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Abstract
Background: Lungworms of the genus Dictyocaulus (family Dictyocaulidae) are parasitic
nematodes of major economic importance. They cause pathological effects and clinical disease in
various ruminant hosts, particularly in young animals. Dictyocaulus viviparus, called the bovine
lungworm, is a major pathogen of cattle, with severe infections being fatal. In this study, we provide
first insights into the transcriptome of the adult stage of D. viviparus through the analysis of
expressed sequence tags (ESTs).

Results: Using our EST analysis pipeline, we estimate that the present dataset of 4436 ESTs is
derived from 2258 genes based on cluster and comparative genomic analyses of the ESTs. Of the
2258 representative ESTs, 1159 (51.3%) had homologues in the free-living nematode C. elegans,
1174 (51.9%) in parasitic nematodes, 827 (36.6%) in organisms other than nematodes, and 863
(38%) had no significant match to any sequence in the current databases. Of the C. elegans
homologues, 569 had observed 'non-wildtype' RNAi phenotypes, including embryonic lethality,
maternal sterility, sterility in progeny, larval arrest and slow growth. We could functionally classify
776 (35%) sequences using the Gene Ontologies (GO) and established pathway associations to 696
(31%) sequences in Kyoto Encyclopedia of Genes and Genomes (KEGG). In addition, we predicted
85 secreted proteins which could represent potential candidates for developing novel anthelmintics
or vaccines.

Conclusion: The bioinformatic analyses of ESTs data for D. viviparus has elucidated sets of
relatively conserved and potentially novel genes. The genes discovered in this study should assist
research toward a better understanding of the basic molecular biology of D. viviparus, which could
lead, in the longer term, to novel intervention strategies. The characterization of the D. viviparus
transcriptome also provides a foundation for whole genome sequence analysis and future
comparative transcriptomic analyses.
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Background
Parasitic nematodes of livestock cause substantial eco-
nomic losses due to poor productivity, failure to thrive
and deaths [1,2]. The financial losses associated with
these endoparasites are estimated at billions of dollars per
annum [3]. Lungworms of the genus Dictyocaulus (family
Dictyocaulidae) are key parasitic nematodes which cause
pathological effects and clinical disease in different rumi-
nant hosts, particularly in young animals [4,5]. Dictyocau-
lus viviparus, the bovine lungworm, causes a severe and
frequently fatal bronchitis (known colloquially as 'husk')
which is of major importance in many countries [6].
Severe cases of dictyocaulosis lead to emphysema and
pneumonia – heavy infections can cause a mortality rate
of >20% among affected cattle [1,2].

Dictyocaulus viviparus has a direct life cycle [7]. The adult
stages (females and males) live in the bronchi, where the
ovoviviparous females produce eggs from which first-
stage larvae (L1) usually hatch rapidly whilst in the lung
or the intestinal tract. The L1s are then shed in the faeces
of the bovine host. Under favourable environmental con-
ditions, L1s develop through to the infective third-stage
larvae (L3s) during a period of ~4–6 days. After ingestion
by the host, L3s migrate through the gut wall to the
mesenteric lymph nodes, moult, and, as fourth-stage lar-
vae (L4s), are transported to the lungs. L4s penetrate the
alveoli, moult and then develop into adults. However, lar-
val stages can remain inhibited in the lungs for up to 5
months. In cattle, the period from ingestion of L3s to
reproductive maturity of the adult worms is 3–4 weeks.

While there is considerable knowledge of the morpholog-
ical changes taking place during the life cycle of D. vivipa-
rus, very little is understood about the fundamental
molecular and biochemical processes underlying the
development and survival of this parasite and the para-
site-host interplay. Insights into such processes are funda-
mentally important and could provide a basis for the
identification of molecular targets for the rational design
of nematocidal compounds, vaccines or/and for diagno-
sis. To date, studies of D. viviparus have been limited to
individual genes and proteins. For instance, before the
present study (March 2007), 323 gene sequences, 221
protein sequences and 229 research articles relating to D.
viviparus were available in public databases.

Current technological advances in genomics provide
exciting opportunities for exploring basic molecular bio-
logical and biochemical aspects of D. viviparus and related
nematodes. For instance, expressed sequence tag (EST)
data sets facilitate the prediction and categorization of key
molecules, particularly those linked to development
(both in pre-parasitic and parasitic stages), sexual differ-
entiation and maturation, based on comparisons with

other organisms for which sequence and functional
genomic data sets are available. Also, the complete
genome sequence of the free-living nematode Caenorhab-
ditis elegans and the wealth of information on gene expres-
sion and function for this nematode [8,9] provide a
means of evaluating homologues and orthologues [10],
since D. viviparus cannot be maintained or propagated
effectively in vitro for the functional testing of genes and
gene products. Also, the potential of gene silencing tech-
niques [11,12] provides a prospect for the functional anal-
ysis of molecules in this and other parasitic nematodes.

In the present study, we provide a first insight into the
transcriptome of the adult stage of D. viviparus via EST
sequencing and apply a newly established computational
platform [13] for the clustering and comparative analyses
of the data set against data available for a range of organ-
isms, with an emphasis on the best characterized nema-
tode, C. elegans. The representative ESTs from this dataset
have been annotated functionally at the gene and protein
levels to aid in assigning, in the main, gene ontologies,
protein families and biochemical pathways. Such annota-
tion techniques have enabled us to pin-point genes that
could be considered in the development of intervention
strategies. The present data provide a foundation for
future investigations in areas, such as the stage-, sex- and
tissue-specific gene transcription or expression, whole
genome sequencing and proteomics of D. viviparus.

Results and discussion
General EST analysis
Of 5271 clones sequenced, a total of 4436 quality ESTs
were obtained (Phase I, Figure 1), achieving a sequencing
success of 84% (Table 1), which is consistent with previ-
ous studies [14,15]. These pre-processed ESTs ranged
from 80–1164 bp, with a mean of 730 bp and a standard
deviation (S.D.) of 258 bp. After clustering, the mean
length of the contigs (or consensus sequences) increased
to 787 (+/- 313) bp. The G+C content of the coding
sequences was 43.5%, consistent with other nematodes
from clade V [16,17] and slightly more than C. elegans
(37%) and its congener, C. briggsae (38%) [18]. Under the
assumption that the D. viviparus genome codes for
~22,000 proteins [19], the EST clusters were predicted to
represent ~10–15% of the proteins encoded by this
genome.

The cluster analysis of the 4436 ESTs from adult D. vivipa-
rus yielded 2258 representative ESTs (rESTs; 458 contig
and 1800 singleton sequences; see Table 1), of which
1685 (74.6%) had open reading frames (ORFs). All rESTs
were then subjected to analyses using ESTExplorer [13], a
semi-automated bioinformatics pipeline (Fig. 1). Also, we
queried rESTs (at the amino acid level) against three data-
bases containing protein sequences from different organ-
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isms, in order to categorize the molecules from D.
viviparus. Data were compared with protein sequences
available for (i) C. elegans (from WORMPEP v.167 [20]),
(ii) parasitic nematodes (available protein sequences and
peptides from conceptually translated ESTs), and (iii)
organisms other than nematodes (from NCBI non-redun-
dant protein database) [21]. Three-way comparison of D.
viviparus rESTs with homologues from C. elegans, WORM-
PEP and parasitic nematodes have been figuratively pre-
sented using SimiTri [22] (Figure 2). For this comparison,
similarity searches of the 2258 representative sequences
resulted in 1159 (51.3%) homologues to C. elegans, 1174
(51.9%) to those from other parasitic nematodes (includ-
ing some strongylids), 827 (36.6%) homologues in
organisms other than nematodes, and 39.5% had no sig-
nificant similarity to any other organism (employing a
cut-off of 1e-05) for which sequence data are currently
available (Figure 2, Additional File 1). The SimiTri plot
(Figure 2) shows that, given the current database contents,
the sampled transcriptome from D. viviparus is equally
close to available C. elegans and parasitic nematode
sequences, compared with non-nematodes.

Comparative analyses with C. elegans data sets
The comparative analysis to identify homologues in C.
elegans is important because D. viviparus and this free-liv-
ing nematode are both considered to belong to clade V of
the Nematoda [16,17], and because C. elegans also repre-
sents the best characterized nematode in many respects,
particularly in terms of its genome, genetics, biology,
physiology, biochemistry, as well as the localization and
functions of molecules [20,23]. Specifically, the compara-
tive analysis (at the amino acid level) of all rESTs with C.
elegans data (see Additional File 1) revealed 1159 (51.3%)
key, well-characterized molecules associated with various
biological processes (n = 540), including development,
regulation of biological processes, response to abiotic and
biotic stimuli and reproduction. 'Non-wildtype' RNAi
phenotypes in C. elegans (such as embryonic lethality,
maternal sterility, sterility in progeny, larval arrest and
slow growth) were associated with 569 (48.7%) of these
1159 molecules (Table 3). Of the 1159 C. elegans homo-
logues, the functions for 776 (66%) rESTs could be
inferred using Gene Ontologies (GO) [24], with 696
(41%) sequences being mapped to key biological path-

ways (including signal transduction mechanisms, antigen
processing and presentation, regulation of actin cytoskel-
eton, ribosomal proteins and translation factors). Overall,
the functional classification revealed that approximately
half of the rESTs had homologues in C. elegans and para-
sitic nematodes, one tenth were specific to parasitic nem-
atodes, and one third of the rESTs did not match any
sequence in current databases, possibly representing
novel genes.

As multiple ESTs can be derived from the same gene, it
was important to predict how many unique genes were
represented by the rESTs. Mapping the 2258 D. viviparus
rESTs to C. elegans revealed that, of the 1159 D. viviparus
rESTs with similarities to 927 C. elegans genes, the major-
ity of these (798/1159 or 68.8%) had a one-to-one rela-
tionship to their C. elegans homologue. The remaining
369 rESTs mapped to multiple non-overlapping regions
from 129 C. elegans genes (with an estimated fragmenta-
tion rate of 25%). After discounting for fragmentation, we
estimated that 1694 unique D. viviparus genes were iden-
tified, with a suggested new gene discovery rate of 38.2%
(1694/2258).

C. elegans (non-wild-type) RNAi phenotypes can provide
some indication of the relevance and functions of orthol-
ogous genes in other nematodes, particularly in parasitic
nematodes of clade V, for which the complexity of an obli-
gate parasitic life cycle and the lack of an effective (long-
term) laboratory culture system make high-throughput
functional screening impractical [25]. We retrieved C. ele-
gans RNAi data representing D. viviparus homologues. Of
1159 D. viviparus rESTs, 569 had homologues in C. elegans
which could be silenced by RNAi (Additional File 1). The
RNAi phenotypes (as described by Wormbase) included
Adl (adult lethal), Age (ageing alteration), Bmd (body
morphology defect), Dpy (dumpy), Egl (egg laying
defect), Emb (embryonic lethal), Gro (slow growth), Let
(larval lethal), Lvl (larval lethal), Lva (larval arrest) and
Unc (uncoordinated), whereas 590 homologues had no
observable RNAi phenotype in C. elegans. We also found
that 23% of the most abundant (Table 2) and 22% of the
transcripts predicted to represent secreted proteins of D.
viviparus (Additional File 2) had C. elegans homologues
with non-wildtype RNAi phenotypes.

Comparative analysis with data for other nematodes within clade V
D. viviparus is a member of clade V of the phylum Nema-
toda [16,17], which comprises members of the orders
Strongylida, Rhabditida and Diplogasterida. We con-
ducted a comparative analysis of all 2258 rESTs with data
[17,26] for various nematodes (including Ancylostoma
caninum, Ancylostoma ceylanicum, Necator americanus, Nip-
postrongylus brasiliensis, Haemonchus contortus, Ostertagia
ostertagi, Teladorsagia circumcincta and Pristionchus pacifi-

Table 1: Preliminary analysis of the 5271 ESTs

Numbers (percentage)

Raw sequences obtained 5271
Curated sequences 4436 (84)
Clusters of multiple sequences 
(contigs)

458 (8.6)

Clusters of singletons 1800 (34.2)
Total 2258 (42.8)
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cus) belonging to clade V (Additional File 3), to examine
gene conservation within this clade. The analysis revealed
601 (26.6%) rESTs to have significant similarity to mole-
cules from the members of clade V. These rESTs repre-
sented house-keeping (including cathepsin B-like cysteine
proteases 1 and 2 and serine-threonine protein kinase) as
well as nematode-specific (vitellogenin structural and
major sperm protein) genes. We could assign GO terms to
461 of these 601 rEST sequences, associated with 118 dif-
ferent biological processes, such as embryonic develop-
ment, intracellular protein transport, protein metabolism
and responses to abiotic and/or biotic stimuli. Further-
more, 404 sequences could be mapped to biological path-
ways predicted to be associated with ribosomal proteins
and the proteasome system, including 23 predicted
secreted proteins mapping to cysteine proteinases,
secreted protein 5 precursor and parasite pepsinogen.

Abundant transcripts in adult D. viviparus
A high level of representation in a cDNA library usually
correlates with high transcript abundance in the original
biological sample [27], although artefacts of library con-
struction can result in a selection for or against represen-
tation of some transcripts. The D. viviparus clusters were
ranked according to the number of contributing ESTs, and
the top 30 clusters, which represented 1261 (24%) of the
total number of rESTs (2258) obtained, were investigated
in detail (Table 2). A number of clusters had significant
alignments to known proteins, the majority of which were
house-keeping genes, such as elongation factors, ribos-
omal proteins, aldolases, kinases, proteases and actins.
Some of these genes have been identified in a number of
other nematodes, including Ancylostoma caninum, Ancylos-
toma ceylanicum, Dirofilaria immitis, Strongyloides ratti and
Meloidogyne incognita [28-32], requiring detailed charac-
terisation to understand their functions in D. viviparus.

We analysed the most abundantly expressed transcripts
from D. viviparus and found that 12 of the 30 (40%) con-
tigs had no significant similarity to any sequence in the
non-redundant protein database. As most of the nema-
tode data are available only as ESTs and not included in
the BLAST databases, we further compared these 12 con-
tigs with sequences against Parasite Genomes using WU-
Blast2 and BLASTN against the NCBI 'other-ESTs' data-
base. We found that five sequences did not match any
sequence in the databases, whereas seven entries had sim-
ilarity to ESTs from other nematodes. The other 18 (60%)
contigs were assigned functionality based on BLASTP
against the NR database, and all of them had homologues
in either non-parasitic (C. elegans and/or C. briggsae) or
parasitic nematodes. A summary of these findings is pro-
vided in Table 2. Most of the homologues were found to
be house-keeping or structural genes (including aldolase,
histone family members, lectin, collagen and cytochrome
oxidase), and four contigs were represented by molecules
specific to nematodes, such as the major sperm proteins.

Comparison with cDNAs from third-stage larvae of D. 
viviparus
Recently, Strube et al. [33] identified and characterized 28
cDNAs differentially transcribed between experimentally
induced hypobiotic and infective third-stage larvae (L3)
of D. viviparus using a suppressive-subtractive hybridiza-
tion (SSH) approach. We compared these 28 sequences
against our dataset of 2258 rESTs, using BLASTN, to iden-
tify whether any of them were represented in the adult
stage, with only one match. The sole sequence common to
both datasets was L3ni 18 (accession number EG374523),
which matched EST D.viviparus_42_A11 in the present
dataset, being a homologue of the C. elegans hypothetical
protein C05D11.10 (mitochondrial/chloroplast ribos-
omal S17-like protein [code KOG3447]). Thus, this EST

Bioinformatics analysis of D. viviparus ESTsFigure 1
Bioinformatics analysis of D. viviparus ESTs. ESTEx-
plorer analysis comprising Phases I (pre-processing), II 
(DNA-level annotation) and III (protein-level annotation), 
were augmented by homologue identification from nema-
todes as well as parasitic nematodes, using specialized data-
bases.

Raw ESTs
5271

EST pre-processing
(SeqClean & RepMasker)

4436 ESTs

EST clustering  and assembly
(CAP3)

2258 rESTs
(458 Contigs & 1800 Singletons)

Conceptual translation
(ESTSCAN)

1685 peptide sequences

Secretome analysis
(SignalP, TMHMM, 

PSORT)
Domain/Motif analysis

(InterProScan)
Pathway Mapping

(KOBAS)

Gene Ontologies
BLAST2GO

776
sequences

Locate RNAi phenotype from C. elegans
(BLASTX against Wormpep)

Database similarity searches  for 
locating parasitic nematode homologues

(BLASTX) 

Phase I: EST pre-processing

Phase III: Protein 
level Annotation

Phase II:
DNA level 
annotation

Database similarity searches  for 
locating mammalian homologues

(BLASTX against NR)

85
sequences

648
sequences

696
sequences
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study of adult D. viviparus represents a novel dataset for
parasitic nematodes in clade V, representing the Metas-
trongyloidea (cf. [47]).

Functional classification of rESTs from adult D. viviparus
We annotated all 2258 rESTs systematically using a range
of bioinformatic tools (details available in Figure 1). This
annotation included functional classifications of rESTs
using Gene Ontologies (GO) [24], pathway mapping
using KEGG (Kyoto Encyclopedia of Genes and
Genomes) [34], visualisation of EST data comparisons
using SimiTri [22] and analyses of the D. viviparus secre-
tome using SignalP [35], TMHMM [36] and PSORTII [37].
Results of these analyses are described in the following
two sections

a. Gene Ontologies
Gene Ontology (GO) has been used widely to predict
gene function and classification. GO provides a dynamic
vocabulary and hierarchy that unifies descriptions of
biological, cellular and molecular functions across
genomes. We used BLAST2GO [38], a sequence-based
tool to assign GO terms, extracting them for each BLAST
hit obtained by mapping to extant annotation associa-
tions. We found that 776 (31%) of 2258 rESTs could be
functionally assigned to biological processes (n = 540),
cellular components (n = 328) and molecular functions
(n = 457). A summary GO representation (using GO
Slim) of the D. viviparus rESTs is given in Table 3.

Amongst the most common GO categories representing
biological processes were: binding (GO: 0005488), cata-
lytic activity (GO: 0003824) and structural molecule
activity (GO: 0005198); development (GO: 0007275),
metabolism (GO: 0008152), reproduction
(GO:0000003) and growth (GO:0040007). The largest
number of GO terms in cellular components was for cell
part (GO:0044464), membrane-bound organelle
(GO:0043227) and non-membrane-bound organelle
(GO:0043228). A complete listing of GO mappings
assigned for rESTs is provided in Additional File 4.

b. Pathway analysis using KEGG assignments
Biochemical functionality was predicted by mapping all
2258 rESTs to pathways, using KOBAS implemented
within ESTExplorer [13], with an E-value cut-off of 1.0e-5.
Enzyme commission (EC) numbers were used to appraise
which sequences pertained to a specific pathway. A total
of 696 (31%) sequences were mapped to 139 KEGG path-
ways, with 453 sequences representing metabolic
enzymes characterized by unique EC numbers. The top 30
(highly represented) pathways are shown in Table 4.

Molecules involved in signal transduction mechanisms
(n= 26) and glycolysis/gluconeogenesis (h= 24) had the
highest representation amongst the sequences mapped to
KEGG pathways. We also identified 50 predicted proteins
with potential roles in host-parasite interactions, with 11
molecules predicted to be involved in antigen processing
and/or presentation, six in T-cell receptor signalling path-
way and seven CD molecules. Although, at this stage, the
precise role of such molecules in the parasite-host inter-
play is unclear, they could be involved in manipulating or
evading the host's immune response(s) or associated with
the parasite's innate immune response. Extensive experi-
mental work would be required to test these proposals.
Furthermore, we identified families of proteins represent-
ing serine, cysteine and metallo-proteinases as well as pro-
teinase inhibitors (e.g., cystatins). While these enzymes
are inferred to mediate or modulate proteolytic functions,
which, in turn, may facilitate tissue migration and other
interactions with host cells, the proteinase inhibitors may
protect the parasite against digestion by host or endog-
enous proteinases excreted/secreted in the lung of the
mammalian host [39]. A complete listing of the KEGG
mappings is available as supplementary data (Additional
File 5).

Secretome analysis
An important starting point in the identification of poten-
tial novel drug or vaccine candidates in parasites is the
prediction of molecules that are secreted or excreted in or
around the host- parasite interface [40-42]. Examples of
such proteins are the aspartyl protease inhibitor (API-1)
[43], mi-msp-1 (similar to a venom allergen antigen AG5-

Comparison of D. viviparus rESTs with C. elegans, parasitic nematode and non-nematode protein sequence databases using SimiTriFigure 2
Comparison of D. viviparus rESTs with C. elegans, 
parasitic nematode and non-nematode protein 
sequence databases using SimiTri. The numbers at each 
vertex indicate the number of rESTs matching only that spe-
cific database. The numbers on the edges indicate the 
number of rESTs matching the two databases linked by that 
edge. The number within the triangle indicates the number of 
D. viviparus genes with matches to all three databases.

Color scale of maximal
BLAST scores for tiles

No match for 
863 rESTs 

100 200150

100

250 300

C. elegans

Parasitic nematodesNon-nematodes 
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9 109

28841
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Table 2: The most abundant transcripts in adult Dictyocaulus viviparus

No Cluster ID Percentage No of 
ESTs

Gene ID E-value % identity Description from NR hit C. elegans 
Homologue

Top hit in 
C. elegans

C. elegans RNAi

1 DvContig 413 100 261 - - - No significant similarity (novel) No significant similarity 
(novel)

None None

2 DvContig 438 94.64 247 CAF29502.1 6E-64 118/126 (93%) major sperm protein [Oesophagostomum 
dentatum]

msp-76 – (Major 
Sperm Protein)

ZK1251.6 fat content increase

3 DvContig 329 31.03 81 ABA53863.1 2E-136 220/333 (66%) cathepsin B-like cysteine protease 1 
[Parelaphostrongylus tenuis]

cysteine protease F57F5.1 embryonic lethal (L
abnormal (unc) larv

4 DvContig 371 27.20 71 - - - No significant similarity (novel) No significant similarity 
(novel)

None None

5 DvContig 366 25.67 67 CAF29502.1 4E-65 118/126 (93%) major sperm protein [Oesophagostomum 
dentatum]

msp-76 – (Major 
Sperm Protein)

ZK1251.6 fat content increase

6 DvContig 318 18.39 48 - - - No significant similarity (novel) No significant similarity 
(novel)

None None

7 DvContig 238 16.48 43 AAO63577.1 3E-15 59/199 (29%) secreted protein 5 precursor 
[Ancylostoma caninum]

vap-1 – (Venom-
Allergen-like Protein)

F11C7.3b No observed pheno

8 DvContig 419 13.03 34 - - - No significant similarity (novel) No significant similarity 
(novel)

None None

9 DvContig 415 12.26 32 NP_500698.1 3E-26 142/237 (59%) Sperm-Specific family, class Q family 
member (ssq-2) [Caenorhabditis elegans]

ssq-2 – (Sperm-Specific 
family, class Q)

T28H11.5 locomotion abnorm

10 DvContig 140 11.88 31 NP_579952.2 7E-29 69/86 (80%) cytochrome oxidase subunit I 
[Ancylostoma duodenale]

cytochrome oxidase 
subunit I

MTCE.26 No observed pheno

11 DvContig 385 11.88 31 NP_500520.1 3E-62 230/300 (76%) COLlagen family member (col-3) 
[Caenorhabditis elegans]

col-34 cuticular 
collagen

F36A4.10 organism morpholo
(Bmd), dumpy (Dpy
abnormal (unc)

12 DvContig 357 9.96 26 NP_500697.1 2E-26 70/110 (63%) Sperm-Specific family, class P family 
member (ssp-19) [Caenorhabditis. 
elegans]

ssp-11 – (Sperm-
Specific family, class P)

T28H11.6 No observed pheno

13 DvContig 347 9.20 24 AAO63577.1 2.00E-15 59/199 (29%) secreted protein 5 precursor 
[Ancylostoma caninum]

vap-1 – (Venom-
Allergen-like Protein)

F11C7.3b No observed pheno

14 DvContig 253 8.81 23 - - - No significant similarity (novel) No significant similarity 
(novel)

None None

15 DvContig 261 7.66 20 AAO63577.1 6E-16 67/198 (33%) secreted protein 5 precursor 
[Ancylostoma caninum]

testes-specific protein 
like

T05A10.5 No observed pheno

16 DvContig 352 7.66 20 NP_506519.1 1E-27 82/268 (30%) Hypothetical protein CBG09313 
[Caenorhabditis briggsae] Domain 
DUF856

T16A9.5 gene 
(Unnamed protein)

T16A9.5 No observed pheno
17 DvContig 390 7.66 20 - - - No significant similarity (novel) No significant similarity 
(novel)

None None None

http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=CAF29502.1
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=ABA53863.1
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=CAF29502.1
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=AAO63577.1
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=NP_500698.1
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=NP_579952.2
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=NP_500520.1
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=NP_500697.1
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=AAO63577.1
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=AAO63577.1
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=NP_506519.1
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None

None

None

erved phenotype is found. extracellular region

None

erved phenotype is found. None

nic lethal (Let), sterile 
y (Stp), egg laying abnormal 
ck (Sck), locomotion 
al (unc), (Emb) slow growth 

None

erved phenotype is found. nucleosome assembly; DNA 
binding; nucleus

served phenotype is found. protein amino acid 
phosphorylation; ATP 
binding; protein kinase 
activity; protein serine/
threonine kinase activity; 
protein-tyrosine kinase 
activity

served phenotype is found. extracellular region

None

None

served phenotype is found. sugar binding activity

onic lethal (Let), larval 
(Lva, maternal sterile (Ste), 
ding vulva (Pvl)

embryonic development; 
translational elongation; 
translational termination
18 DvContig 258 7.28 19 - - - No significant similarity (novel) No significant similarity 
(novel)

None None

19 DvContig 403 7.28 19 - - - No significant similarity (novel) No significant similarity 
(novel)

None None

20 DvContig 178 6.90 18 - - - No significant similarity (novel) No significant similarity 
(novel)

None None

21 DvContig 86 5.75 15 AAO63577.1 1E-16 64/215 (29%) secreted protein 5 precursor 
[Ancylostoma caninum]

testes-specific protein 
like

T05A10.5 No obs

22 DvContig 346 5.75 15 - - - No significant similarity (novel) No significant similarity 
(novel)

None None

23 DvContig 348 5.36 14 AAP41952.1 3E-12 55/203 (27%) secreted protein ASP-2 [Necator 
americanus]

vap-1 – (Venom-
Allergen-like Protein)

F11C7.3b No obs

24 DvContig 224 4.98 13 BAA12092.1 5E-168 310/366 (84%) aldolase Ce2 [Caenorhabditis elegans] Fructose-biphosphate 
aldolase

F01F1.12a embryo
progen
(Egl), si
abnorm
(Gro)

25 DvContig 354 4.98 13 NP_510410.1 1E-16 49/77 (63%) HIStone family member (his-24) 
[Caenorhabditis elegans]

his-24 histone H1 M163.3 No obs

26 DvContig 216 4.60 12 CAE67138.1 7E-141 233/309 (75%) casein kinase [Caenorhabditis briggsae] casein kinase C39H7.1 No ob

27 DvContig 161 4.21 11 AAO63577.
1

3E-15 64/215 (29%) secreted protein 5 precursor 
[Ancylostoma caninum]

vap-1 – (Venom-
Allergen-like Protein)

F11C7.3b No ob

28 DvContig 202 4.21 11 - - - No significant similarity (novel) No significant 
similarity (novel)

None None

29 DvContig 266 4.21 11 - - - No significant similarity (novel) No significant 
similarity (novel)

None None

30 DvContig 356 4.21 11 NP_492448.
1

3E-31 76/191 (39%) C-type Lectin [Caenorhabditis elegans] clec-87 – (C-type 
LECtin)

C25A1.8 No ob

31 DvContig 154 3.83 10 NP_492457.
1

0 785/852 (92%) Elongation Factor family member 
(eft-2) [Caenorhabditis elegans]

eft-2 – (Elongation 
FacTor)

F25H5.4 embry
arrest 
protru

Table 2: The most abundant transcripts in adult Dictyocaulus viviparus (Continued)

http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=AAO63577.1
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=AAP41952.1
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=BAA12092.1
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=NP_510410.1
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Table 3: Gene Ontology mappings (using GO slim terms) for Dictyocaulus viviparus clusters. Note that individual GO categories can 
have multiple mappings

Categories and subcategories Representation % Representation of total

a. Biological Process 540 8.53
cellular process 277 4.38

cell communication 56 0.88
cell recognition 1 0.02
cell differentiation 33 0.52

response to stimulus 146 2.31
response to biotic stimulus 11 0.17
response to abiotic stimulus 30 0.47
response to stress 35 0.55
behavior 114 1.8

reproduction 180 2.84
growth 180 2.84
physiological process 424 6.7

response to endogenous stimulus 10 0.16
response to external stimulus 16 0.25
response to stress 35 0.55
death 35 0.55
metabolism 256 4.05
homeostasis 5 0.08

development 284 4.49
embryonic development 228 3.6

anatomical structure development 103 1.63
localization 54 0.85
b. Cellular component 328 5.18
cell 311 4.91

intracellular 264 4.18
organelle 215 3.4

vesicle 9 0.04
membrane-bound organelle 152 2.4

organelle envelope 1 0.02
non-membrane-bound organelle 86 1.36

organelle part 21 0.33
organelle lumen 18 0.28

envelope 1 0.02
protein complex 22 0.35

unlocalized protein complex 5 0.08
cell part 280 4.42
extracellular matrix (sensu Metazoa) 10 0.16
extracellular region 17 0.27
extracellular region part 15 0.24

extracellular space 5 0.08
c. Molecular function 457 7.22
binding 253 4

carbohydrate binding 4 0.06
ion binding 13 0.21
nucleotide binding 65 1.03
nucleic acid binding 80 1.26
chromatin binding 2 0.03
lipid binding 3 0.05
protein binding 107 1.69

antioxidant activity 2 0.03
catalytic activity 214 3.38
hydrolase activity 90 1.42
transferase activity 51 0.81
enzyme regulator activity 11 0.17
electron transporter activity 10 0.16
motor activity 1 0.02
signal transducer activity 12 0.19
Page 8 of 13
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like) [44] and the Ancylostoma-secreted protein (ASP)
[45]. In the present data set (= 2258 rESTs), we identified
85 putatively secreted proteins representing a non-redun-
dant catalogue of D. viviparus molecules (Additional 2).
Of these, 26 (30.5%) sequences had no significant simi-
larity to any sequence available in current databases,
whereas 59 (69.4%) had homologues in nematodes, with
43 (50.5%) C. elegans and/or C. briggsae matches, and 16

(18.8%) homologues in various other parasitic nema-
todes, including the blood-feeding nematodes Ancylos-
toma ceylanicum, Necator americanus and Haemonchus
contortus.

The secretome analysis (Additional File 2) revealed a
number of unique features. Firstly, seven of the putative
secreted protein entries were homologous to either sperm-

Table 4: Top 30 selected metabolic pathways in adult D. viviparus mapped by Kyoto Encyclopedia of Genes and Genomes

Number KEGG Pathway rESTs sequence count Enzymes

1 Signal transduction mechanisms 26 26

2 Glycolysis/Gluconeogenesis 24 24

3 Pyruvate metabolism 19 19

4 Regulation of actin cytoskeleton 19 1

5 Ribosome 19 0

6 Protein folding and associated processing 18 14

7 Focal adhesion 17 1

8 GTP-binding proteins 15 0

9 Insulin signaling pathway 14 11

10 Carbon fixation 12 12

11 Purine metabolism 12 12

12 Antigen processing and presentation 11 6

13 Glycerophospholipid metabolism 11 11

14 MAPK signaling pathway 11 3

15 Translation factors 10 4

16 Propanoate metabolism 9 9

17 Fructose and mannose metabolism 9 9

18 Citrate cycle (TCA cycle) 9 9

19 Butanoate metabolism 9 9

20 Tight junction 9 3

21 Wnt signaling pathway 9 3

22 Oxidative phosphorylation 9 9

23 Leukocyte transendothelial migration 8 0

24 Adherens junction 8 2

25 Ion channels 8 0

26 CD molecules 7 5

27 Adipocytokine signaling pathway 7 5

28 Proteasome 7 2

29 Valine, leucine and isoleucine degradation 7 7

30 Other enzymes 37 37

receptor activity 4 0.06
structural molecule activity 214 1.69
transcription regulator activity 68 1.07
transporter activity 28 0.44

ion transporter activity 1 0.02
channel or pore class transporter activity 1 0.02

translation regulator activity 8 0.13

Table 3: Gene Ontology mappings (using GO slim terms) for Dictyocaulus viviparus clusters. Note that individual GO categories can 
have multiple mappings (Continued)
Page 9 of 13
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specific family members [41] or major sperm proteins
(MSP), consistent with the mass spectrometric analysis of
secreted molecules from D. viviparus [41]. Secondly, ace-
tylcholinesterase (AChE) has been identified as an impor-
tant enzyme secreted by adult D. viviparus, thought to be
involved in parasite survival in the host and, therefore,
being a vaccine candidate [46]. We now report an entry for
secreted acetylcholinesterase (D.viviparus_8_A01 of 332
amino acids, with a signal peptide length of 21) in the
secretome analysis of the current EST dataset (Additional
File 2), which may also represent a target for further char-
acterization.

Conclusion
The present study has given us a first glimpse of the tran-
scriptome of the adult stage of the bovine lungworm, D.
viviparus, and represents a starting point for studies in a
number of different fundamental and applied areas. We
used a comprehensive EST analysis pipeline, ESTExplorer,
for this purpose, for functional annotation at the DNA
and protein levels [13]. From this single study of 5271
ESTs, we have identified 55 novel sequences (1.4%), with
high confidence, with no known homologue in any other
nematode or mammal for which sequence data are pres-
ently available in public databases. These molecules are
particularly interesting, as they may represent genes that
may be specific to parasitism or to the species. However,
such molecules are very challenging to work on, as their
potential functions cannot be predicted using current bio-
informatic approaches. However, there is considerable
scope in exploring such molecules in the future, using a
combination of genomic and proteomic approaches.
Insights into such molecules and/or their interaction with
the bovine host could provide opportunities for develop-
ing novel intervention approaches.

From a systematic viewpoint, D. viviparus, belongs to the
Metastrongyloidea ("metastrongyles" or "lungworms")
based on nuclear ribosomal DNA sequence data [47], as
distinct from the Trichostrongyloidea (mainly in the
stomach and small intestine), Strongyloidea (mostly in
the large intestine) and Ancylostomatoidea (small intes-
tine), and thus represents, from biological, host-parasite
relationship and molecular evolutionary perspectives, a
very interesting species for comparative genomic analysis
with nematodes from these superfamilies. Therefore, this
nematode brings a number of important benefits for
future investigations, particularly for genome sequencing
and for subsequent comparative evolutionary analyses.
Indeed, D. viviparus, among other strongylid nematodes,
has recently been selected for whole genome sequencing,
to be carried out at the Genome Sequencing Center of
Washington University in St Louis, USA [48]. For D. vivip-
arus, the genomic information from the present study
underpins future microarray analyses, focused on explor-

ing the transcriptional profiles among different stages
(e.g., larval versus adult stages; hypobiotic stages versus
those which are not arrested; free-living (L1s and L2s) ver-
sus infective versus late larval stages), sexes (female versus
male) and tissues (e.g., germline versus neural versus mus-
culature versus intestine) of the parasite. Such studies, par-
ticularly those of the molecules differentially transcribed
and expressed during the transition to parasitism, the
invasion of the host and hypobiosis, could provide
unique insights into such key molecular developmental
and reproductive processes. While there is some contro-
versy regarding the applicability and usefulness of RNAi to
some parasitic nematodes, such as the Strongylida
[11,12], comparative studies of gene-silencing and trans-
genesis in C. elegans are considered useful for exploring
the function and regulation of some relatively conserved
parasite genes, provided data are interpreted with caution
[10]. This is particularly the case with the continued
increase in genome sequence information.

With the future availability of whole genome sequence
data for D. viviparus, it will also be possible to carry out
meaningful mass spectroscopic analyses of differentially
expressed proteins [49,50], allowing large-scale analysis
of proteins from small amounts of parasite material. Such
analyses will enable the link to be made between the reg-
ulation of transcription and translation and, importantly,
in the study of parasites, will allow the analysis of proteins
expressed within short time frames within or external to
the host animal, or within organs or micro-environments
within the parasite [51,52]. Hence, the application of an
integrated bioinformatic-genomic-phenomic-proteomic
("systems biology") approach, focusing on developmen-
tal processes and mechanisms, could enhance our under-
standing of the molecular biology of moulting, invasion
of and establishment in the host, hypobiosis (arrested
development), and sexual differentiation, maturation and
behaviour of D. viviparus. Clearly, progress in such funda-
mental areas could lead to the development of exciting
new ways of treating, controlling or preventing this lung-
worm and other parasitic nematodes, by blocking or dis-
rupting key biological pathways in them.

Methods
Parasite material
Adults of D. viviparus (strain HannoverDv2000) were pro-
duced in helminth-free male Holstein-Friesian calves (five
months of age). Four weeks after oral inoculation with
3300 L3, the calves with patent D. viviparus infection were
euthanized and the worms collected from the lungs as
described by Wood et al. [53]. The worms were washed
extensively (five times) in large volumes (100 ml) of fresh
diethyl-pyrocarbonate (DEPC)-treated saline (22°C),
transferred to sterile, RNase-free screw-top cryovials® (4
ml; Roth, Karlsruhe, Germany) and frozen as 200 μl pel-
Page 10 of 13
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lets in a minimal amount of saline at -75°C or -196°C
until RNA isolation.

Isolation of total RNA, cDNA synthesis and cDNA library 
construction
Total RNA was extracted from the adults of D. viviparus
(under liquid nitrogen, employing a sterile mortar and
pestle) using the TriPure isolation reagent® (Roche Molec-
ular Biochemicals). Integrity and yields of RNA were veri-
fied and estimated, respectively, using the Bioanalyzer
2100 (Agilent). Each RNA sample (~10 μg) was treated
with 2 U of DNase I (Promega), incubated at 37°C for 30
min prior to heat denaturation of the enzyme (75°C for 5
min) and then stored at -70°C until use. The cDNA was
produced from 10 μg of total RNA from D. viviparus, using
an oligo (dT) primer and Superscript II reverse tran-
scriptase (Invitrogen) and then purified over DyeEx col-
umns (Qiagen).

A non-directional cDNA library was constructed in the
plasmid vector pGEM-T (Promega) by T-ended cloning,
according to the manufacturer's protocol. Colonies were
screened using blue-white selection. Clones (n = 5271)
were picked randomly and patched on to grided Luria Ber-
tani (LB) agarose plates containing 100 mg/ml ampicillin.
Single-pass sequencing (using the T7 primer) was per-
formed employing BigDye Chemistry (v3.1) in a 3730 × l
DNA analyser (Applied Biosystems).

EST analysis
The ESTs were initially analysed and annotated using
ESTExplorer, an automated EST analysis platform [13,54].
In brief, the analyses comprised three phases (see Figure
1). In phase I, all ESTs were pre-processed (SeqClean,
RepeatMasker), aligned/clustered using the Contig
Assembly Program CAP3, employing a minimum
sequence overlap length "cut-off" of 30 bases and an iden-
tity threshold of 95% (in Phase I) for the removal of flank-
ing vector and adapter sequences, followed by assembly.
Phase II of the ESTExplorer led to gene ontology inference,
at the DNA-level annotation, using BLAST2GO (V 1.6.2)
[38], using Gene Ontology (MySQL-DB-data release
go_200609). In Phase III, rESTs were then conceptually
translated into peptides (using ESTScan), which were fur-
ther characterized via InterProScan (domain/motifs), and
peptides mapped to respective pathways in C. elegans
using KOBAS (KEGG Orthology-Based Annotation Sys-
tem, KEGG data release 40.0). We also retrieved KO data
from KEGG and then classified enzymes from non-
enzymes based on our pathway mapping results. Peptides
predicted from rEST were also compared, using BLASTP,
with the non-redundant protein sequence database from
National Centre for Biotechnology Information (NCBI),
as part of the generic ESTExplorer pipeline for systematic
EST analysis and annotation.

Protein databases for 'parasitic nematodes' and 'non-nem-
atodes' were generated in-house for similarity searches.
The 'parasitic nematodes' group contains all available pro-
tein sequences for parasitic nematodes and ESTs from
GenBank (17 February 2007), translated into peptide
sequences, whereas the 'non-nematodes' database com-
prises amino acid sequences from the complete non-
redundant protein database NR (17 February 2007)
excluding those from nematodes. Homologues to rESTs
were identified via comparisons against WormBase using
BLASTX and the Parasite genome WU-BLAST2 Nematoda
database (from the European Bioinformatics Institute)
using BLASTN. Each EST of D. viviparus was assigned a 'sta-
tistically significant' gene homologue if the E-value from
the BLAST output of the sequence alignment was <1e-05.
The program SimiTri [22] was used for the comparison (at
the amino acid sequence level) of D. viviparus rESTs with
data in C. elegans, parasitic nematode and non-nematode
protein sequence databases. SimiTri provides a two-
dimensional display of relative similarity relationships
among three different datasets.

From the peptides inferred from rESTs, secreted proteins
were predicted using a combination of three programs, to
minimize the number of false positive predictions. Firstly,
SignalP 3.0 [35] was used to predict the presence of secre-
tory signal peptides and signal anchors for each predicted
rEST proteins. A signal sequence was considered present
when it was predicted both by the artificial neural network
and the hidden Markov model prediction approaches
(SignalPNN and SignalP-HMM, available as options
within SignalP). In order to exclude the erroneous predic-
tion of putative transmembrane (TM) sequences as signal
sequences, TMHMM [36], a membrane topology predic-
tion program, was then applied. We further validated the
list of secreted proteins, using extracellular localization,
employing PSORT [37].

Note: The final set of quality ESTs reported in this paper 15
are available in the EMBL, GenBank and DDJB databases
under accession numbers EV849926 – EV854361.
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Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2164-8-311-S2.pdf]

Additional file 3
Dictyocaulus viviparus homologues in nematodes in clade V, including 
Ancylostoma caninum, Ancylostoma ceylanicum, Necator america-
nus, Nippostrongylus brasiliensis, Haemonchus contortus, Osterta-
gia ostertagi, Teladorsagia circumcincta and Pristionchus pacificus.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2164-8-311-S3.xls]

Additional file 4
Mapped metabolic pathways in adult Dictyocaulus viviparus based on 
Kyoto Encyclopedia of Genes and Genomes (KEGG). The pathway map-
ping was carried out using the program KOBAS.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2164-8-311-S4.xls]

Additional file 5
Gene Ontology mappings (using GO slim terms) for Dictyocaulus vivi-
parus clusters generated using BLAST2GO program. Note that individual 
GO categories can have multiple mappings.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2164-8-311-S5.xls]
Page 12 of 13
(page number not for citation purposes)

http://www.biomedcentral.com/content/supplementary/1471-2164-8-311-S1.xls
http://www.biomedcentral.com/content/supplementary/1471-2164-8-311-S2.pdf
http://www.biomedcentral.com/content/supplementary/1471-2164-8-311-S3.xls
http://www.biomedcentral.com/content/supplementary/1471-2164-8-311-S4.xls
http://www.biomedcentral.com/content/supplementary/1471-2164-8-311-S5.xls
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11516577
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17071354
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10322325
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9347626
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=2972109
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=2972109
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=2972109
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9460211
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9460211
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16454899
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16454899
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15923143
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15923143
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16616144
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16616144
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16971180
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16971180
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16469321
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17545197
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17545197
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17545197
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16426483
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16426483
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16426483
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15064128
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15064128
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15064128
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9851921
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15543149
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15543149
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14624247
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14624247
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9851916
http://wormbase.org/
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16381837
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16381837
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12584125
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12584125
http://www.wormbook.org/
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10802651
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10802651
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17201997
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17201997
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16907990
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16907990
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16907990
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9331369
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9331369


BMC Genomics 2007, 8:311 http://www.biomedcentral.com/1471-2164/8/311
Publish with BioMed Central   and  every 
scientist can read your work free of charge

"BioMed Central will be the most significant development for 
disseminating the results of biomedical research in our lifetime."

Sir Paul Nurse, Cancer Research UK

Your research papers will be:

available free of charge to the entire biomedical community

peer reviewed and published immediately upon acceptance

cited in PubMed and archived on PubMed Central 

yours — you keep the copyright

Submit your manuscript here:
http://www.biomedcentral.com/info/publishing_adv.asp

BioMedcentral

filarial parasitic nematode Dirofilaria immitis.  Int J Parasitol
2006, 36:829-839.

29. McCarter JP, Mitreva MD, Martin J, Dante M, Wylie T, Rao U, Pape
D, Bowers Y, Theising B, Murphy CV, Kloek AP, Chiapelli BJ, Clifton
SW, Bird DM, Waterston RH: Analysis and functional classifica-
tion of transcripts from the nematode Meloidogyne incognita.
Genome Biol 2003, 4:R26.

30. Thompson FJ, Mitreva M, Barker GL, Martin J, Waterston RH, McCa-
rter JP, Viney ME: An expressed sequence tag analysis of the
life-cycle of the parasitic nematode Strongyloides ratti.  Mol
Biochem Parasitol 2005, 142:32-46.

31. Geldhof P, Whitton C, Gregory WF, Blaxter M, Knox DP: Charac-
terisation of the two most abundant genes in the Haemon-
chus contortus expressed sequence tag dataset.  Int J Parasitol
2005, 35:513-522.

32. Mitreva M, McCarter JP, Arasu P, Hawdon J, Martin J, Dante M, Wylie
T, Xu J, Stajich JE, Kapulkin W, Clifton SW, Waterston RH, Wilson
RK: Investigating hookworm genomes by comparative anal-
ysis of two Ancylostoma species.  BMC Genomics 2005, 6:58.

33. Strube C, Schnieder T, von Samson-Himmelstjerna G: Differential
gene expression in hypobiosis-induced and non-induced
third-stage larvae of the bovine lungworm Dictyocaulus vivi-
parus.  Int J Parasitol 2007, 37:221-231.

34. Kanehisa M, Goto S, Hattori M, Aoki-Kinoshita KF, Itoh M,
Kawashima S, Katayama T, Araki M, Hirakawa M: From genomics
to chemical genomics: new developments in KEGG.  Nucleic
Acids Res 2006, 34:D354-D357.

35. Bendtsen JD, Nielsen H, von Heijne G, Brunak S: Improved predic-
tion of signal peptides: SignalP 3.0.  J Mol Biol 2004, 340:783-795.

36. Krogh A, Larsson B, von Heijne G, Sonnhammer EL: Predicting
transmembrane protein topology with a hidden Markov
model: application to complete genomes.  J Mol Biol 2001,
305:567-580.

37. Nakai K, Horton P: PSORT: a program for detecting sorting
signals in proteins and predicting their subcellular localiza-
tion.  Trends Biochem Sci 1999, 24:34-36.

38. Conesa A, Gotz S, Garcia-Gomez JM, Terol J, Talon M, Robles M:
Blast2GO: a universal tool for annotation, visualization and
analysis in functional genomics research.  Bioinformatics 2005,
21:3674-3676.

39. Knox DP: Proteinase inhibitors and helminth parasite infec-
tion.  Parasite Immunol 2007, 29:57-71.

40. Harcus YM, Parkinson J, Fernandez C, Daub J, Selkirk ME, Blaxter ML,
Maizels RM: Signal sequence analysis of expressed sequence
tags from the nematode Nippostrongylus brasiliensis and the
evolution of secreted proteins in parasites.  Genome Biol 2004,
5:R39.

41. Matthews JB, Davidson AJ, Beynon RJ: The application of mass
spectrometry to identify immunogenic components of
excretory/secretory products from adult Dictyocaulus vivipa-
rus.  Parasitology 2004, 128(Suppl):S43-S47.

42. Vanholme B, De Meutter J, Tytgat T, Van Montagu M, Coomans A,
Gheysen G: Secretions of plant-parasitic nematodes: a molec-
ular update.  Gene 2004, 332:13-27.

43. Delaney A, Williamson A, Brand A, Ashcom J, Varghese G, Goud GN,
Hawdon JM: Cloning and characterisation of an aspartyl pro-
tease inhibitor (API-1) from Ancylostoma hookworms.  Int J Par-
asitol 2005, 35:303-313.

44. Ding X, Shields J, Allen R, Hussey RS: A secretory cellulose-bind-
ing protein cDNA cloned from the root-knot nematode
(Meloidogyne incognita).  Mol Plant Microbe Interact 1998,
11:952-959.

45. Zhan B, Liu Y, Badamchian M, Williamson A, Feng J, Loukas A, Haw-
don JM, Hotez PJ: Molecular characterisation of the Ancylos-
toma-secreted protein family from the adult stage of
Ancylostoma caninum.  Int J Parasitol 2003, 33:897-907.

46. McKeand JB: Vaccine development and diagnostics of Dictyo-
caulus viviparus.  Parasitology 2000, 120(Suppl):S17-S23.

47. Chilton NB, Huby-Chilton F, Gasser RB, Beveridge I: The evolu-
tionary origins of nematodes within the order Strongylida
are related to predilection sites within hosts.  Mol Phylogenet
Evol 2006, 40:118-128.

48. NHGRI sequencing for 10 parasitic nematode species, mem-
bers of the order Strongylida   [http://www.genome.gov/
11007951]

49. von Eggeling F, Davies H, Lomas L, Fiedler W, Junker K, Claussen U,
Ernst G: Tissue-specific microdissection coupled with Pro-
teinChip array technologies: applications in cancer research.
Biotechniques 2000, 29:1066-1070.

50. Yatsuda AP, Krijgsveld J, Cornelissen AW, Heck AJ, de Vries E: Com-
prehensive analysis of the secreted proteins of the parasite
Haemonchus contortus reveals extensive sequence variation
and differential immune recognition.  J Biol Chem 2003,
278:16941-16951.

51. Barrett J, Brophy PM: Ascaris haemoglobin: new tricks for an
old protein.  Parasitol Today 2000, 16:90-91.

52. Pernthaner A, Cole SA, Morrison L, Green R, Shaw RJ, Hein WR:
Cytokine and antibody subclass responses in the intestinal
lymph of sheep during repeated experimental infections
with the nematode parasite Trichostrongylus colubriformis.
Vet Immunol Immunopathol 2006, 114:135-148.

53. Wood IB, Amaral NK, Bairden K, Duncan JL, Kassai T, Malone JB Jr,
Pankavich JA, Reinecke RK, Slocombe O, Taylor SM, Vercruysse J:
World Association for the Advancement of Veterinary Par-
asitology (W.A.A.V.P.) second edition of guidelines for eval-
uating the efficacy of anthelmintics in ruminants (bovine,
ovine, caprine).  Vet Parasitol 1995, 58:181-213.

54. ESTExplorer   [http://estexplorer.biolinfo.org]
Page 13 of 13
(page number not for citation purposes)

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16697384
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12702207
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15907559
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15826643
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15854223
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15854223
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17112525
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16381885
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16381885
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15223320
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15223320
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11152613
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11152613
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11152613
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10087920
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10087920
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10087920
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16081474
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16081474
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16081474
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17241394
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17241394
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15186490
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15186490
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16454898
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15145050
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15145050
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15722082
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9768512
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12906874
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10874707
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16584893
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16584893
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16584893
http://www.genome.gov/11007951
http://www.genome.gov/11007951
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11084869
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11084869
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12576473
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12576473
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10689322
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10689322
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16956667
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7571325
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7571325
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7571325
http://estexplorer.biolinfo.org
http://www.biomedcentral.com/
http://www.biomedcentral.com/info/publishing_adv.asp
http://www.biomedcentral.com/

	Abstract
	Background
	Results
	Conclusion

	Background
	Results and discussion
	General EST analysis
	Comparative analyses with C. elegans data sets
	Comparative analysis with data for other nematodes within clade V
	Abundant transcripts in adult D. viviparus

	Comparison with cDNAs from third-stage larvae of D. viviparus
	Functional classification of rESTs from adult D. viviparus
	a. Gene Ontologies
	b. Pathway analysis using KEGG assignments

	Secretome analysis

	Conclusion
	Methods
	Parasite material
	Isolation of total RNA, cDNA synthesis and cDNA library construction
	EST analysis

	Authors' contributions
	Additional material
	Acknowledgements
	References

