catfish. The EST resources should provide the potential for microarray development, polymorphic marker
identification, mapping, and comparative genome analysis.
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Background
Catfish is the primary aquaculture species in the United
States with an annual yield of over 600 million pounds
[1]. While channel catfish (Ictalurus punctatus) accounts
for the majority of commercial production, the closely
related blue catfish (I. furcatus) possesses several econom-
ically important traits that have led to the production of
an interspecific hybrid (channel female × blue male)
recently available for commercial use [2,3]. Channel cat-
fish is also an important model species for the study of
comparative immunology, reproductive physiology, and
toxicology. The channel catfish immune system is among
the best characterized of any fish species, with decades of
research leading to the establishment of clonal function-
ally distinct lymphocyte lines, panels of specific mono-
clonal antibody reagents for detection of catfish
immunocytes, and characterization of much of the
machinery of teleost adaptive immunity (see [4] for a
summary).

Genome research requires the development of a number
of resources that facilitate the organization of large
amounts of genetic information into units that can be eas-
ily captured, mapped, and characterized. These resources
include linkage maps, physical maps, bacterial artificial
chromosome (BAC) libraries, and expressed sequence
tags (ESTs). While BAC libraries and physical and linkage
maps have been developed for catfish [5-11], large-scale
EST resources have been lacking. Expressed sequence tag
(EST) sequencing and analysis is an effective means for
rapid gene discovery and annotation [12-19]. Large-scale
EST projects have been carried out in several teleost spe-
cies to date [20-22]. A successful EST project can quickly
provide a wealth of genetic information for a species,
often considerably shortening the laborious process of
gene isolation. Large-scale EST projects provide the raw
material for expression profiling experiments utilizing
microarrays based on the transcript sequences. In addi-
tion to expression analysis, ESTs are vitally important to
genome research in a given species. They provide a valua-
ble source of gene-linked markers for linkage mapping
[23], can be utilized in comparative genome analysis
[24,25], and allow an assessment of gene duplications, a
common phenomenon in teleost fish [26]. Sequencing
the ESTs of two closely-related species such as channel cat-
fish and blue catfish provides further benefits – gene iden-
tification is usually additive across the species, while
molecular markers and gene orthologues are valuable for
mapping and differentiating allelic and gene variants.
Here we report the generation of 31,215 EST sequences
from channel catfish and blue catfish and their potential
for the development of molecular tools for mapping,
genome analysis and expression profiling.

Results and discussion
cDNA library construction and sequencing of catfish ESTs
To obtain baseline information concerning the most
abundantly expressed genes in catfish tissues and to cap-
ture a wide range of the transcriptome, we constructed
cDNA libraries from various tissues of channel catfish and
blue catfish (Table 1). These cDNA libraries were
sequenced to generate the 31,215 ESTs reported here. Two
of these libraries (channel catfish head kidney and spleen)
have been previously reported [27,28], but were
sequenced at greater depths in this project. Twelve of the
cDNA libraries were produced from channel catfish tis-
sues, and five from blue catfish tissues. Tissue libraries
were produced by pooling tissue from fish experimentally
infected with Edwardsiella ictaluri and tissue from healthy,
control fish, to ensure that libraries included transcripts
under both healthy and diseased conditions.

EST sequencing was conducted in two phases. In phase I,
200–300 clones were sequenced from each library to pro-
vide a list of the most abundantly expressed genes. In
phase II, the most abundantly expressed genes (Supple-
mental Table 1) were subtracted from the clones to be
sequenced by screening with overgo probes, to provide a
higher gene discovery rate under a restricted budget.
Overgo probes were designed for 200 genes, and the
probes were used for colony lifting hybridization. Subse-
quently, only negative clones were picked for phase II
sequencing. The number of ESTs generated from each
library is given in Table 1. A total of 20,451 ESTs were suc-
cessfully sequenced from channel catfish, and 10,764

Table 1: A summary of cDNA libraries made from various catfish 
tissues and ESTs sequenced from these libraries. * indicates 
previously reported libraries used for additional sequencing in 
this project.

Library Species Number of ESTs generated

Gill I. punctatus 2630
Head kidney* I. punctatus 2614
Intestine I. punctatus 2418
Liver I. punctatus 1067
Muscle I. punctatus 546
Olfactory I. punctatus 390
Ovary I. punctatus 1810
Pituitary I. punctatus 1723
Spleen* I. punctatus 3163
Stomach I. punctatus 1369
Testes I. punctatus 1377
Trunk kidney I. punctatus 1344

Total = 20,451
Head kidney I. furcatus 2683
Heart I. furcatus 659
Intestine I. furcatus 1431
Liver I. furcatus 4003
Spleen I. furcatus 1988

Total = 10,764
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ESTs were sequenced from blue catfish. These ESTs have
been submitted to NCBI dbEST [GenBank: BM438128–
BM439194, BQ096608–BQ097456, CF261473–
CF266494, CF970744–CF972299, CK401558–
CK426402, and EE993123–EE993655]. Furthermore, a
database, ESTIMA: Catfish, was established for free public
access [29]. These ESTs represent a significant fraction of
the EST resources from channel catfish and the sole pub-
licly available transcripts from blue catfish.

Sequence assembly
A total of 31,215 clean sequences, with average length of
778 bp, were assembled using the CAP3 program [30] to
evaluate the level of sequence redundancy. Blue catfish
and channel catfish ESTs were assembled separately.
Assembling of the 20,451 channel catfish sequences gen-
erated 1,848 clusters and 13,115 singletons. The average
cluster contained 3.96 sequences. A total of 14,963
unique sequences were generated from channel catfish for
this project. Assembling of the 10,764 blue catfish ESTs
produced 881 clusters and 6,368 singletons with an aver-
age cluster size of 4.98 sequences. By this measure,
sequencing of the blue catfish ESTs generated 7,249
unique sequences (Table 2). For the purpose of practical
applications, we also performed clustering analysis by
combining the ESTs from both channel catfish and blue
catfish (data not presented here, but are available in the
database). For instance, the clustering analysis of the ESTs
from both species allowed design of microarrays with a
larger set of unique sequences. For the identification of
polymorphic microsatellites and SNPs, we also used ESTs
from both species as our resource families were produced
using the interspecific hybrids of channel catfish × blue
catfish.

Sequence annotation
The putative identities of the sequenced ESTs were deter-
mined using BLASTX searches against the non-redundant
(nr) database in GenBank. Of the 20,451 channel catfish
ESTs, 10,859 (53%) had significant hits (cutoff E-value of
e-5), while the remaining 9,592 ESTs (47%) had no signif-
icant similarity to any sequences contained in GenBank
(Table 2). Similarly, of the 10,764 blue catfish ESTs, 5,456
(50.7%) had significant hits (cutoff E-value of e-5), while

the remaining 5,308 ESTs (49.3%) had no significant sim-
ilarity to any sequences contained in the database. While
a significant fraction of ESTs could not be identified by
similarity searches, our results are comparable to other
EST work in fishes. The unidentified transcripts are still
valuable sources of microsatellite markers, and can be fur-
thered sequenced if determined to be important in QTL
analysis or expression profiling with microarrays. Addi-
tionally, many of these currently unknown transcripts will
likely be identified when they cluster with additional tran-
scripts produced in the future.

Assessment of the sequenced catfish transcriptome
To link these catfish EST resources to a comparative
genome analysis framework, we conducted systematic
TBLASTN searches on all existing catfish ESTs using Tetrao-
don chromosome-linked proteins as queries. The
TBLASTN search parameters were set to select the top cat-
fish hit and used a relatively more stringent cutoff E-value
of e-10. Approximately 50% of annotated Tetraodon genes
had a significant hit against catfish ESTs (Table 3), provid-
ing a rough assessment of the percentage of the catfish
transcriptome now sequenced. However, BLAST-based
comparisons between sequences of the two species have
several shortcomings. First, rapid intraspecific diversifica-
tion of gene families within catfish and Tetraodon has
obscured gene homologies between the species. Second,
short and/or divergent protein sequences would be
excluded with the stringent parameters used. Altogether,
6,720 unique catfish ESTs were returned as the top hit of
one or more Tetraodon proteins (Fig. 1). The factors men-
tioned above, especially gene family diversification, could
also be responsible for the modest number of catfish hits.
The majority of these catfish ESTs (3,929) were hit by a
single Tetraodon query. However, a sizeable proportion
(22%) were hit by three or more Tetraodon queries (Table
3, Fig. 1). A survey of the catfish ESTs hit by 20 or more
Tetraodon queries revealed that these represented large
gene families often functioning in developmental proc-
esses. Examples of the families hitting single catfish ESTs
included the protocadherin clusters, notch proteins, zinc
fingers, netrin family, and Hox proteins. Analysis of the
chromosomal origins of these repetitive Tetraodon queries
indicates that many are clustered tightly together and have
likely resulted from rapid tandem gene duplication in
their local environ [31,32]. High sequence conservation
between members of these gene families may obscure
their relationships with homologous families in catfish.
Alternatively, transcripts representing gene family mem-
bers in catfish may not have yet been sequenced.

Potential for comparative genome analysis and directed 
gene mapping
Comparative genome analysis is also an efficient
approach for transferring linkage information from map-

Table 2: A summary of clustering analysis and BLAST analysis of 
catfish ESTs.

Channel catfish (%) Blue catfish (%)

Sequences 20,451 10,764
Contigs 1,848 881
Singletons 13,115 6368
Unique (%) 14,963 (73%) 7249 (67%)
Known (%) 10,859 (53%) 5456 (50.7%)
Unknown (%) 9,592 (47%) 5308 (49.3%)
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rich species to map-poor species [33]. In catfish, a gene-
based genetic map is not yet available. In the absence of
such a map, direct comparison of gene organization on
chromosomes across species is difficult. However, the
premise for comparative mapping is that many chromo-
some segments should be conserved among fish species.
Of the 9,181 chromosome-linked Tetraodon proteins with
significant hits on catfish ESTs, 2,529 hit a single EST. This
subset should exclude many of the large intraspecific gene
families and include genes with more apparent homolo-
gies. Concentrating on those ESTs with especially high p-
values may further refine the set (Table 4). Associating the
catfish ESTs with chromosome-linked Tetraodon proteins
allows the development of a set of markers likely to be
well-distributed across catfish chromosomes and which
can provide anchors for a framework comparative map.

Previously published analysis of microsatellite content of
the ESTs described here, along with others in GenBank at
the time of analysis, identified 4,855 microsatellites from
43,033 catfish ESTs. Of these, 4,103 were believed to rep-
resent unique genes [34]. Many of these microsatellites
are being utilized for the construction of a gene-based
linkage map for catfish. To make these markers more
informative, the catfish ESTs hit by a single chromosome-

Table 4: BLAST results based on the chromosomal origin of the Tetraodon queries. Catfish ESTs hit by only a single Tetraodon gene 
were further parsed by alignment E-values. Undetermined Tetraodon genes are those whose chromosome location is not currently 
known.

Chromosome Number of Tetraodon genes with hit(s) to catfish 
ESTs

Number of catfish ESTs hit by a single Tetraodon gene

Total With E-value of <e-100 With E-value of e-50 to e-100

1 798 231 18 84
2 809 209 21 75
3 623 179 17 76
4 263 74 10 22
5 351 98 15 38
6 225 59 7 16
7 503 129 17 46
8 404 114 13 32
9 458 114 15 44
10 496 142 12 42
11 544 143 20 62
12 503 149 6 51
13 484 141 18 44
14 372 117 19 45
15 584 147 13 40
16 390 99 15 28
17 360 86 13 33
18 454 137 18 53
19 171 37 1 15
20 75 25 4 9
21 314 99 11 31
Subtotal 9181 2529 283 886
Un 5331 1400 126 402
Total 14512 3929 409 1288

Table 3: Summary of results of TBLASTN searches using all 
Tetraodon proteins as queries against catfish ESTs. A cutoff value 
of e-10 was used, only the top catfish EST hit was selected.

Total number of Tetraodon protein queries 27,918
Tetraodon genes that had hit(s) to catfish ESTs 14,512
Number of catfish ESTs hit by a single Tetraodon gene 3,929
Number of catfish ESTs hit by a two Tetraodon genes 1,329
Number of catfish ESTs hit by a multiple Tetraodon genes 1,462

Bar graph of distribution of Tetraodon gene hits on catfish ESTsFigure 1
Bar graph of distribution of Tetraodon gene hits on catfish 
ESTs. For example, 575 catfish ESTs were each hit by three 
Tetraodon queries. A logarithmic scale was used for the Y-
axis to better show the wide range of values.
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linked Tetraodon query were searched for microsatellites. A
total of 245 of these catfish ESTs contain a microsatellite
and will aid in comparing the catfish linkage map to
Tetraodon nigroviridis, providing an early assessment of
genomic conservation between the two teleost species.

Two species system for identification of ancient and recent 
gene duplications
Gene duplication is a widespread phenomenon in verte-
brate species and a particularly important trait of teleost
fish. It has been proposed that a whole-genome duplica-
tion event occurred in the teleost lineage after its split
from the tetrapod lineage, but that only a subset of the
duplicated genes has been retained [35]. ESTs are a valua-
ble tool for the identification of duplicated genes in spe-
cies with and without a sequenced genome. For species
with completed genome sequences, a large EST collection
is invaluable for gene annotation in duplicated regions
and facilitates the study of sub-functionalization among
duplicated gene copies [36]. In species like catfish, where
whole-genome sequencing is yet to be initiated, ESTs are
important early indicators of gene copy numbers. How-
ever, comparisons of highly similar transcripts often do
not allow researchers to differentiate between allelic vari-
ants and gene duplications. Using a two species system of
EST sequencing and analysis, such as in channel catfish
and blue catfish, can help to distinguish between these
two possibilities. We surveyed the catfish EST resources
for gene duplication events, applying the rationale that
allelic variation within the same species should be smaller
than the variation present between orthologues from dif-
ferent species [37]. Using this rationale, two highly similar
channel catfish sequences would be considered para-
logues if one of them is more closely related to a transcript
from blue catfish than related to the other transcript from
channel catfish. Likely instances of catfish gene duplica-
tion that included ESTs from both species were identified
by BLASTN searches and then reciprocal BLASTX searches
carried out. Most identified "duplications" were members
of large, previously identified gene families that were the
result of ancient gene duplications, i.e. similar members
are present in other species such as Danio rerio. More
informative were cases where all selected catfish ESTs were
highly similar to the same BLASTX hit and/or gene copy
number could not be predicted based on BLAST results,
indicators of more recent gene duplication within catfish.
Examples of these cases, where allelic variants could not
be distinguished from gene paralogues based on the data
from a single species alone, were subjected to phyloge-
netic analysis (Fig. 2). The putative blue catfish ortho-
logues provided the context necessary to differentiate
between the highly similar channel catfish transcripts. The
ability to utilize the ESTs from the two closely related cat-
fish species for analysis of local gene and genome-based
duplications was one of the reasons for continuing EST

sequencing efforts in catfish conducted by the Joint
Genome Institute (see below).

Subtraction probes for normalization of cDNA libraries
Sequencing a large number of cDNA libraries widened the
range of the catfish transcriptome sequenced while pro-
viding information concerning the most abundantly
expressed genes in a variety of tissue types. This informa-
tion is critical to ensure high numbers of unique tran-
scripts can be obtained when sequencing a library to
greater depths. To produce a list of most abundantly
expressed genes for further subtraction, we conducted

Selected examples of the ability to differentiate between cat-fish allelic variants and gene duplicates (paralogues) using both blue catfish and channel catfish sequencesFigure 2
Selected examples of the ability to differentiate between cat-
fish allelic variants and gene duplicates (paralogues) using 
both blue catfish and channel catfish sequences. Highly similar 
channel catfish sequences (Channel) and at least one blue 
catfish sequence (Blue) sharing the same BLAST identity 
were subjected to phylogenetic analysis. The topological sta-
bility of the neighbor joining trees was evaluated by 1000 
bootstrapping replications, and the bootstrapping values are 
indicated by numbers at the nodes. Channel catfish and blue 
catfish genes placed into the same clade indicate that the 
additional, related channel catfish sequence is likely a para-
logue rather than an allelic variant.
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cluster analysis of all catfish ESTs in the dbEST database of
NCBI. Clusters were sorted by size and those containing 2
or more transcripts per 10,000 sequences were selected as
subtraction drivers for use during the construction of nor-
malized/subtracted cDNA libraries to be used for a large-
scale EST project (Supplemental Table 2). Through the
Community Sequencing Program, a project for sequenc-
ing 300,000 clones of catfish ESTs was recently approved
by the Joint Genome Institute (JGI) of the Department of
Energy (DOE). Subtraction of highly abundant genes
based on information gained through the current project
should markedly increase the number of unique tran-
scripts obtained by JGI sequencing, and initial sequencing
and quality control determination by JGI of the subtracted
cDNA libraries we produced using this strategy confirmed
this assessment.

Conclusion
A large number of cDNA libraries have been made from
both channel catfish and blue catfish, and they should be
valuable resource for various molecular studies and for
the construction of normalized cDNA libraries. This work
is the first large-scale EST project in catfish. In addition to
significant expansion of the channel catfish EST resources,
and generation of the sole source of the blue catfish EST
resource, the sequencing of 31,215 ESTs from channel cat-
fish and blue catfish has provided the potential for the
development of a number of molecular tools valuable for
genome research. The EST resources will be particularly
useful as sources of polymorphic markers including mic-
rosatellites and single nucleotide polymorphisms (SNPs)
for gene mapping. In addition, the EST resources have
aided in the identification and characterization of impor-
tant genes involved in immune response [38,39]. The gen-
erated sequences are currently being utilized as reference
points in comparative genome analysis and have been val-
idated as an important tool for the assessment of gene
duplications in catfish. Additionally, the ESTs served as a
foundation for the creation of normalized, subtracted
cDNA libraries currently being used for the sequencing of
300,000 ESTs from both ends by JGI. The development of
microarrays [40,41] and linkage maps based on the cat-
fish EST resources will further extend their applications in
research.

Methods
Tissue samples and RNA isolation
All procedures involving the handling and treatment of
fish used during this study were approved by the Auburn
University Institutional Animal Care and Use Committee
(AU-IACUC) prior to initiation. Channel and blue catfish
were raised in troughs in the hatchery of the Auburn Uni-
versity Fish Genetics Hatchery for four weeks before har-
vesting of tissues. To create resource cDNA libraries
containing a full complement of gene transcripts, includ-

ing those expressed after infection, both healthy and
infected catfish were used. Channel catfish and blue cat-
fish were challenged with Edwardsiella ictaluri using proce-
dures adapted from Dunham et al. [42]. Fish were divided
into 2 groups, the non-challenged controls and the fish
for challenge (N = 240). The fingerlings used for disease
challenge were placed into a 150 L tank containing 1.1 ×
106 E. ictaluri cells/ml for 1 h. The challenged fish were
then removed and stocked into a 1000 L tank. At time of
sampling, fish were euthanized with MS-222 at 300 mg/L
before dissection. Tissue samples were collected from 15
control and 5 infected fish each at 24 h, 3 d, and 7 d dur-
ing the challenge, pooled, quick-frozen in liquid nitrogen,
and stored at -80°C until RNA extraction. The following
tissues were collected: channel catfish gill, head kidney,
trunk kidney, intestine, liver, skeletal muscle myomere,
olfactory organ, ovary, pituitary, spleen, stomach, and tes-
tes; blue catfish head kidney, heart, intestine, liver and
spleen. Equal tissue weights of all the control and infected
pools for each tissue within a species were combined,
ground to a fine powder with mortar and pestle in the
presence of liquid nitrogen and thoroughly mixed. A frac-
tion of the tissue samples was used for RNA isolation.
Total RNA was isolated following the guanidium thiocy-
anate method [43] using the Trizol reagent (Invitrogen,
Carlsbad, CA) following manufacturer's instructions.
Poly(A)+ RNA was purified from total cellular RNA using
the Poly(A)+ Pure kit (Ambion, Austin, TX) according to
the manufacturer's instructions.

Library construction
Initial sequencing of four catfish cDNA libraries, channel
catfish brain, head kidney, skin, and spleen, was previ-
ously reported [27,28,44,45]. Fifteen additional libraries
from the tissues listed above were constructed here closely
following protocols used previously. Briefly, the cDNA
libraries were constructed using the pSPORT-1 Superscript
Plasmid Cloning System from Invitrogen. This cloning
system provides a vector with capacity for uni-directional
cloning of cDNAs that support choices of EST sequencing
from either the 5'-, or 3'-end of the transcript. In this work,
all ESTs were sequenced from upstream of the transcripts
(5' sequencing) to provide a longer length of ESTs. Two
micrograms of Poly(A)+ RNA were used in each initial
reaction. Procedures followed instructions provided by
the manufacturer with the exception that ElectroMax
DH12S cells (Invitrogen) were used for electroporation of
the cDNA library. The quality of the cDNA libraries was
determined by number of primary recombinants and
average insert size. Before sequencing analysis, the pri-
mary cDNA libraries were amplified once [46]. The
pooled libraries were frozen in liquid nitrogen and stored
at -80°C.
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Colony lifting hybridization and sequencing
Colony-lifting hybridization [46] was conducted using
overgos as probes to reduce the sequencing redundancy of
a set of 200 genes determined to be highly expressed by
preliminary sequencing of the libraries. Oligonucleotides
were custom made by Sigma Genosys (St. Louis, MO).
Overgos were designed to overlap for 8 bases where the
sense and antisense oligos pair, leaving the remaining 5'
overhang for filling in using labeled nucleotides, P32-
dATP and P32-dCTP [47,48]. All the overgos were labeled
in a single reaction. Overgo hybridization was conducted
at 45°C overnight using conditions as previously reported
[49]. The filters were washed using 2× SSC at room tem-
perature four times for 15 minutes each. After exposure of
X-ray films, bacterial plates were aligned to match the pat-
terns of the exposed colonies on the X-ray film. Negative
colonies were picked for sequencing and manually
arrayed into 384 well plates containing LB with antibiot-
ics and 10% glycerin and stored at -80°C until sequenc-
ing. Sequencing was conducted using ABI PRISM 3730
automated sequencers located in the Core Facility of Pur-
due University.

Sequence analysis, EST clustering, and sequence 
annotation
ESTs were trimmed for vector and adaptor sequences. Base
calling was performed using the Phred program with qual-
ity cut-off set at 20. Sequences were assembled in CAP3
using a criteria of a minimum overlap of 70 bp sharing
90% sequence identities for clustering. Cleaned ESTs were
used as queries for BLASTX searches against the nr data-
base at NCBI and annotated based on the top, informative
BLAST hit. A cutoff E-value of e-5 was used for annotation.
The channel catfish and blue catfish ESTs were submitted
to dbEST. A database was developed to facilitate informa-
tion dissemination. ESTs were annotated using the Gene
ontology (GO) terms and the results built into the data-
base.

Catfish ESTs and comparative analysis
Chromosome-assigned proteins of Tetraodon nigroviridis
as well as those from undetermined chromosome loca-
tions were downloaded from the protein database of
NCBI. All proteins linked to a given Tetraodon chromo-
some were uploaded separately as query files onto the
University of Illinois Keck Center's Gridblast server. All
catfish ESTs from NCBI's dbEST were uploaded as a data-
base on the same server. The TBLASTN search parameters
were set to select the top catfish hit, using a cutoff E-value
of e-10. Resulting text files were parsed to obtain Tetraodon
query IDs, catfish hit IDs, and e-values and these were
imported into Excel spreadsheets. Results were further
sorted to separate those catfish ESTs hit by a single Tetrao-
don query and those hit by multiple Tetraodon queries.
Catfish ESTs hit by a single Tetraodon query were uploaded

to Msatfinder [50] to search for microsatellites contained
in the sequences. BLASTX searches were carried out on
those catfish ESTs hit by 20 or more Tetraodon queries.

Assessment of gene duplication
Channel catfish TIGR consensus (TC) sequences, com-
posed in part by the ESTs reported here [51] were used as
queries for BLASTN searches against the est_others data-
base of NCBI, limiting the entrez query to Ictalurus. Top
hits with perfect matches (E-value = 0.0) were the channel
catfish sequences from the TC. If additional highly similar
hits (E-value <e-25) from both channel catfish and blue
catfish ESTs were present, these sequences were noted for
further analysis as potential gene duplicates. Reciprocal
BLASTX searches were carried out using at least three ESTs
from the initial searches, with at least one of these ESTs
from blue catfish. When all ESTs shared the same top
BLASTX hit, they were translated, and areas of amino acid
overlap identified. Phylogenetic trees were drawn by the
neighbor-joining method [52] within the Molecular Evo-
lutionary Genetics Analysis (MEGA 3.0) package [53].
Data were analyzed using Poisson correction and gaps
were removed by complete deletion. The topological sta-
bility of the trees was evaluated by 1,000 bootstrapping
replications.
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